• No results found

Assessing environmental impacts of a packaging product when transitioning towards Circular Economy

N/A
N/A
Protected

Academic year: 2022

Share "Assessing environmental impacts of a packaging product when transitioning towards Circular Economy"

Copied!
66
0
0

Loading.... (view fulltext now)

Full text

(1)

IN

DEGREE PROJECT ENVIRONMENTAL ENGINEERING, SECOND CYCLE, 30 CREDITS

STOCKHOLM SWEDEN 2018,

Assessing environmental impacts of a packaging product when

transitioning towards Circular Economy

TED FORSLUND

(2)

Assessing environmental impacts of a packaging product when transitioning towards Circular Economy

TED FORSLUND Supervisor

RAJIB SINHA

Examiner

CECILIA SUNDBERG

Supervisor at AB Karl Hedin OSKAR RYNO

Degree Project in Sustainable Technology KTH Royal Institute of Technology

School of Architecture and Built Environment

Department of Sustainable Development, Environmental Science and Engineering SE-100 44 Stockholm, Sweden

(3)

Sammanfattning

(4)

Abstract

(5)

Acknowledgement

(6)

Table of Contents

(7)

Abbreviations

1.4-DCB eq 1.4-dichlorobenzene equivalents Alloc Def Allocation default

CE Circular Economy

CED Cumulative Energy Demand CFC11 eq chlorofluorocarbon-11 equivalents CO2 eq Carbon dioxide equivalents Co-60 eq Cobalt-60 equivalents Cu eq Copper equivalents EC European Commission

EPR Extended Producer Responsibility EU European Union

GHG Greenhouse Gas

GLO Global

LCA Life Cycle Assessment LCI Life Cycle Inventory

LCIA Life Cycle Impact Assessment M2a crop

eq Area time (crop) equivalents MFA Material Flow Analysis NONS Non-stop

NOx eq Nitrogen oxides equivalents Oil eq Oil equivalents

P eq Phosphorus equivalents

PM2.5 eq Particulate matter (less than or equal to 2.5 micrometers in diameter) equivalents RoW Rest of the World

S System

(8)

Figures

Tables

(9)

1 Introduction

1.1 Background

(10)

2

Fig. 1, The NONS pallet (excl. plastic cover) with carton sheet boards placed on top of the pallet (Stora Enso, 2018b).

(11)

1.2 Aim and objectives

2 Theoretical Background

2.1 Circular Economy

(12)

4

2.1.1 Production

2.1.1.1 Product design

(13)

Fig. 2, Product knowledge and design freedom versus time (Karniel and Reich, 2011).

2.1.1.2 Production processes

(14)

6

2.1.2 Consumption

2.1.3 Waste management

Fig. 3, Waste hierarchy by the European Union (European Commission, 2015a)

(15)

2.1.4 Biomass and bio-based products

2.2 Extended producer responsibility

(16)

8

2.3 Closing the loop - Pallet management

(17)

3 Methodology

3.1 Material Flow Analysis

Fig. 4, illustrative view of an MFA (Baccini and Brunner, 2012)

Emissions & waste

Products An industrial

process Raw material

(18)

10

Fig. 5, Procedure for establishing an MFA according to Baccini and Brunner (2012)

3.2 Life Cycle Assessment

(19)

Fig. 6, Life Cycle Assessment Framework according to the ISO 14040 (ISO, 2018).

3.3 EcoDesign

GOAL AND SCOPE DEFINITION

INVENTORY ANALYSIS

IMPACT ASSESSMENT

INTREPRETATION

(20)

12

3.3.1 Value curve

Fig. 7, EcoDesign value curve (Luttropp and Brohammer, 2014)

4 Life Cycle Assessment modelling

4.1 Goal

4.1.1 Purpose

(21)

4.1.2 Intended application

4.1.3 Intended audience

4.2 Scope

4.2.1 Product description

Fig. 8, NONS pallet by AB Karl Hedin

(22)

14

Step 2 Step 3 Step 4 Step 5

Fig. 9, Step-by-step operation of the Non-stop feeding system

4.2.2 Functional unit

Table 1, Possible variations in length, width, and deck area of the NONS pallet

Length [mm] Width [mm] Area [m2] Max Min Max Min Max Min Carton board sheet 2000 300 1600 400 3.2 0.12

(23)

4.2.3 System boundaries

4.2.4 Cut-off criteria

4.2.5 Allocation

(24)

16

4.2.5.1 Assumptions and limitations

Forest management

Sawmill

Pallet production

Distribution

Disposal

(25)

4.2.6 Impact category definition

4.2.7 Normalisation and weighting

(26)

18

4.3.1 Process flowchart

Fig. 10, Flowchart of the NONS pallet´s lifecycle 4.3.2 LCI Data

(27)

4.3.3 Forest management

Fig. 11, Sub-processes of the forest management

(28)

20

4.

5.

6.

7.

8.

9.

Preparation of land

Plantation of tree seedlings

Thinning and cleaning

(29)

Logging

Table 2, Description of process used in the Ecoinvent database for the forest management by AB Karl Hedin

Material Material in SimaPro Database

Pine log Sawlog and veneer log, softwood, measured as solid wood under bark {SE}| softwood forestry, pine, sustainable forest management | Alloc Def, S

Ecoinvent 3 (Wernet et al., 2016) Spruce

log

Sawlog and veneer log, softwood, measured as solid wood under bark {SE}| softwood forestry, spruce, sustainable forest management | Alloc Def, S

Ecoinvent 3 (Wernet et al., 2016)

Transportation from Forest to Sawmill in Krylbo, Avesta

(30)

22

Fig. 12, The area for raw material acquisition by AB Karl Hedin (Hedin, 2018b) 4.3.4 Sawmill

Table 3, Product and co-product allocation at the Sawmill in Krylbo Products and co-

products Amount

Unit

[m3 Solid under bark]

Allocation [%]

Sawn timber 1 m3 44.5 %

Sawdust 0.476 m3 21 %

Wood chips 0.663 m3 29,5 %

Drying factor - - 4,8 %

Total (under bark) 2.139 m3 100 %

Bark 0.239 m3 9.7 %

Total 2.465 m3

(31)

Fig. 13, Sub-processes of the sawmill operations at Krylbo sawmill

Table 4, overall energy consumption per cubic meter of sawn timber at Krylbo sawmill

Type Amount Unit Process/material in Ecoinvent 3 (Wernet et al., 2016)

Electricity 60.32 kWh/m3 Sawn timber Electricity, low voltage {SE}| market for | Alloc Def, S

Heat 295.04 kWh/ m3 Sawn timber Heat, district or industrial, other than natural gas {RoW}| heat production, softwood chips from forest, at furnace 1000kW | Alloc Def, S Diesel 1.91 litre/m3 Sawn timber Diesel {Europe without Switzerland}| market

(32)

24

Table 5, Oil and lubricant consumption per cubic meter of sawn timber at Krylbo sawmill

Type Amount per year Unit Density

[kg/m3] Amount per sawn timber [kg/m3 sawn timber]

Chain oil 43 m3 881 0.176

Hydraulic oil 10 m3 881 0.041

Grease 7231 kg - 0.033

Fig. 14, Transportation from Sawmill in Krylbo, Avesta to Pallet manufacturing site in Jularbo, Avesta (Google, 2018b).

4.3.5 Pallet Manufacturing

(33)

Fig. 15, Sub-processes of the pallet production at Jularbo

(34)

26

Table 6, Electricity and heat demand per cubic meter of sawn timber at Jularbo pallet production

Type Amount Unit Process in Ecoinvent 3 (Wernet et al., 2016)

Electricity 79.437 kWh/m3 Sawn timber for pallet production

Electricity, low voltage {SE}| market for | Alloc Def, S

Heat 0.075* kWh/ m3 Sawn timber for pallet production

Heat, central or small-scale, other than natural gas {RoW}| heat production, softwood chips from forest, at furnace 50kW

| Alloc Def, S

4.3.6 Pallet - NONS

Fig. 17, The NONS pallet by AB Karl Hedin

Table 7, Specifications for the sawn timber in the NONS pallet Length

[mm]

Width [mm]

Deck area [m2]

Sawn timber Volume [m3] 16X75

Sawn timber Volume [m3] 16X87

Sawn timber Volume [m3] 75X87

Total Volume [m3]

Weight [kg]

NONS 1000 1000 1 0.0108 0.0084 0.0051 0.0243 10.1600

(35)

Fig. 18, Draft of the NONS pallet, illustrating the dimensions of the sawn timber.

Staples and nails

Table 8, Information regarding type, amount and weight of the nails and staples for the NONS pallet.

Material Amount Weight per nail [kg]

Total weight per type[kg]

Staples Steel 27 0.002 0.054

60 mm nails Steel 18 0.003 0.054

90 mm nails Steel 18 0.007 0.117

(36)

28

Fig. 19, Transportation from Jularbo, Avesta to Stora Enso in Fors, Avesta (Google, 2018a).

4.3.7 Distribution

(37)

4.3.7.1 Disposal of the NONS pallet

Table 9, Waste scenario for the NONS pallet

5 Results

(38)

30

5.1.1 Boundaries of the study

5.1.2 Reference unit

5.1.3 Data sources

5.1.4 Uncertainty

5.1.5 Result

(39)

Fig. 20, Sankey diagram of the wooden material flow of AB Karl Hedin´s value chain (SankeyMATIC, 2018).

5.1.6 The main outcomes

(40)

32

5.2 Life Cycle Assessment

5.2.1 Life Cycle Interpretation

5.2.1.1 Cumulative energy demand (CED)

Table 10, The Cumulative Energy Demand of the NONS pallet

Impact category Unit Total Production incl. supply chain

Distribution

Scenario Disposal Scenario

Non-renewable, fossil MJ 113.14 92.27 34.72 -13.85

Non-renewable, nuclear MJ 21.29 20.43 1.56 -0.70

Non-renewable, biomass MJ 0.03 0.03 0.002 0,0003

Renewable, biomass MJ 234.08 233.76 0.30 0.03

Renewable, wind, solar, geothermal

MJ

0.76 0.64 0.09 0.03

Renewable, water MJ 7.14 6.70 0.39 0.05

Total MJ 376.4 353.8 37.1 -14.4

5.2.1.2 Recipe 2016 midpoint (H) - Characterised results

(41)

Table 11, Characterised results of the NONS pallet

Impact category Unit Total

Global warming kg CO2 eq 13.120

Stratospheric ozone depletion kg CFC11 eq

5.142E-06

Ionizing radiation kBq Co-60 eq

1.057 Ozone formation, Human health kg NOx eq

0.020

Fine particulate matter formation kg PM2.5 eq 0.008

Ozone formation, Terrestrial ecosystems kg NOx eq

0.021

Terrestrial acidification kg SO2 eq

0.023

Freshwater eutrophication kg P eq

0.001

Terrestrial ecotoxicity kg 1.4-DCB e 0.011

Freshwater ecotoxicity kg 1.4-DCB e

4.090

Marine ecotoxicity kg 1.4-DBC e

5.380 Human carcinogenic toxicity kg 1.4-DBC e

0.732

Human non-carcinogenic toxicity kg 1.4-DBC e 2825.256

Land use m2a crop eq

12.435

Mineral resource scarcity kg Cu eq

0.024 Fossil resource scarcity kg oil eq

2.472

Water consumption m3

0.106

(42)

34

Fig. 21, Characterised results of the NONS pallet

5.2.1.3 Production incl. supply chain

(43)

Fig. 22, characterised results of the production incl. supply chain of the NONS pallet

(44)

36 Table 12, Process contribution to ReCiPe category: Global warming

No Process

Total [kg CO2

eq]

Production incl.

supply chain of the NONS pallet [kg CO2 eq]

Distribution Scenario [kg CO2 eq]

Disposal Scenario [kg CO2

eq]

1 Municipal solid waste {RoW}|

treatment of, sanitary landfill | Alloc

Def, S 4.96 - - 4.96

2 Polyethylene, linear low density, granulate {GLO}| market for | Alloc

Def, S 1.99 1.99 - -

3 Transport, freight, lorry >32 metric ton, EURO6 {GLO}| market for | Alloc Def,

S 1.71 0.19 1.52 -

4 Municipal solid waste {RoW}|

treatment of, incineration | Alloc Def, S 1.64 - - 1.64 5 Waste polyethylene {CH}| treatment

of, municipal incineration | Alloc Def, S 0.75 - - 0.75 6 Extrusion, plastic film {GLO}| market

for | Alloc Def, S 0.56 0.56 - -

7 Steel, low-alloyed, hot rolled {GLO}|

market for | Alloc Def, S 0.45 0.45 - -

8 Transport, freight, sea, transoceanic

ship {GLO}| market for | Alloc Def, S 0.38 - 0.38 -

9

Sawlog and veneer log, softwood, measured as solid wood under bark {SE}| softwood forestry, spruce, sustainable forest management | Alloc

Def, S 0.26 0.26 - -

10 Municipal solid waste {SE}| treatment

of, incineration | Alloc Def, S 0.25 - - 0.25

Total of all processes 13.12 3.87 2.17 7.09

5.2.1.5 Sensitivity analysis

The height of the NONS pallet

(45)

Table 13, The weight of different plastic covers for the NONS pallet Weight plastic

sheet

Weight plastic cover Total Weight

NONS 1700 mm (Baseline) 0.158 0.797 0.955

NONS 1200 mm 0.158 0.578 0.736

NONS 700 mm 0.158 0.358 0.516

Fig. 23, Sensitivity analysis - plastic cover

End-of-Life treatment

(46)

38

Table 14, Disposal Scenario according to the CE action plan by the EC (European Commission, 2015b).

Waste type Waste treatment

PE plastic PE (waste treatment) {GLO}| recycling of PE | Alloc Def, S

Steel nails and

staples Steel and iron (waste treatment) {GLO}| recycling of steel and iron | Alloc Def, S

Sawn timber Waste wood, post-consumer {RoW}| treatment of, sorting and shredding | Alloc Def, S

Fig. 24, Sensitivity analysis - disposal stage 5.3 EcoDesign Roadmap

5.3.1 Assessment of existing NONS pallet

GP1: Clarify product characteristics, functional and immaterial.

(47)

GP2: Manage human resources in a responsible manner without consuming them.

GP3: Minimize hazardous substances and arrange closed-loop systems for present ones.

GP4: Ensure efficient use of material resources with little generation of waste and efficient transportation

GP5: Ensure that GP-related costs are offset by an increase in GP-related income.

GP6: Minimise energy consumption in use especially for active products.

GP7 Avoid mixing materials and adopt a clear and obvious structure of attachment joint and fraction borders.

(48)

40

GP8: Optimise the usage time of products and promote repair and upgrading.

GP9: The product must be surrounded by a corresponding environmental culture.

GP10: Ensure that the information IN the product, ON the product and FOR the product is correct and sufficient.

5.3.2 Conceptual development and recommendation

5.3.2.1 Product design improvements

(49)

5.3.2.2 Circular business model

5.3.2.3 Waste management improvements

5.3.3 Life Cycle Assessment of conceptual design

(50)

42 Table 15, EcoDesign improvements of the NONS pallet

Existing operation of the NONS pallet

EcoDesign improvement to promote CE

Number of trips (incl.

return)

10 (no) 10 (yes)

Remanufacturing No Yes, after five trips

Plastic sheet and cover - New for every trip

Wood - Repair with two deck boards and one block

after five trips (Beyer, 1998)

Steel nails and staples - 15 % addition after five trips (Beyer, 1998) Waste treatment: PE

Plastic

Disposal scenario LCA PE (waste treatment) {GLO}| recycling of PE

| Alloc Def, S Waste treatment: Steel

nails and staples

Disposal scenario LCA Steel and iron (waste treatment) {GLO}|

recycling of steel and iron | Alloc Def, S Waste treatment: Sawn

timber

Disposal scenario LCA Waste wood, post-consumer {RoW}|

treatment of, sorting and shredding | Alloc Def, S

Table 16, Comparison between exiting lifecycle (10 trips) and EcoDesign concept (10 trips) Impact category

Unit Life cycle

NONS ED Life cycle NONS ED CE

Global warming kg CO2 eq 131.20 54.73

Stratospheric ozone depletion kg CFC11 eq 5.1E-05 3.4E-05 Ionizing radiation kBq Co-60

eq 10.57 4.37

Ozone formation, Human health kg NOx eq 0.20 0.22 Fine particulate matter formation kg PM2.5 eq 0.08 0.09 Ozone formation, Terrestrial

ecosystems kg NOx eq 0.21 0.22

Terrestrial acidification kg SO2 eq 0.23 0.26

Freshwater eutrophication kg P eq 0.01 0.01

Terrestrial ecotoxicity kg 1.4-DCB e 0.11 0.16

Freshwater ecotoxicity kg 1.4-DCB e 40.90 0.84

Marine ecotoxicity kg 1.4-DBC e 53.80 1.44

Human carcinogenic toxicity kg 1.4-DBC e 7.32 1.74 Human non-carcinogenic toxicity kg 1.4-DBC e 28250 960

Land use m2a crop eq 124.35 17.29

Mineral resource scarcity kg Cu eq 0.24 0.11

(51)

Fossil resource scarcity kg oil eq 24.72 18.05

Water consumption m3 1.06 0.75

Fig. 25, Comparison between current NONS operation and circular business model

(52)

44

Fig. 26, CED - Existing compared to new CE model 5.3.3.1 EcoDesign Value curve

(53)

Fig. 27, EcoDesign value curve

6 Discussion

6.1 Methodology

(54)

46

6.2 Results

(55)

7 Conclusions

(56)

48

7.1 Further research

8 References

(57)
(58)

50

(59)
(60)

52

(61)

i

Appendix I: Material Flow Analysis

(62)

ii

(63)

1

Appendix II: Distribution, Locations and distances to the end-

consumer

(64)

1

Appendix III: Characterised results Life cycle NONS pallet

Calculation: Analyse

Results: Impact

assessment

Product: 1 p Life cycle NONS (of project AB Karl Hedin Emballage) Method: ReCiPe 2016 Midpoint (H) V1.00

Indicator: Characterization Skip categories: Never

Exclude infrastructure

processes: No

Exclude long-term

emissions: No

Sorted on item: Impact category

Sort order: Ascending

Impact category Unit Total Production incl.

Supply chain Distribution

Scenario Disposal Scenario Global warming kg CO2

eq 13.12

0 3.865482 2.169746 7.085078

Stratospheric ozone

depletion kg

CFC11 eq

5.142

E-06 1.4E-06 1.41E-06 2.33E-06

Ionizing radiation kBq Co-

60 eq 1.057 0.936332 0.096787 0.023644

Ozone formation. Human

health kg NOx

eq 0.020 0.009746 0.009628 0.000847

Fine particulate matter

formation kg

PM2.5 eq

0.008 0.004855 0.003339 9.96E-05

Ozone formation.

Terrestrial ecosystems kg NOx

eq 0.021 0.010305 0.009872 0.000723

Terrestrial acidification kg SO2

eq 0.023 0.011886 0.010923 0.000133

Freshwater eutrophication

kg P eq 0.001 0.000872 0.000273 0.000252

Terrestrial ecotoxicity kg 1.4-

DCB e 0.011 0.003187 0.007826 0.000311

Freshwater ecotoxicity kg 1.4-

DCB e 4.090 0.101549 0.026696 3.962196

Marine ecotoxicity kg 1.4-

DBC e 5.380 0.143753 0.050551 5.185892

Human carcinogenic toxicity

kg 1.4- DBC e

0.732 0.469111 0.053448 0.209656

Human non-carcinogenic

toxicity kg 1.4-

DBC e 2825.

256 96.13864 34.25877 2694.858

Land use m2a

crop eq 12.43

5 12.26888 0.139231 0.026703

Mineral resource scarcity kg Cu

eq 0.024 0.02725 0.004249 -0.00776

Fossil resource scarcity kg oil eq 2.472 2.017046 0.757858 -0.30288

Water consumption m3 0.106 0.093856 0.008562 0.004064

(65)

1

Appendix IV: Characterised results Production incl. supply chain NONS pallet

Calculation: Analyse

Results: Impact

assessment

Product: 1 p Main assembly NONS (of project AB Karl Hedin Emballage)

Method: ReCiPe 2016 Midpoint (H) V1.00

Indicator: Characterization

Skip categories: Never Exclude infrastructure

processes:

No Exclude long-term

emissions:

No

Sorted on item: Impact category

Sort order: Ascending

Impact category Unit Total Metal Plasti

cs Wood Electri

city Heat Transp ort

Global warming kg CO2

eq

3.865 0.525 7

2.555 9

0.6531 0.1175 7.02E- 05

0.0132 46 Stratospheric ozone

depletion

kg CFC11 eq

1.4E- 06

1.63E -07

3.15E -07

6.28003 E-07

2.8E- 07

3.34E- 10

8.96E- 09 Ionizing radiation kBq Co-

60 eq 0.936 0.022

6 0.104

7 0.2127 0.5960 4.41E-

06 0.0002 79 Ozone formation. Human

health kg NOx

eq 0.010 0.001

3 0.004

9 0.0031 0.0004 1.16E-

06 1.89E- 05 Fine particulate matter

formation

kg PM2.5 eq

0.005 0.001 2

0.002 6

0.0009 0.0002 9.55E- 07

1.07E- 05 Ozone formation. Terrestrial

ecosystems

kg NOx eq

0.010 0.001 3

0.005 3

0.0033 0.0004 1.19E- 06

2E-05 Terrestrial acidification kg SO2

eq 0.012 0.002

0 0.007

0 0.0022 0.0006 6.14E-

07 2.67E- 05 Freshwater eutrophication kg P eq 0.001 0.000

4 0.000

3 0.0001 0.0001 2.37E-

08 1.17E- 06 Terrestrial ecotoxicity kg 1.4-

DCB e

0.003 0.000 7

0.000 4

0.0015 0.0005 1.99E- 07

3.73E- 05 Freshwater ecotoxicity kg 1.4-

DCB e

0.102 0.057 8

0.016 8

0.0116 0.0151 2.2E- 06

0.0002 24 Marine ecotoxicity kg 1.4-

DBC e

0.144 0.081 4

0.023 5

0.0182 0.0203 3.5E- 06

0.0003 79 Human carcinogenic toxicity kg 1.4-

DBC e 0.469 0.391

8 0.045

7 0.0180 0.0133 3.18E-

06 0.0003 17 Human non-carcinogenic

toxicity kg 1.4-

DBC e 96.13

9 56.25

44 14.95

50 13.4934 11.134

0 0.007

052 0.2948 72

(66)

TRITA TRITA-ABE-MBT-18396

www.kth.se

References

Related documents

Det blir fler och fler dokument elektroniskt tillg¨ angliga p˚ a fler och fler spr˚ ak – fr˚ an att materialet p˚ a internet och i informa- tionsteknologiska sammanhang i allm¨

However, CE is still relatively uncommon in corporate practice (Bocken, Ritala, & Huotari, 2017) and there is need to find novel development practices where actors across

Appendix A Experimental set up for test series with heat flux meters Calibrating the flux level with the Gunners meter Air temperature near a flux meter exposed to radiation

The overall objective is analysed with a focus on drivers and barriers behind interorganisational collaborations on excess heat utilisation, important components of

Linköping Studies in Science and Technology Dissertation

Anledningen till att dessa krav behöver fastslås är för att det inte finns något syfte att utreda huruvida det är möjligt att erhålla separationsrätt till viss egendom om

The aims of this thesis were: first, to map ethical considerations as described by staff members in their everyday work in child and adolescent psychiatry as well as in

Before the estimation of the dominant planes is done the local planes which are close (0.4m) and quite parallel to the estimated ground plane are removed to reduce the number of