• No results found

Experimental tests of the no- hair theorems of black holes

N/A
N/A
Protected

Academic year: 2023

Share "Experimental tests of the no- hair theorems of black holes"

Copied!
72
0
0

Loading.... (view fulltext now)

Full text

(1)

Experimental tests of the no- hair theorems of black holes

Thu, Mar 25, 2010 Nordita

M.J.Valtonen, S.Mikkola, H.Lehto, A.Gopakumar

HIP & Tuorla Observatory, U.Turku

& Tata Inst. Fund. Res., Mumbai

(2)

.

Isaac Newton

(3)

.

Albert Einstein

(4)

Proving GR correct

Proving existence of BH

No hair theorem

(5)

Testing no-hair theorem I

• Observe stars orbiting the Galactic Center

from orbits of stars (period ~ few 10 yr), BH mass ~ 3.6 10

6

solar mass

needed : star orbits with period 0.1 yr, measurement accuracy 10

-5

arcsec

periastron advance: M

classical spin-orbit coupling: Q GR spin-orbit coupling: S

Do such stars exist?

Can we find them?

(6)

Testing no-hair theorem II

• Millisecond pulsars

Find a pulsar in ~ 1 hour eccentric orbit around > 10 solar mass BH

Periastron advance: M and S Q difficult to measure

Needed : 10

-7

second accuracy in pulse timing (SKA)

Do such systems exist? Can we find them?

(7)

Square Kilometer Array

Most importantly, SKA observations will finally address the fundamental question of whether GR

can describe nature in the ultra-strong field limit.

One can not only study stellar black holes but also apply the same timing techniques to pulsars

around the super-massive black hole in the Galactic Centre. This allows a direct comparison

of the properties of these objects: one can determine mass, spin and quadrupole moment of

black holes to test their description in Einstein's theory (the "no-hair"-theorem) for the first time

obviously a major achievement in the history of physics!

(8)
(9)

Testing no-hair theorem III

• Gravitational wave antenna LISA

Needed : Observe merger of two black holes

Do we ever see a merger? Do we understand

the physics?

(10)

LISA

..

Observing the violent mergers of massive black hole is not the only way to probe their mysteries. Black holes at the center of galaxies are surrounded by swarms of orbiting stars, caught in the gravitational

grip of the black hole. In our own Milky Way galaxy, we observed the stars close to the Sgr A* black hole for more than a decade, long enough to see the stars

trace out entire orbits.

The gravitational waves emitted during the slow inspiral encode a map of the black hole spacetime, precisely

revealing the shape and structure of the gravitational field around the black hole. This spacetime map will for the

first time allow astronomers to compare the shape,

structure and nature of true astrophysical black holes to the mathematical predictions of gravitational theory.

(11)
(12)

• .

(13)

OJ287

(14)

OJ287 light variations

(15)

OJ287 light variations

(16)
(17)
(18)

Solution of the timing problem.

Level I

• Six well timed outbursts

• Iterative code

• Astrophysical effects: disk bending, delay

of radiation burst

(19)

Black hole – Accretion disk collision

• Ivanov et al. 1998

(20)

Collision 2

(21)

Collision 3

(22)
(23)
(24)

.

.

(25)
(26)
(27)
(28)
(29)

Prediction: 2nd outburst at Sept 13,

2007

(30)

September 13 2007, unpolarized

(31)

Testing no-hair theorem IV

• Timing OJ287 outbursts Periastron precession: M

Disk impacts far from periastron: S

Disk impacts close to periastron: Q

(32)

Solution of the timing problem.

Level II

(33)

1913 outburst

(34)

1957 outburst

(35)
(36)

Outburst times normalized to 1982.964 0.0005

• 1912.98 0.02

• 1947.282 0.003

• 1957.08 0.03

• 1972.94 0.015

• 1984.13 0.005

• 1995.842 0.0015

• 2005.745 0.01

• 2007.692 0.0015

(37)

Post Newtonian terms

• .

(38)

1. order Post Newtonian term

(39)

2. Order Post Newtonian term

(40)

Radiation term

(41)

Spin – orbit term

(42)

Quadrupole term

(43)

Parameters

• 39.066

• 1.83

• 1.32

• 0.33

• 55.87

• 0.6594

• 1.0

• 0.78

(44)

10

47

ergs/s corresponds to 10

10.5

0.5

(45)
(46)
(47)

.

implies

Al/m-dot =14

If m-dot =0.01

Al=0.14

(48)

Correct for H

0

=72, S

V

=6.1

gives m

2

=1.4 10

8

(49)

.

(50)

Better value in 2015

(51)

...or in 1945

(52)
(53)
(54)

New tests of no-hair theorem

• Historical data

• Do more data exist?

(55)
(56)
(57)
(58)

Conclusion

• The no-hair theorem is confirmed at 30%

level

• Black holes are (probably) real

• General Relativity is (probably) the correct theory of gravitation

• We know more in 2019, accuracy level

down to 10% ?

(59)

Tidal outbursts

(60)
(61)
(62)
(63)
(64)

………..unlikely

(65)
(66)

Rossi X-ray Timing Experiment:

detections by quarter year

(67)

No outburst in hard X-rays; outburst .

in soft X-rays

(68)
(69)
(70)
(71)

Radio position angle

(72)

References

Related documents

In Paper I, we found that general relativity particularly affects deep encounters, within a few event horizon radii, as follows: the strong (periapsis and nodal) precession

As expected, we found that general relativity particularly affects deep encounters, within a few event horizon radii, as follows: the strong (periapsis and nodal) pre- cession

(For Planck objects, m h /m Planck ' 10 − 19 , which would be the most abundant compact object unless the inflationary phase dilutes this to unobservable levels. For

iii) No event horizon would mean no Hawking radiation, resolving the causal paradox that for an outside observer it takes an infinite time for the black hole to form whereas

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

Syftet eller förväntan med denna rapport är inte heller att kunna ”mäta” effekter kvantita- tivt, utan att med huvudsakligt fokus på output och resultat i eller från

Generella styrmedel kan ha varit mindre verksamma än man har trott De generella styrmedlen, till skillnad från de specifika styrmedlen, har kommit att användas i större

I regleringsbrevet för 2014 uppdrog Regeringen åt Tillväxtanalys att ”föreslå mätmetoder och indikatorer som kan användas vid utvärdering av de samhällsekonomiska effekterna av