• No results found

Toward a better understanding of phase transformations in additive manufacturing of Alloy 718

N/A
N/A
Protected

Academic year: 2021

Share "Toward a better understanding of phase transformations in additive manufacturing of Alloy 718"

Copied!
17
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Materialia

journalhomepage:www.elsevier.com/locate/mtla

Full

Length

Article

Toward

a

better

understanding

of

phase

transformations

in

additive

manufacturing

of

Alloy

718

Chamara Kumara

a

, Arun Ramanathan Balachandramurthi

a

, Sneha Goel

a

, Fabian Hanning

a

,

Johan Moverare

a,b

a Division of Subtractive and Additive Manufacturing Processes, Department of Engineering Science, University West, 461 86 Trollhättan, Sweden b Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping, Sweden

a

r

t

i

c

l

e

i

n

f

o

Keywords: Additive Manufacturing Alloy 718 Phase transformation Modelling

a

b

s

t

r

a

c

t

Thispaperpresentsadiscussiononthephase-transformationaspectsofadditivelymanufacturedAlloy718 dur-ingtheadditivemanufacturing(AM)processandsubsequentcommonlyusedpost-heattreatments.Tothisend, fundamentaltheoreticalprinciples,thermodynamicandkineticsmodeling,andexistingliteraturedataare em-ployed.TwodifferentAMprocesses,namely,laser-directedenergydepositionandelectron-beampowder-bed fusionareconsidered.ThegeneralaspectsofphaseformationduringsolidificationandsolidstateinAlloy718 arefirstexamined,followedbyadetaileddiscussiononphasetransformationsduringthetwoprocessesand subsequentstandardpostheat-treatments.Theeffectofcoolingrates,thermalgradients,andthermalcycling onthephasetransformationinAlloy718duringtheAMprocessesareconsidered.Specialattentionisgiven toillustratehowthesegregatedcompositionduringthesolidificationcouldaffectthephasetransformationsin theAlloy718.Theinformationprovidedinthisstudywillcontributetoabetterunderstandingoftheoverall process–structure–propertyrelationshipintheAMofAlloy718718.

1. Introduction

Inrecentyears,comparedwithconventionalmanufacturing meth-ods,additivemanufacturing(AM)ofnickel-basedsuperAlloy718shas attractedconsiderableattentioninaerospaceandpowergeneration ap-plications[1].InAM,acertainpartismanufacturedusinga layer-by-layerapproachusinga3D-digitalmodelofthepart.Animportant fea-tureofthisprocessisthatitallowstheproductionofcomplex, near-net-shapeobjects(eventhroughgenerativedesign),withminimalmaterial waste.Furthermore,itenablespartintegration,thusreducingthe num-berofassembliesandsub-assembliesrequiredinthefabricationprocess. Inaddition,itallowsmanufacturingondemand,therebyreducingthe needforalargeinventoryofspareparts.Forthesereasons,AMis consid-eredasuitablemanufacturingmethodfornickel-basedsuperAlloy718 componentsforaerospaceandpower-generationapplications[2,3].

However,certainchallengesshouldbeovercomebeforeAMcouldbe usedmoreeffectivelyinaerospaceandpower-generationapplications. Onesuchchallengeistoobtaintheappropriatemicrostructurethat pro-videsthedesiredmechanicalperformancetotheAMcomponent.During thelayer-by-layerdepositionprocess,thematerialundergoesmelting, solidification,andthermalcycling.Thisinducesaliquid-to-solidphase transformation,aswellassolid-statetransformations.Therefore,the as-builtmicrostructureofthecomponentoftenleadstoaheterogeneous microstructurewithheterogeneousmechanicalpropertiesona macro-scopiclengthscale[1].Toovercomethis,thecommonpracticeistouse suitablepost-heattreatment(HT)protocols,withorwithout hot

iso-staticpressing(HIP),fortheas-builtpart.TheseHTsfurtherchangethe microstructureaccordingtoitscompositionsegregationlevel,phases, andgrainstructure(morphologyandtexture).Therefore,toachievethe desiredproperties,itisnecessarytounderstandthephase transforma-tionsduringtheformationoftheas-builtmicrostructureandunder dif-ferentHTsbeforetheappropriateoptimizationisperformed.

Thisstudyfocusesonunderstandingthephasetransformationof ad-ditivelymanufacturedAlloy718.Specifically,weusefundamental the-oreticalprinciples,thermodynamicandkineticsmodeling,andexisting literaturedatatoexplaintheobservedphasechangesduringtheAM andpost-HTofAlloy718.TwodifferentAMprocesses,namely, laser-directedenergydeposition(L-DED)andelectron-beampowder-bed fu-sion(EB-PBF)areconsidered.Generalaspectsofthephaseformation inAlloy718arefirstexamined,followedbyadiscussiononthephase transformationsduringthetwoprocessesandsubsequentHTs. 2. Alloy 718

Alloy718 isanickel–iron-based superAlloy718.It hasbeen ex-tensivelyusedinrocketmotors,aircraftengines,nuclearreactors,and pumps[4].Themainreasonsforitssuccessareitsrelativelylowcost andgoodmechanicalaswellascorrosionpropertiesatlowand inter-mediatetemperatures[5,6].However,its useinload-bearing compo-nents for elevated-temperatureapplicationsis limitedto650 °C ow-ingtothestrengthlossbeyondthistemperature[7].Thecomposition ofAlloy718iscomplexandinvolvesseveralAlloy718ingelements, https://doi.org/10.1016/j.mtla.2020.100862

Received8June2020;Accepted8August2020 Availableonline11August2020

2589-1529/© 2020ActaMaterialiaInc.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

(2)

Fig.1. Phaseprecipitationwindows([6,9,12]) inAlloy718duringnon-equilibrium solidifica-tionandinsolid-statetransformation.

whichareaddedtoobtainthedesiredmicrostructureandproperties. Thenominalcompositionranges fortheAlloy718(accordingtothe ASTMstandard),theireffectonthemicrostructureandcrystalstructure informationofthecommonlyobservedphasesinAlloy718canbefound inreference[8].TheAlloy718microstructureisprimarilydominated byaface-centeredcubic(FCC)𝛾 matrix,whereinprecipitatessuchas

𝛾’/𝛾″(strengtheningphases),𝛿,Laves,MCcarbides,andnitridescanbe found[9].The𝛿 phaseistheequilibriumphaseofthemetastable𝛾″. Theexactmicrostructure(phasecomposition,phasedistribution, mor-phology,andvolumefraction)ofthisAlloy718ismainlygovernedby theprimary manufacturingtechnologyandsuccessivepost-HT condi-tions.Fig.1 showsthereportedphaseprecipitationwindowsforAlloy 718.Itcanbeseenthatthereisanoverlapbetweenthe𝛿 and𝛾’/𝛾″ pre-cipitationwindows.Although𝛿 isthermodynamicallymorestablethan

𝛾″,𝛿 precipitationupto~900°Cisalwaysprecededby𝛾″precipitation [10,11].

2.1. Non-equilibriumsolidification

Duringsolidificationprocesses,suchascasting,welding,andAM, Alloy718tendstoformadendritic/cellularmicrostructure[9,13–15], thelengthscaleofwhichvariesaccordingtothesolidificationconditions [15,16].Knorovskyetal.[6] andAntonssonetal.[12] experimentally investigatedthesolidificationsequenceforAlloy718.Astemperature dropsintheliquid(L)melt,theL→ TiNtransformationfirstoccursabove theliquidustemperature.TheresultingTiNparticlesoccasionallyactas nucleationsitesforcarbideprecipitationatalaterstageinthe solidifi-cation[12].HoweverinthecontextofAM,TiNcanalsocomeviathe feedstockmaterialandcouldremainunmeltduetotheirhighermelting point(2930°C)[17].

Whenthetemperaturedropsbelowliquidus,thesolidificationofthe primary𝛾 phasetakesplace.Duringthesolidificationofthe𝛾 matrix,

segregationofAlloy718ingelementsistypicallyobserved[9].Thisis becausethesolubilityoftheAlloy718ingelementsinthematrixphase isdifferentfromthatin theliquid.ElementssuchasNb,Mo,andTi, whichhavealowsolubilitylimitinthematrix,tendtosegregatetothe liquid.ElementssuchasCr,Fe,andAl,whichhaveahighsolubility limitinthesolid,tendtobetrappedinthesolid.Thissegregationalters thelocalthermodynamicsofAlloy718and,hence, thedrivingforce forphaseformation.Therefore,phasessuchasLavesandNbCbeginto formintheinterdendriticliquidregionduringsolidification.Owingto theirlowsolubilityinthematrix,NbandCarecontinuouslyrejected intotheliquid.Asthematrixgrows,theNbandCcompositionsinthe liquidreachalevelthatenablesNbCformation.Thisreactionconsumes NbandthemajorityofCintheremainingliquid,shiftingtheremaining liquidcompositionbacktoalowerlevel.As𝛾 growsfurther,the segrega-tionofNbintheremainingliquidpromptsanothereutecticreactionL→

𝛾 +Laves,whichterminatesthesolidificationprocess.Thisisreferredto asnon-equilibriumsolidification(Fig.1).InthecontextofAMofAlloy 718,theformedprimarycarbidesandnitridesduringnon-equilibrium solidificationdonotchange(intermsofsizeanddistribution) notice-ablyatlowtemperaturesowingtotheirstabilityatthesetemperatures. Therefore,inthisstudy,thefocusisonunderstandingthe transforma-tionofthe𝛾’/𝛾″,𝛿,andLavesphases.

2.2. Effectofsolidificationconditionsonnon-equilibriumsolidification

Thepartitioningoftheelementsandthelevelofsegregationdepend onthesolidificationconditionsoftheprocess,anditaffectsthe forma-tionofthesecondaryphases[12]duringnon-equilibriumsolidification. Antonssonet al.[12] studiedtheeffectof thecoolingrate(from 2.5×10−1to2×104°C/s)onthesolidificationofAlloy718.During

therapidsolidificationthatoccursathighercoolingrates(>104°C/s),it

wasobservedthattheinterdendriticregioncontainslessNb,andLaves phasesarenot present.Owingtotherapidsolidification,thesolutes becometrappedinthemovingsolid/liquidinterfacebecauseofthe in-completesolutepartitioning[18].ThisresultsinlessNbsegregationto theinterdendriticliquidandhenceinsufficientconcentrationfor Laves-phaseformation.Incontrast,duringslowersolidification(similartothe conditionsintraditionalcasting),theinterdendriticregionwasobserved tohavemoredominantNbandLavesphases.

However,inlaser-beampowder-bedfusion(LB-PBF)ofAlloy718, Laves-phaseformationisobservedundernon-equilibriumsolidification conditions[19,20],eventhoughthereportedcoolingratesduringthe solidificationofthemeltpoolareintheorderof105°C/s[21,22].This

contradictstheobservationmadebyAntonssonetal.,highlightingthe factthatonecannotsimplyusethecoolingratealoneasacriterionto describewhetherthesolidificationprocesswouldresultinLaves-phase formation;rather,oneshouldalsoconsiderthesolid–liquidinterface velocity, thermalgradients,andundercoolingconditions[18].Inthe literatureonthemicrostructureofadditivelymanufacturedAlloy718, ithasbeendemonstratedthatLavesphasesarepresent,implyingthat non-equilibriumsolidificationconditionsoccur[23–26].Thisindicates thatthesolidificationconditionsduringtheseprocessesdonottrapa significantfractionofAlloy718ingelementsinthemovingsolid/liquid interface,allowingtheoccurrenceofelementpartitionandhence Laves-phaseformation(seeFig.2).

ThepresenceofLavesphasesinthemicrostructurehasanegative effectonthemechanicalpropertiesofAlloy718(tensilestrength, duc-tility,fatiguelife,andfracturetoughness)[29,30],owingtoitsbrittle nature.Usually,liquationcrackingisoftenobservedinthe microstruc-turewhenLavesphasesarepresentinalong-chainmorphology[30]. ThelowmeltingpointoftheLavesphaseandthelong-chainmorphology willpromoteliquationcracking.AstheLavesphaseformstowardthe

(3)

Fig.2. Microstructuresobtainedfromdifferentprocess,exhibitingtheformedLaves+NbC(whiteprecipitates)attheendofnon-equilibriumsolidification.In L-DED,EB-PBF,andLB-PBF,thebuilddirectionisfrombottomtotop.

Source: Sources:cast[12],welding[27],L-DED[15],EB-PBF[14]andLB-BPF[28].

endofnon-equilibriumsolidification,itsmorphologyisdirectlyrelated tothemorphologyofthedendriticstructureatthattime.Therefore,by changingthedendritemorphologyduringthesolidificationprocess,the morphologyoftheLavesphasecanbechangedandpotentiallyaffect thepropensityforliquationcracking.

Itiswellknowninthecastingandweldingcommunitythatthe den-driticstructureduringthesolidificationprocesscanbealteredby chang-ingthesolidificationconditions,thatis,thermalgradient(G),cooling rate(̇𝑇), andliquid–solidinterfacevelocity(𝑅= ̇𝑇

𝐺)[31,32].This is trueinthecaseofAMofAlloy718aswell,whereitcanbeachievedby changingtheprocessparametersthatdirectlyaffectthethermal condi-tionsinthemeltpool.Dependingontheseconditions,theresulting den-driticstructurecouldhaveacolumnar,equiaxed,ormixedmorphology [33,34].

Theeffectofthethermalgradient(frombottomtotopinthedomain) andcoolingrateon thedendriticstructure ofAlloy718 isshown in Fig.3.Theseresults wereobtainedfrommultiphase-fieldsimulations ofAlloy718underdifferentthermalconditions.Informationaboutthis modellingispresentedinAppendixA.

ItcanbeseeninFig.3 (a)thatthedendriticstructureduring so-lidificationchangeswiththecoolingrateandthermal gradient.This ultimatelyaffects thesizeandmorphology of theLaves-phase parti-cles,asshowninFig.3 (b).Atlowcoolingrates,thedendritic struc-ture iscoarser. Therefore,theresultantLaves-phase structureis also coarse,andits morphologytends tothelong-chainform,which has beendemonstratedtohaveanegativeeffectonthemicrostructure,asit promotesliquationcracking[30].AsLavesphasesformduringthefinal solidificationstage,theybegintomeltaroundtheeutectic-forming tem-peraturewhenthetemperatureofthematerialisraised.IfaLavesphase hasalong-chain morphology,liquid can formalong withthis chain morphologyatthereheating stageduringthermal cyclingabove the eutectic-formingtemperature.Whencombinedwiththetensilestresses generatedatthereheatingstage,thisliquationcaneasilyleadto crack-ing.

Asthecoolingrateincreases,theamountof undercooling experi-encedbytheliquidbecomeshigherforagiventime.Higher undercool-ingresultsinhigherexcessfreeenergyintheliquid,whichisconsumed bytheliquid-solidinterfacethatiscreated(thoughnucleationand/or

growth).Whentheamountofexcessfreeenergybecomeslarge,more andmoreliquid–solidinterfacesarecreatedperunitarea.Consequently, theresultantdendriticstructureisfineronthelengthscale.Infine den-driticmicrostructures,thethicknessandspacingoftheprimaryand sec-ondarydendritearmsbecomesmaller.Therefore,towardtheendofthe solidification,theremainingliquidareasaretrappedbetweenthesefine dendricstructures.ThisresultsinfineanddiscreteLaves-phaseparticles attheendofthesolidification.WhentheLavesphasedistributesinthe microstructureasdiscreteandfineparticles,thepropensityforhot-crack formationisreduced,asacontinuousliquidfilmisdifficulttogenerate. Inaddition,asthecoolingrateincreases,theresultantLaves-phasearea fractionisreduced,asshowninFig.3 (c).

2.3. Solid-statephasetransformationafternon-equilibriumsolidification

After non-equilibriumsolidification, solid-state phase transforma-tionstakeplaceasthetemperaturecontinuestofall.Themainphases thatcanprecipitateinthesolidstateare𝛾’/𝛾″and𝛿.Immediatelyafter non-equilibriumsolidification,thereexistsacompositiongradientfrom thedendritecoretotheinterdendriticregioninthe𝛾 matrix.Therefore, thelocalequilibriumconditionsanddrivingforcesforsolid-statephase transformationchangefromthedendritecoretotheinterdendritic re-gion[24,35,36].

Fig.4 showsasimulatedAlloy718microstructureattheendofa non-equilibriumsolidification[23]intheL-DEDprocessandthe segre-gated1-Dcompositionprofilesalongalinefromthedendritecoreto theinterdendriticregion.Readerisreferedto[23] fordetailsaboutthe modellingwork.Inthissimulation,Alloy718ismodeled asa seven-element systemwithNi-Fe-Cr-Mo-Nb-Ti-Al.Themostsegregated ele-mentsareNbandFe,whereastheleastsegregatedareTiandAl.The generallyacceptedchemicalcompositionformulaforboth𝛾″and𝛿 is

Ni3Nb[4].Therefore,thedistributionofNbhasaprofoundeffectonthe

distributionof𝛾″and𝛿.Thegenerallyacceptedchemicalformulafor𝛾’

isNi3(Al,Ti)[4].Thus,thedistributionofAlandTiaffectsthe

distri-butionof𝛾’.Thesemodelingresultsagreewellwiththeexperimental observationsmadebySuietal.[4].Fromthe1-Dsegregationprofiles, theAlsegregationlevelisquitelow,indicatingarelativelyhomogenous distributionofAlinthemicrostructure.However,thisisnotthecasefor

(4)

Fig.3. (a)Variationinthedendritestructureunder differentsolidificationconditions.

(b)VariationintheLaves-phasemorphologyunder dif-ferentsolidificationconditions.

(c)VariationofLaves-phaseareafractionunder differ-entsolidificationconditions.

Both (a) and (b) were taken at the end of non-equilibriumsolidificationsimulationdescribedin Ap-pendixA.Domainsizeis80μm×80μm.

(5)

Fig.4. (a)As-builtmicrostructureattheendofnon-equilibriumsolidification simulationperformedusingMICRESS,domainsize25μm×20μm.Scaleshows theNbdistributioninwt%.

(b)1Dcompositionprofilesextractedfromamultiphasefieldsimulationatthe endofthenon-equilibriumsimulation.

Note:Simulationresultsweretakenfromaprevioussimulationworkpublished in[23].

Ti;preferentialsegregationofTiisclear,andthusitsdistributioncould affectthedistributionof 𝛾’.Nevertheless,asthesegregationofNb is higherthanthatofAlandTi,itcanbeexpectedthatthevariationin thedistributionof𝛾″ismorepronouncedthanthatof𝛾’inthematrix.

Togaininsightintotheeffectofsegregationonthelocalequilibrium conditionsof Alloy 718,equilibrium volume fractiondiagrams were generatedusingtheJMatPro(JMatProisatrademarkofSun Microsys-tems,Inc-ver10.2)softwarepackageconsideringthecompositionin thedendritecoreandtheinterdendriticregioninFig.4.For compari-son,theequilibriumvolumefractionrelatedtothenominalcomposition ofAlloy718wasalsogenerated,andtheresultsareshowninFig.5.It canbeclearlyseenthatsegregationhasadirecteffectonthe equilib-riumconditionsfor𝛾’/𝛾″and𝛿.Awayfromthedendritecoreandclose totheinterdendriticregion,thereisanincreaseinthevolumefraction forthe𝛾’/𝛾″and𝛿 phases;moreover,theequilibriumtransformation temperatureforthephaseschanges.

Fig.5. Equilibriumvolumefractionsof𝛾’,𝛾″,and𝛿 predictedusingJMatPro fornominal,interdendritic,anddendritecorecomposition.Compositionforthe interdendriticanddendritecorewastakenfromFig.4(b).Inthecalculationof

𝛾″,𝛿 wassuspended.

2.4. Effectofcoolingrateonsolid-statephasetransformationafter non-equilibriumsolidification

The solid-state phase transformationin Alloy 718 is a diffusion-controlledprocess.Thatis,thephasetransformationisaffectedby el-ementdiffusion.Astheelementdiffusioncoefficientinthe𝛾 phaseis lowerthanthatintheliquidphase,theextentofsolid-statephase trans-formationisinfluencedbythecoolingrateoftheprocess.Inthecaseof slowcooling(asintraditionalcasting)showninFig.6,theas-solidified materialspendsarelativelylongertimeintheprecipitationwindowsof the𝛾’/𝛾″and𝛿 phases.Therefore,thereissufficienttimeforphase

(6)

nu-Fig.6. Schematicrepresentationofslowand fastcooling.

Fig.7. (a)SEMimageoftheinterdendriticareaofanas-castAlloy718.𝛾’/𝛾″and𝛿 phaseshaveprecipitatedaroundtheLaves.Takenfrom[9]. (b)Nano-SEMimageoftheinterdendriticregionofLMDEDAlloy718.𝛾’/𝛾″hasprecipitatedaroundtheLavesphase.Takenfrom[38].

cleationandgrowth.Attheendoftheslowcoolingprocess,𝛾’/𝛾″and

𝛿 phasescan beobservedinthemicrostructure.Thesetendto nucle-ateandgrowinsizeprimarilyinthesegregatedinterdendriticregions (closetoLavesphasesthatarealsopresent),asinthecaseofcastAlloy 718(Fig.7(a))[37].Thereasonforthisissimilartotheexplanationof thesegregationaffectingtheequilibriumconditionsandinducingphase transformationinAlloy718.Thesizegrowthofthesephasesisalso sup-portedbythehighelementconcentrationintheinterdendriticregion. However,asthesegregationofNbiscomparativelyhigherthanthatof AlandTi,thegrowthofthe𝛾″and𝛿 phasesintheinterdendriticregion isexpectedtobehighercomparedtothatofthe𝛾’phase.

Inthecaseofrapidcooling(asinAM),asshowninFig.6,the as-solidifiedmaterialspendsasmallamounttimeintheprecipitations win-dowsof𝛾’/𝛾″and𝛿.Therefore,thesephasesonlyhaveashortperiod timefornucleationandgrowthin themicrostructure.The precipita-tion,inthiscase,islikelytooccurininterdendriticregionsowingtothe compositionalsegregation.However,thesizeofthe𝛾’/𝛾″and𝛿 phasesis quitesmallcomparedwiththatofthecastmaterialuponinitialcooling totemperaturesbelow500°C.InanexperimentalstudybySegerstark etal.[38],wheretransmissionelectronmicroscopywasused,nano-size precipitationof𝛾’/𝛾″wasobservedintheinterdendriticregionofthe finallayerofmaterialthathadbeendepositedthroughlasermetal pow-derdirectedenergydeposition.However,no𝛿 phasewasobservedin

theas-builtmicrostructure.Itisinterestingtonotethatthe𝛿 phase pre-cipitatesintheinterdendriticregionwhentheprocesshasslowcooling (asincasting),butnotwhentheprocesshasfastercooling(asinAM). Thetimethatthemicrostructurespentinthe𝛿 precipitationwindowin AMisshorterthanthatduringcasting(Fig.5).Thus,thereismoretime forthe𝛿 phasetogrowincasting.

ThisimpliesthatthefinalmicrostructureofAlloy718isinfluenced bythecoolingrateoftheprocess,andthereforedifferent microstruc-turesresultingfromdifferentprocessconditionswillresponddifferently whensubjectedtofurtherHTs.

3. Laser-directed energy deposition

Laser-directedenergydepositionisadirectedenergydepositionAM process,wherelaserenergyisdirectedandfocusedintoanarrow re-gioninthesubstrate/previouslydepositedlayer,meltingboththe sub-strate/previouslydepositedlayerandthefeedstockmaterialthatis be-ingdeposited.Thelattercanbeintheformofeitherpowderorwire. This methodis widelyusedtorepaircorrodedandworngas-turbine componentsbecauseitinvolvesminimaldistortionanddilution[36]. Moreover,itisusedtoconstructsmallcomponentsoraddfeaturesto, forinstance,castcomponents,thusaddingcomplexitytoproducts[2]. Thereby,thecostofcomponentswithcomplexfeaturescanbereduced.

(7)

Fig.8. Schematicrepresentationofdifferent thethermalcyclesinL-DEDprocess. Notethatthestartofthethermalcyclesshows thefinalsolidification.Thatmeansthermal cy-clesthatcause the firstmelting andfurther remeltingarenotshowninthisschematic.

3.1. PhaseformationduringL-DEDofAlloy718

OwingtotheinherentnatureofL-DED,thematerialundergoes mul-tiplethermalcycleswhenadjacenttracks/beadsaredeposited. Depend-ingonthenatureofthesethermalcycles,phasetransformationsoccur, resultingindifferentmicrostructuresthatcontaindifferentphasesand phasefractions.

InL-DED,duringthesolidificationofAlloy718,phase transforma-tionsoccur as described in Section2. Afterthesolidification of the material,theunderlyingmicrostructurehasasegregateddendritic mi-crostructurewithinterdendriticLavesandNbCphases[23].Thereafter, thismicrostructureundergoeschangesduringtheensuingthermal cy-clesowingtothesubsequentmaterialdeposition.Forabetter under-standingofthesolid-statephasetransformationduringthisthermal cy-cling,weconsiderthethermal cyclesshowninFig.8.These thermal cyclesresemblethethermalconditionsthataretypicallyencountered duringmaterialdeposition.

InthermalcycleA,thereissufficienttimebetweenthedepositionof successivelayerssothatthematerialadditiondoesnotcausearisein theglobaltemperatureofthedepositedmaterial.Thistypeofthermal cyclingresemblesthethermalcyclesreportedin[23,38,39].Inthiscase, eventhoughthetemperaturegoesthroughtheprecipitationwindowsof

𝛾’/𝛾″and𝛿 duringthethermalcycling,nosignificantphase transforma-tionis observed.Thisisbecausethetimethatthematerialspendsin theseprecipitationwindowsisquiteshort.Thus,diffusionandhence phasegrowthcannotoccur.Inaddition,thistypeof thermalcycling doesnotsignificantlyaffecttheLavesphasesformedduringthefirst cy-cle.Thishasbeenexperimentallydemonstratedin[23].However,the situationmaybedifferent undersuchthermal conditionsasthosein thermalcycleB.

Thermalcycle Billustratesa casewherethe depositionof multi-ple layersis performed without sufficient inter-passwaiting timeto cooldownthepreviouslydepositedmaterialtoatemperaturecloseto roomtemperature.Intheseconditions,theglobaltemperatureofthe depositedmaterialrisesowingtoheataccumulation.The experimen-tallymeasuredtemperatureprofileinTianetal.[36] resemblessuch acondition.Thisriseintheglobaltemperaturehasaneffectsimilarto thatofanHT,bothtothedepositedandtothebasematerial,ifthe tem-peratureisabove~600°C.Ifthethermalconditionsduringprocessing resemblethoseinthermalcycleB,thenthismaybethoughtofasinsitu

ageingHTforthepreviouslydepositedmaterial.Therefore,withtime,

𝛾’/𝛾″beginstoprecipitateinthematerial,andthisprecipitationis in-fluencedbythelocalcompositionalsegregationinthemicrostructure. Itshouldbenotedthattheriseintheglobaltemperature(>~600°C) alsoaffectsthesubstratematerial.Theamountofthe𝛾’/𝛾″precipitate intheinterdendriticregionislargercomparedwiththatinthedendrite

coreowingtothehigherequilibriumvolumefractionexpectedforlocal variationinthechemicalcomposition.Inaddition,these precipitates growinsizewiththetimethatthematerialspendsintheinsituageing. Thisgeneratesagradientof𝛾’/𝛾″precipitatesfromtheinterdendritic regiontothedendritecore,aswellasfromthebottomtothetopofthe depositedsample.Therefore,there willbe ahardnessgradientin the materialfromtoptobottom,whichwasexperimentallyconfirmedby Tianetal.[36] (Figs.4and7 intheirpaper).

ThermalcycleCissimilartothermalcycleB,buttheheat accumu-lationisgreater;therefore,theriseintheglobaltemperatureishigher thanthatin thermalcycleB.Such athermalconditionwasreported byZ.Lietal.[40] duringhigh-deposition-rateL-DEDofAlloy718.In thisthermalcycle,theglobaltemperatureofthematerialfirstrisesto ahighervalue(>1000°C)andthendropsgraduallyduringthe depo-sitionprocessowingtoheatconduction.Whenthetemperaturedrops, itpassesboththe𝛾’/𝛾″and𝛿 precipitationwindows.Thus,inthiscase,

𝛾’/𝛾″and𝛿 precipitateinthemicrostructure.However,their distribu-tionis notuniform owingtothelocal compositionalsegregation. As describedpreviously,𝛾’/𝛾″and𝛿 predominantlyprecipitatearoundthe Lavesphaseintheinterdendriticregion.Asthebottomofthesample spendsmoretimeatahighertemperaturethanthetop,therewillbe adifferenceintheamountof𝛾’/𝛾″and𝛿 betweenthebottomandtop. Suchaheterogenousdistributionalongtheheightaswellasfromthe dendrite coretotheinterdendriticregionhasbeenreportedbyZ.Li etal.[34].

Itshouldbenotedthatforallthesethermalcycles,theLavesphase formedduringthenon-equilibriumsolidificationofagivenlayerdoes notsignificantlychangeowingtothethermalcyclingthatoccurs dur-ingsubsequentlayerdepositions.Thisisprimarilyduetothefactthatin thesethermalcycles,thetime-temperatureconditionsarenotsufficient todissolvetheLavesphasesignificantly.Therefore,tomodifytheLaves phase,theprocessparametersoftheL-DEDshouldbechangedsothat the thermal conditionsduringnon-equilibrium solidificationchange; otherwise, post-HT is necessaryto alter theformed Laves phase. In shouldalsobenotedthatthenon-equilibriumsolidificationconditions (thermalgradientsandcoolingrates)can,toacertaindegree,change duringthedepositionofthematerialowingtothegeometryofthe de-positedpart.ThiscouldinfluencetheLavesphaseformationlocally dur-ingthenon-equilibriumsolidificationfrombottomtotopofthebuild.

3.2. PhasetransformationduringheattreatmentofL-DEDedAlloy718

Heattreatments(homogenization,solutiontreatment,andageing) areoftenusedforAlloy718toremovecompositionalsegregationand obtaintheappropriatephase distributionsothat desiredmechanical propertiesfortherequiredapplicationmaybeobtained.Dependingon

(8)

Table1

StandardheattreatmentasperAMS5383forcastAlloy718

Homogenization Solution treatment Ageing

1093 ± 14°C for 1~2 h, followed by air cooling or faster cooling

(954~982) ± 14°C for more than 1 h, followed by air cooling or faster cooling

718 ± 8°C for 8 h, furnace cool to 621 ± 8°C at 55 ± 8°C/h, hold at 621 ± 8°C for 8 h, followed by air cooling

Fig.9.TTTdiagramobtainedusingtheJMatProsoftwarepackageby consider-ingcompositionsinthedendritecoreandtheinterdendriticregioninFig.4(b). Dottedlinesrepresent0.5%precipitationclosetoLavesphase,andsolidlines represent0.5%precipitationinthedendritecore.

theinitialmicrostructureandthefinalapplication,differentHT combi-nationscanbeused.

InL-DEDAlloy718,theas-deposited(AD)microstructurevaries ac-cordingtothethermalconditionsoftheprocess,asdescribedpreviously. Therefore,theHTscouldbepreparedaccordingtotheAD microstruc-ture.Inaddition,theselectionofHTisbeinfluencedbythefinal appli-cation.Forexample,ifL-DEDwasusedtorepairdamagedorworn-out components,thentheHTshouldbeselectedsothatthebasematerialof thecomponentthatisinfullyheat-treatedconditionisnotaffected.

Intheliteratureonpost-HTforL-DEDAlloy718,thecommonlyused HTsareaspertheAMS5383standard,whichwasoriginallydeveloped forcastAlloy718[4,27,41–47].Thedetailsofthisstandardareshown inTable1.Directageing(DA),solutiontreatmentandageing(STA), homogenizationandSTA(HSTA),andhomogenizationandageing(HA) arethecommonHTsusedforL-DEDAlloy718.

3.2.1. Phasetransformationduringheattreatmentofamicrostructure resultingfromthermalcycleA

Asmentionedin theprevioussection,thermalcycleAproducesa microstructurewithsegregated𝛾 matrix, Laves,andMCphases. The presenceofthecompositionalsegregationinthematrixhasadirect ef-fectonthephasetransformationduringdifferentpost-HTs.Toexplain thistransformation,time-temperaturetransformation(TTT)diagrams, asshowninFig.9,weregeneratedusingtheJMatProsoftwarepackage byconsideringthecompositioninthedendritecoreandthe interden-driticregionfromFig.4(b).

The JMatPropredictionsindicate thatthere is a cleardifference (morethananorderof magnitudedifferenceintime)in the precipi-tationkineticsof𝛾’/𝛾″and𝛿 owingtothecompositionalsegregation. Intheinterdendriticregion,precipitatesformmorerapidlythaninthe dendritecore.Moreover,thenoseoftheTTTcurvesrelatedtothe in-terdendriticregion(dottedlines)correspondstoahighertemperature thanthatofthecurvesrelatedtothedendritecore(solidlines).Further, ageingtreatmentisperformedtoprecipitatethestrengtheningphases

𝛾′/𝛾′′.AsshowninFig.5,theequilibriumvolumefractionof𝛾′/𝛾′′is higherintheinterdendriticregionthaninthedendritecore.

Accord-ingly,ahighvolumefractionof𝛾′/𝛾′′formstowardtheinterdendritic regionduringDAtreatment.Theacceleratedphaseprecipitation kinet-icscauses𝛾′/𝛾′′toprecipitateatanearlierstageoftheHTinthe inter-dendriticregionthaninthedendritecore.Hence,the𝛾′/𝛾′′precipitates intheinterdendriticregionexperiencegreatersizegrowththanthosein thedendritecore.Fromthesegregationleveloftheelementsforming𝛾′

and𝛾′′,asshowninFig.5,itisreasonabletoassumethatthegrowthof

𝛾′′issupportedmorethanthatof𝛾′.Therefore,eveniftheequilibrium predictionsindicateahighvolumefractionfor𝛾′intheinterdendritic region,thisfractionmaynotbehighcomparedwiththatof𝛾′′.

Theeffectofelementsegregationontheprecipitationof𝛾″during DAMICRESSsimulationsperformedusingtheADmicrostructurerelated tothermalcycleAisshowninFig.10(seeAppendixBformodeling de-tails).Theresultsqualitativelyagreewiththeexperimentalobservations [36,38].Incontrastwiththedendritecore,towardtheinterdendritic re-gion,thenumberdensityandsizeoftheprecipitatesincrease.Itcanbe assumedthatowingtothelackof𝛾′′precipitates,thedendritecoreis softerthantheinterdendriticarea.Consequently,thereisamechanical propertygradientfromthedendritecoretotheinterdendriticregion. However,atthemacrolevel,thisDAAlloy718microstructurepossesses arelativelyhigherstrengththanintheas-builtcondition,asshownin Fig.11.ItshouldbenotedthatthetemperatureinDAtreatmentisnot sufficientlyhightodissolve/changeaLavesphaseorgrain structure. Thus,theincreaseinstrengthinthisconditioncomparedwiththeAD conditionisduetotheprecipitationof𝛾′/𝛾′′.Thisraisesthefundamental questionofexplaininghowDAL-DEDAlloy718canresultinrelatively higherstrength(incomparisonwithAMS5662wroughtstandard)even thoughthedistributionofstrengtheningphasesisnon-uniforminthe microstructure.Apossiblereasoncouldbethatthemicrostructurehas apropertygradientfromthedendritecoretotheinterdendriticregion. This microstructurecouldbe treated asacompositematerialhaving asofterphase(dendritecorearea)embeddedinahardphase (inter-dendriticarea).Thesetwo(softandhard)areas mimicthedendritic structureinsidethegrain.Therefore,ourhypothesisisthata hierarchi-calstructurewiththesetwophasesanditsspatialstructureinsidethe grainsgiverisetothehigherstrengthonthemacroscale.Thiscouldbe verifiedbyusingcrystalplasticity/finiteelementmodelingtostudythe effectofsuchacompositemicrostructureonmacroscaleproperties;this isleftforfuturework.

SolutiontreatmentandageingisanothertypeofHTthatisusedin L-DEDAlloy718.Here,theADmicrostructureisfirstsubjectedto solu-tiontreatmentfollowedbyageing.Thesolutiontreatmentaccordingto AMS5383isusedtoprecipitatethe𝛿 phaseatthegrainboundaries,as itisperformedbelowthe𝛿 solvustemperature.Thepresenceofthe𝛿 phaseatthegrainboundarieshasbeendemonstratedtohavea benefi-cialeffectonstressruptureductility,andtoinhibitthegrowthtendency ofthematrixgrainsduringtheforgingprocess[48–50].However,the presence ofacompositional segregationinAD L-DEDmicrostructure causes𝛿 toprecipitateinsidethegrainsaswell,owingtothepresenceof multipledendrite/cellsinsideasinglegrain.Intheinterdendriticarea, the𝛿 phaseprecipitatesandgrowsinlargequantitiesowingtothelarge equilibriumvolumefraction(Fig.5)andincreasedprecipitation kinet-ics(Fig.9).Inaddition,theLavesphaseintheADstructureisalso dis-solvedtosomeextent.However,theamountofdissolutiondependson thesolutiontreatmenttemperature.Atlowtemperatures,the dissolu-tionoftheLavesphaseisslower.Thisisevidentfromthesimulations performedbyC.Kumaraetal.[23] andtheexperimentalobservations [38,42,51](Fig.12).Similarobservationshavebeen madefor

(9)

laser-Fig.10. MICRESSsimulatedADmicrostructureattheendofthermalcyclessimilartothermalcycle-A,andthesamemicrostructureafterDAsimulation. Domainsize25μm×20μm.ScaleshowstheNbdistributioninwt%.

Note:SeeAppendixBfordetailsaboutthemodellingwork.

Fig.11. Ultimatetensilestrengthvselongationof L-DEDAlloy718.Datatakenfrom[4,27,41–47].

(10)

Fig.12. Precipitationof𝛿 phaseintheinterdendriticregioninL-DEDmicrostructuressubjectedtosolutiontreatment.

(a)MICRESSsimulationshowingthemicrostructurenormaltothebuilddirectionbeforeandaftersolutiontreatmentat954°C/1h,domainsize25μm×20μm: Fig.showstheNbdistributioninwt%.

Note:MICRESSsimulationresultsweretakenfromaprevioussimulationworkpublishedin[23]. (b)Microstructurenormaltothebuilddirectionafter954°C/1h[23].

(c)Microstructureparalleltothebuilddirectionafter954°C/1h[38]. (d)Microstructureparalleltothebuilddirectionafter900°C/20min[51].

weldedAlloy718subjectedtosolutiontreatment[27].Theamountof

𝛿 thatprecipitatesintheinterdendriticregionisalsoaffectedbythe so-lutiontreatmenttemperature.Thevolumefractionof𝛿 ishigherfora solutiontreatmentat954°Cthanat980°C(seeFig.5).Noevidenceof precipitationof𝛾′/𝛾′′hasbeenreportedintheliteratureatthesolution treatmenttemperatureseventhoughtheJMatPropredictionsindicate thattherecouldbeapossibilityof𝛾′/𝛾′′precipitation(seeFig.9).As

𝛿 isrichin Nb,itsprecipitationconsumesacertainlevelof Nbfrom thematrixphase.Therefore,duringageingHT(afterthesolution treat-ment),alowervolumefractionof𝛾′′couldbeexpectedthanduringDA. Asthe𝛿 phaseisincoherentwiththe𝛾 matrix,itdoesnotcontributeto thestrengthoftheAlloy718asmuchasthecoherentandsemicoherent

𝛾′and𝛾′′phases,respectively.

HomogenizationHT isperformed todissolvethenon-equilibrium Lavesphase andhomogenizethecompositional segregationresulting from the non-equilibrium solidification. L-DED Alloy 718 produces a microstructure with a finer length scale than that in cast Alloy

718. Therefore, the Laves phase in L-DED Alloy 718 has a smaller size. In addition,L-DEDproducesa smallerdendritic structure than in thecastmaterial. Thus,its compositionalsegregationlength scale is smaller. Consequently, the homogenization kinetics of L-DED Al-loy 718 is faster than thatof cast Alloy 718;this is evident in the study byShang Sui etal. [52]. Asthe homogenization temperature increases, the dissolution of the Laves phase is faster, and eventu-allyhomogenizationofthecompositionwilloccur.However,whether this treatment results in a fully homogenized matrix without any Laves phases depends ontheLaves particle size,dendrite arm spac-ing, HT temperature, and time. During the treatment, 𝛾’/𝛾″ and 𝛿

do not form in the material, as thetemperatureis above their pre-cipitation temperature window. In addition, MC present in the mi-crostructure is not affected significantly, and grain growth is com-monlyobserved[4,25,43,45].Similarobservationscanbemade regard-ingthehomogenizationofmicrostructuresformedbythermalcyclesB andC.

(11)

IfSTA orDAweretobeperformedafterhomogenizationHT,the phasetransformationkineticswouldbedifferent,asthechemical com-positioninthe𝛾 matrixisdifferentfromthatintheADcondition.Owing totherelativelyhomogenizedcompositioninthe𝛾 matrixafter homoge-nizationHT,the𝛿 phasetendstoprecipitatemainlyatgrainboundaries duringthe1hsolutiontreatmentofSTA[25,43,53].Atagrain bound-ary,thenucleationenergybarrierforsolid-stateprecipitationofaphase islessthanthatofthedefect-freematrix[54].Inaddition,𝛿 couldalso precipitateattwinboundarieswithinthegrainsbecauseatwin bound-aryalsohasalowerenergybarrierfornucleation[55].Theamountof

𝛿 thatprecipitatesduringthe1hsolutiontreatmentisbelowthe equi-libriumvolumefractionof𝛿 atthattemperature;thisisevidentfrom thestudybyS.Azadianetal.[11].Therefore,theprecipitated𝛿

dur-ingthesolutiontreatmentdoesnotconsumetheNbentirely,andthere remainsasufficientamountofNbtoprecipitate𝛾″duringageingHT. However,theNbdepletionatthevicinityofthe𝛿 precipitatehinders the𝛾″precipitation,resultingina𝛾″-freezonearoundthe𝛿 phase[10]. DuringageingHT,thestrengtheningphasesmainlystartto precip-itateuniformlyowingtothehomogenizedelementaldistribution[4]. However,duringtheprecipitationandgrowthof𝛾’and𝛾″,thelocal chemicalcompositionnearthevicinityoftheprecipitatecouldchange duetodifferenceinsolubilityofelementsinthesephases.Thiscould affectthenucleationandgrowthofsecondaryprecipitatesof𝛾’and𝛾″ [56].AsseeninFig.11,these𝛾’/𝛾″thatprecipitateandgrowduring agingHTwillincreasethestrengthofthematerial

3.2.2. Phasetransformationduringheattreatmentofamicrostructure resultingfromthermalcycleB

Asmentionedabove,thermalcycleBresultsinamicrostructurethat containsLaves,MC,and𝛾’/𝛾″phases.Therefore,thephase transforma-tionduringtheHTisrathercomplex.PerformingSTAmaynotbe suit-ableforthismicrostructure,astheexisting𝛾″canactasnucleationsites (stackingfaultsinthe𝛾″particles)thatprecipitateandgrow𝛿 phases

atthesolutiontreatmenttemperatures[10,11].Laves-phasedissolution canbeexpectedtoacertaindegree,asmentionedinSection3.2.1.

DuringDA,𝛾’/𝛾″phasesintheADconditioncanbeexpectedtogrow, asthetemperatureconditionsfavortheirgrowth.Inaddition,the pre-cipitationgradientobservedinthebuilddirectionofthemicrostructure isreduced.NochangestotheLavesphasecanbeexpected,asthe tem-peratureissolowthatcannotdissolvethem.

3.2.3. Phasetransformationduringheattreatmentofamicrostructure resultingfromthermalcycleC

ThermalcycleCresultsinamicrostructurethatcontainsLaves,𝛿,

MC,and𝛾’/𝛾″.PerformingSTAmaynotbesuitableforthis microstruc-ture,astheexisting𝛾″canactasnucleationsitefortheprecipitation andgrowthof𝛿.Inaddition,theexisting𝛿 canalsogrowlargerinsize. TheLavesphasewilldissolveonlytoacertaindegreeinthiscaseas well.

DuringDA,𝛾’/𝛾″phasesintheADconditioncanbeexpectedtogrow, asthetemperatureconditionsfavortheirgrowth.Theexisting𝛿 phase

isexpectedtobeunaffectedduringageingHT[55].Nochangestothe Lavesphasecanbeexpected.

Itshouldbenotedthatnodataareavailableinliteraturerelatingto Sections3.2.2 and3.2.3.Thus,thediscussionprovidedisbasedonthe understandingofphasetransformationspresentedinprevioussections andreferencestherein.

4. Electron-beam powder-bed fusion

Electron-beammeltingisatypeofpowder-bedAMtechniquethat wasfirstcommercializedin1997byArcamCorporationinSweden.In theEB-PBFprocess, anelectronbeamis usedtoselectivelymeltthe materialin alayer-by-layermanner.This processhasunique advan-tagesinrelationtothemanufacturingofbiomedicalimplantsand high-performancecomponentsusedinaerospaceandhigh-temperature

appli-cations:higherbuildratesowingtohighbeamenergyandspeed,lower residual stresses(duetoelevatedpowderbed temperature),the pos-sibilityoftailoringthemicrostructure[34,57,58],andreduced oxida-tionissues[59].However,owingtotheinherentnatureofthisprocess, thesemi-sinteredpowderisdifficulttoremovefromcomplex geome-tries.ComponentsmanufacturedbyEB-PBFhavehighersurface rough-nessthanthosemanufacturedbyLB-PBFandmaythusrequire post-treatment.

4.1. PhasetransformationduringtheEB-PBFprocessingofAlloy718

Owingtotheinherent natureofthisprocess,theprintedmaterial undergoesmultiplethermalcycleswhensuccessivelayersareprinted. Duringthissequentialprinting,theuppermostlayersundergoremelting. Dependingonthebeamparametersandmovement,thenumberof lay-ersthatareremoltenvaries.Whenlayermelting/remeltingoccurs, non-equilibriumsolidificationtakesplace,asdiscussedinSection2.The re-sultingas-solidifiedmicrostructurehasasegregateddendriticstructure withinterdendriticLavesandNbCphases[14,60].Uponbuilding fur-therlayers,themicrostructureexperiencesthermalcycling.However, itdoesnotchange significantlybythethermal cyclesowingtotheir shorterexposuretime.Themostsignificanteffectonthemicrostructure isexertedbytheelevatedbuildtemperaturethatoccursduringthe EB-PBFprocessingofAlloy718.ThistemperatureactsasaninsituHTand causesmicrostructuralchanges.Aseachlayerthatisbuiltisexposed totheelevatedtemperatureforadifferentamountof time,there ex-istsamicrostructuregradientfromthetoptothebottomlayer.Once theprintingiscompleted,theobtainedpartiscooleddownby inject-ingheliumintothebuildchamber.Duringthiscooling,furtherphase transformationstakeplace.

D.Dengetal.[14] andKumaraetal.[24] investigatedtheeffect of theelevated buildtemperatureon theas-solidifiedmicrostructure throughexperiments andmodeling.Thethermocoupledatafromthe bottomofthebuildplatefromthesestudiesareshowninFig.13.Itis evidentthatthroughoutthebuildingprocess,theglobaltemperatureof thepowderbedwasgreaterthan1020°C.Itwasdemonstratedthatthis temperaturecausedthematerialtohomogenize,graduallytowardthe bottom,bydissolvingtheLavesphaseandhomogenizingtheelement distributioninthematrix.Furthermore,thisdiffuseregionextended be-tween150μmto1800μmfromthetoplayer.Beyond1800μm,afully homogenizedregionwasobserved.Thishomogenizationprocesswas ac-celeratedbythesmallerdendritespacingandhencesmallersegregation lengthscaleandsmallerLaves-phaseparticlesize.TheMCphasewasnot affectedbythisinsitutreatment,asitwasmorestable.Noprecipitation of 𝛿 and𝛾’/𝛾″wasexpectedduringprinting,asthetemperaturewas abovetheprecipitationwindowsofthesephases.Precipitationof𝛿 and 𝛾’/𝛾″tookplaceduringthecoolingstageoftheprocess,asthe tempera-turedroppedthroughtheprecipitationwindowsofthesephases.Inthe as-solidifiedregion,𝛿 and𝛾’/𝛾″precipitatedprimarilyinthe interden-driticregionowingtothehighNbsegregation.Inthetransitionregion (150–1800μm)theprecipitationlevelwasinfluenced bythechange in thelocalchemical composition.Inthehomogenizedregion,few𝛿

particleswereobservedathigh-anglegrainboundaries.Thiscanbe at-tributedtothecoolingstage,asthemicrostructurespent~15mininthe

𝛿 precipitationwindow.The𝛾’/𝛾″phasealsoprecipitateduniformly ow-ingtotherelativelyhomogenizedcompositioninthisregion,resulting inahardnessof~420HV.Thisvalueindicatesthatasignificantvolume fractionof𝛾’/𝛾″precipitatedduringthecooling.Thetimethatthe mi-crostructurespentinthe𝛾’/𝛾″precipitationwindowwas~60min.This indicatesthattheaveragecoolingratethatthematerialexperiencedin the𝛾’/𝛾″processwindowwasapproximately5°C/min.Similarhardness observationshavebeenreportedintheas-builtconditionofEB-PBF Al-loy718[61,62].Theseobservationsagreewellwithcontinuouscooling experimentsconductedbyL.Gengetal.forwroughtAlloy718[63].In thefollowingsection,ithasbeendemonstratedthatthiscoolingdown

(12)

Fig.13. Thermocouplemeasurementfromthebottom ofthe buildplateof theEB-PBFprocess. Rawdata takenfromD.Dengetal.[14]andKumaraetal.[24].

Table2

StandardheattreatmentasperASTMF3055forcastAlloy718

HIP Solution treatment Ageing

1120 to 1185 ± 15°C in an inert atmosphere for 240 ± 60 min at ≥ 100 MPa, followed by furnace cooling to < 425°C

1066 ± 14°C (except not below 1038°C) for 1~2 h, followed by air cooling or faster cooling

760 ± 8°C for 10 ± 0.5 h, furnace cool to 649 ± 8°C, hold at 649 ± 8°C for total precipitation time of 20 h, followed by air cooling or faster cooling 927~1010 ± 14°C for 1 h (except not exceeding

1016°C), followed by air cooling or faster cooling

718~760 ± 8°C for 8 h, furnace cool to 621 ± 8°C, hold at 621 ± 8°C for total precipitation time of 18 h, followed by air cooling or faster cooling

stagecanbeusedasanalternativemethodforageingHTinsome ap-plications.

Kirkaetal.[60] havealsoinvestigatedthemicrostructure develop-mentinEB-PBFAlloy718.However,unlikeinD.Dengetal.[12]and Kumaraet al.[21], thepowder-bedelevatedtemperaturewas main-tainedat~975°C.Asthisiswithinthe𝛿 precipitationwindow,the𝛿 phaseprecipitatedatgrainboundariesaswellaswithinthematrix dur-ingthebuildingprocess.Thetransitionregion,inthiscase,waslonger, asthebedtemperaturewaslower.Theamountof 𝛿 phaseincreased towardthebottomofthesample,asthebottomlayersofthesample remainedforalongertimeat~975°Cthanthetoplayers.Therefore, thevolumefraction𝛾″thatprecipitatedduringthecoolingstageofthe processwashighertowardthetopofthesamplethanthebottom.The consequenceofsuchheterogeneitywithheightisevidentinthereported room-temperaturemechanicalproperties.Asthedistancefromthe bot-tomofthebuildincreased,theyieldandtensilestrengthaswellas elon-gationgraduallyincreased[60].

4.2. PhasetransformationduringheattreatmentofEB-PBFAlloy718

ForEB-PBFAlloy718,post-HTsaretypicallyusedtoremovethe het-erogeneousphasedistributionandreducedefects(porosityandlackof fusion)sothattherequiredmechanicalperformancemaybeachieved [64].TheHIPandpost-HTprotocolsforEB-PBFAlloy718,as recom-mendedintheASTMF3055standard[65],areshowninTable2.

HIPismainlycarriedouttohealdefects(porosityandlackoffusion) intheasbuiltmaterial.However,Oxidespresentatthedefectsurface preventcompletehealingofdefectsafterHIP[66].Asthisisperformed athightemperature(>1100°C)foralongerperiod(~4h),different phases(Laves,𝛿, and𝛾’/𝛾″)in theas-builtcondition completely dis-solvebackintothematrixphase[67,68].However,owingtothe high-temperaturestability,carbidesdonotdissolveduringthisprocess[67]. AttheendoftheHIPcycle,thechemicalcompositionofthematrixcan beconsideredhomogenized.However,topreventphasetransformation duringthecooling-downpartoftheHIPcycle,arapidcooling (quench-ing)mustbeperformed,attheendofwhich,themicrostructureis

re-portedtohavea𝛾 matrixthathashomogenizedchemicalcomposition andisprecipitationfree,exceptforcarbides[69].

AftertheHIPcycle,theEB-PBFAlloy718issubjectedtoSTAor DA,dependingontherequirementsandapplication.Ifrapidquenching canbeperformed,thenthesolutiontreatmentat1066°Cisredundant, asthisdoesnotcauseanyphaseprecipitation;otherwise,solution treat-mentat1066°Cisnecessarytodissolvetheundesiredphasedistribution. However,comparedwithHIP,solutiontreatmentinvolvesrelativelylow temperatureandholdingtime,andthereforecompletephasedissolution mayormaynotbeachieved.Balachandramurthietal.[61] reported thatafter1066°C/1h,acertain𝛿-phaselevelwasobservedatsome grainboundaries.However,theirsizewasreducedcomparedwiththat intheas-builtconditionowingtothedissolutionprocessduringthe so-lutiontreatment.D.Dengetal.[70]reportedcompletedissolutionofthe

𝛿 phaseaftertreatingEBMAlloy718at1080°C/1h.Itisworth mention-ingthatthesizeofthe𝛿 phaseintheas-builtconditionobservedbyD. Dengetal.[70] wassmallerthanthatobservedbyBalachandramurthi etal.[61].

AftertheHIPcyclewithrapidquenching,tocontroltheprecipitation ofthe𝛿 phaseinthematerial,solutionHTshouldbeperformedwithin the𝛿 precipitationwindow.Insuchsolutiontreatments,grain-boundary

𝛿 precipitationisprimarilyobserved[70].AsdiscussedinSection3.2.1, solutiontreatmentatthelowerend ofthe𝛿 windowwillresultina highervolumefractionowingtothehigherequilibriumvolumefraction. InEB-PBFAlloy718,S.Goel[71]observedgreaterprecipitationofthe𝛿

phaseaftersolutiontreatmentat954°Cthanat980°C,bothperformed for1h.Furthermore,asdiscussedinSection3.2.1,theamountof𝛿 that

precipitatesduringthe1hsolutiontreatmentdoesnotgiverisetothe equilibriumvolumefractionof𝛿 atthesolutionHTtemperature.

S.Goel[71] demonstratedthepossibilityofperformingSTAinside theHIPvesselcombinedwiththeHIPcycle,therebyretainingahigh pressureduringSTA.Inthiscombinedcycle,theargongaspressure in-sidetheHIPvesselwasretainedabove100MPa.However,thesolution treatmentperformedat980°Cwithpressure(~160MPa)didnotyield any𝛿 precipitationinthemicrostructure,comparedwiththesame so-lutiontreatmentperformedwithoutpressure.Thiscouldbeexplained bytheClausius–Clapeyronrelation[54](Equation(1)),whichdescribes

(13)

Table3

TheoreticalcalculationsofClausius-ClapeyronrelationvaluesusingvaluesfromTTNI8database

Phase ΔH 𝛾 → precipitate (kJ/mol) T eq (K) Δ𝑉 ∗ = 𝑉 𝛾− 𝑉 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑒 (10 −6 m 3 /mol) 𝑑𝑑𝑃𝑇𝑒𝑞 (K/100MPa)

𝛿 27.8 1283 7.3 – 7.9 = − 0.6 − 2.8

𝛾″ 27.2 1203 7.3 – 7.8 = − 0.5 − 2.8

𝛾’ 34.9 1140 7.3 – 7.6 = − 0.3 − 0.98

calculatedusingthedatafromTCNI8databasesincevolumedataisnotavailableinTTNI8

Fig.14. Microhardnessoftheas-builtandpost-treatedspecimensofEB-PBFAlloy718[71].

theeffectofpressureonthephase-transformationequilibrium temper-atureinagivensystem.

𝑑𝑇𝑒𝑞

𝑑𝑃 = 𝑇𝑒𝑞Δ𝑉

Δ𝐻 (1)

Here,Pisthepressure,Teqistheequilibriumphase-transformation temperature,ΔHistheenthalpychange,andΔVisthemolarvolume dif-ferencebetweenthetwophasesduringphasetransformation.If𝑑𝑑𝑃𝑇𝑒𝑞 <0, thenanincreaseinpressurewillsuppressthephaseequilibrium tem-perature,whichisthecaseforthe𝛿 phase,asseenfromthetheoretical calculationoftheClausius–Clapeyronrelation(Table3).Onecanargue thatthevaluesshowninTable3 mayhaveanegligibleeffectinreality. However,thepurposeofthistheoreticalcalculationistodemonstrate thatanincreaseinpressurewilllowertheequilibriumtemperatureof the𝛾’/𝛾″and𝛿 phases.Experimentsarerequiredtoconfirmtheexact levelofdropintheequilibriumtemperatureowingtotheelevated pres-sureonAlloy718.

Finally,ageingHTis performedtoincreasethematerialstrength byprecipitatingthestrengtheningphases.Owingtothehomogenized compositiondistributionstateofthe𝛾 matrixafterthepreviousHTs, strengthening precipitation occurs uniformly in the matrix, thereby resulting in increased hardness of the material [71]. S. Goel et al. [67] demonstratedthatregardlessoftheinitialvariationinthe hard-nessofEB-PBFAlloy718,afterHIPandHTinvolvingageing,higher anduniformhardnesscanbeobtained.ItisworthmentioningthatHT operationsusedforconventionalcastandwroughtAlloy718are typi-callyemployedforEB-PBFAlloy718[58,72,73].Thisisalsoreflectedin theASTMF3055standardforPBFAlloy718,wheretheHTparameters appeartobetakenfromtheexistingAMS5363standardforcast[74], andtheAMS2774standardforwroughtAlloy718[75].However,as statedpreviously,itisevidentfromtheliteraturethatthe microstruc-tureof conventionalcast–wroughtAlloy718is highlydifferent from thatofEB-PBForotherAMAlloy718[20,76,77].Thus,usingstandard cast–wroughtAlloy718HTproceduresmaynotbetheidealsolutionfor EB-PBFmaterials.Therefore,thereisaneedforexploringHTprotocols tailoredtosuchmaterials.Previousworkbytheauthors’researchgroup hasdemonstratedthat,forprecipitationofstrengtheningphasesin EB-PBFAlloy718,theHTtime(particularlyforageing)canbesignificantly

reducedcomparedwiththeschedulerecommendedintheASTMF3055 standard(seeFig.14)[71,78].

InFig.14,itisseenthatthehardnessoftheAlloy718materialwas significantlyreducedaftertheHIPtreatment(1120°C,4h,100MPa). Thisisexpected,asHIPdissolvesthestrengtheningphasescompletely, andtheapplicationoffastcoolingaftertheholdingtimeinhibitsany significantre-precipitation[63].Inaddition,asexplainedearlier,HIP treatmentresultsinamatrixthathasahomogenizedcomposition dis-tribution,withcompositionalvaluesclosetothoseofthenominal com-positionoftheAlloy718.Itwasobservedthatinthefirstageingstep (Age1),hardnessincreasedastheageingtimeincreasedfrom1hto4 h,andwithprolongedholdingattheAge1temperaturefor4h,no fur-therhardnesschangewasnoticed.Similarly,duringthesecondageing step(Age2,followingan8htreatmentinthefirststep),hardness in-creasedafter1hofholdingtime.However,nofurthereffectonhardness wasobservedforlongerholdingtime.Therefore,hardnessappearedto flattenafter4hforAge1,andafter1hforAge2.Theseresultsare indicativeofthepossibilitytoreducethedurationoftraditional dou-bleageingtreatment.Detailedmicrostructurecharacterizationrelated toevaluatingtheshorteningoftheageingtimeandthecorrelationwith hardnessispartofanotherongoingstudyintheauthors’researchgroup. Asimilar hardnessincreasewithin5hduringthefirststep ofaging at 760 °Cis alsoreported (seeFig.15) in Fisket al.[79] for Alloy 718thatwashot-rolledandsolution-treatedat954°Cfor1hpriorto ageing.

An alternative approach to precipitatingstrengthening phases in HIPedEB-PBFAlloy718couldbecontinuouscooling,asmentionedin Section4.1.Experimentswereconductedtoevaluatethefeasibilityof thisapproachforperformingSTAthroughcontrolledcoolingafter hold-ingatHIPtemperature(seeAppendixCfordetails).Fig.16showsthe hardnessresultsfromthecontinuouscoolingexperiments,with pres-sure(STAwasperformedinsidetheHIPvesseldirectly aftertheHIP treatment)andwithoutpressure(STAinaheattreatmentfurnace).The resultsareingoodagreementwiththosebyL.Gengetal.[63].A de-tailedmicrostructurecharacterizationrelatedtothecontinuouscooling experimentsandthecorrelationwithhardnessispartofanother ongo-ingstudy.

(14)

Fig.15. (a)Contourplotofageingtime,temperature,andmicrohardness;(b)variationinmicrohardnesswithageingtimeatfourdifferenttemperaturesforAlloy 718.Takenfrom[79].

Table4

TimethatAlloy718microstructurespentin𝛿 and𝛾’/𝛾″precipitationwindow.

Cooling rate (°C/min) 0.5 2 5 20

Time (min) spent in direct 𝛿 precipitation window (1020– 900°C) 240 60 24 6 Time (min) spent in 𝛾’/ 𝛾″ precipitation window (900–600°C) 600 150 60 15 Time (min) required to cool down to 500°C from 1120°C 1240 310 124 31

Fig.16. EffectofcoolingrateonhardnessofEB-PBFAlloy718afterholdingat 1120°C.

InthecontinuouscoolingexperimentsbyL.Gengetal.[63],the hardnessvariationwasexplainedbythevariationof𝛿 and𝛾″observed inthemicrostructureunderdifferentcoolingrates.At5°C/min,apeak inhardnesswasobserved.Below5°C/min,asthecoolingratedecreased, hardnessdroppedgradually.Thiscanbeexplainedbytheincreaseinthe

𝛿 phasevolumefractionthatprecipitateswiththedecreaseinthe cool-ingrate.No𝛿 wasobservedforcoolingratesabove5°C/min[63].As seeninTable4,at0.5°C/min,themicrostructurehadspent approxi-mately4hinthedirect𝛿 precipitationwindow;thisallowsthe𝛿 phase

tonucleateandgrow,thusreachingahighervolumefractionand con-sumingmoreNbfromthematrix.Thislowerstheequilibriumvolume fractionfor𝛾″thatcanprecipitateandtherebyresultsinlower hard-ness.Thehigherhardnessat5°C/mincorrespondstoastructurewitha highdensityoffineanddiscrete𝛾″precipitatesformedduringthetime

(~1h)thatthemicrostructurespentinthe𝛾’/𝛾″precipitationwindow atacoolingrateof5°C/min.InS.Goel’sstudy[71],itwasreportedthat HIPedAlloy718withoutanyothersubsequentHT(thereforeno𝛾’/𝛾″) hadahardnessof~200HV.Comparingthiswiththehardnessresulting froma20°C/mincoolingimpliesthatduringthe15min strengthening-phaseprecipitationwindow,precipitationdidoccur.

AsseeninFig.16,thecontinuouscoolingexperimentsconducted in-sidetheHIPvesselunderpressureresultedinlowerhardness.Thiscould alsoberelatedtotheeffectofpressureonthephasetransformation,as discussedabove.

5. Summary and conclusions

Inthispaper,wepresentedanddiscussedaspectsofphase transfor-mationinAlloy718duringtheL-DEDandEB-PBFAMprocessesandthe commonlyusedsubsequentpostHIPandHTs.Datagatheredfromthe literature,theoreticalprinciples,andadditionalmodelingresultswere usedinthisstudy.Thepresentdiscussiondemonstratedthatthephase transformationinAlloy718iscomplexandinfluencedbyfactorssuch assolidificationthermalconditions,thethermalhistoryaswellasthe compositionsegregationobservedduringtheprocess.Therefore, con-trollingthethermalconditionduringtheAMprocessisoftheutmost importance. Inadditiontothat,thechangein localthermodynamics andkineticsoftheAlloy718due tothelocalchange incomposition influencethephasetransformationduringthestandardpostHTforthe Alloy718.

DiscussionpresentedinthisarticlerevealthatthecommonHTs orig-inallydesignedforcast-and-wroughtAlloy718maynotbetheoptimal solutionforadditivelymanufacturedAlloy718parts.Therefore,focus shouldbeplacedondesigningnewHTsspecificallyforadditively man-ufacturedAlloy718.Inthisstudy,thegrainstructurechangesduring HIPandHTswerenotdiscussedindetail.However,inthedesignofnew HTsforAMAlloy718,theeffectofgrainstructure(morphology, distri-bution,andtexture)changesshouldalsobeconsidered,particularlyif

(15)

theHTtemperaturesarehigh(>1000°C),wheregraingrowthcan oc-cur.Additivemanufacturingallowstheproductionofawiderangeof grainmicrostructures,fromcolumnartoequiaxedgrains,inasinglepart [1,2,33].Consequently,designingHIPandHTsapplicabletoallthese differentgrainstructureswilldefinitelybeachallengingtask,asthese structurestendtobehavedifferentlyunderpost-HIPandHTconditions. EventhoughLB-PBFwasnotconsidered,itisconceivablethatthe in-formationanddiscussionprovidedhereincouldbeusedtounderstand thephase transformationduringLB-PBFandthesubsequentHIPand HTs.AsLB-PBFisacolderprocess,thediscussiongiveninSection3may beastartingpointtounderstandthephasetransformationforthis pro-cessaswell.However,owingtotheincreasedcoolingrate,thelength scaleofLB-PBFwillbesmallerthanthatoftheL-DEDprocess.

Inconclusion,webelievethattheinformationanddiscussion pre-sented in this paper will promote the understanding of the overall process–structure–propertyrelationshipinAMofAlloy718.

Acknowledgements

The fundingfrom theEuropean Regional Development Fund for project3Dprint,andfromKKFoundation(StiftelsenförKunskaps-och Kompetensutveckling)forprojectSUMAN-Nextisalsoacknowledged. TheauthorsareverygratefultoMrMatsHögström,UniversityWestand MrJohannesGårdstam,QuintusTechnologiesAB,Västerås,Swedenfor carryingoutthecontinuouscoolingexperiments.

Declaration of Competing Interest None.

Appendix: A

ModelingtheeffectofsolidificationonAlloy718conditionsusingMICRESS

Herein, the MICRESS software package, which is based on the multiphase-fieldmethod[80–83],isusedtoinvestigatetheeffectof so-lidificationconditionofLaves-phaseformationinAlloy718.Themodels weresetupasfollows.

Modelingwasperformedin2D.Thesizeofthemodellingdomain was80μm×80μmwith0.1μmgridspacing.Aconstantthermal gra-dientwasappliedfromtoptobottomofthedomain.Aconstant cool-ingratewasappliedtothewholedomain.Thismimicsthemovingof theliquidusisothermfrombottomtotopinthesimulationdomain.At thebeginningofthesimulation,agrainwhichhasalmostflatliquid/𝛾 interface withrandomnoisewassetatthebottomof thesimulation domain. Theorientationof thisgrain wassetso thatits fast-growth directionisparalleltotheappliedthermalgradientdirectioninthe do-main.Thismimicsthegrowthofepitaxialdendritesfromasubstrate orthere-meltedlayers.Duringthesimulation,thenucleationofnew𝛾

grainsweresetrandomlyintheliquid.Forsimplicity,onlytheliquid/𝛾

interface wasmodeled asananisotropicinterface havingcubic crys-talanisotropy.Therestofthesimulationparameters,including simpli-fiednominalAlloy718composition,nucleationofLavesphase, interfa-cialenergyvalues,interfacethickness,andinterfacialstiffness/mobility coefficientforanisotropyweretakenfrom[23].Thermodynamicand mobilitydataweretakenfromtheTCNI8andMOBNI4databasesfrom Thermo-Calc[84].

TheMICRESSmodelsetupweusedhereissimilartothemodelsetup reportedinNieetal.[30].However,inNieetalhasusedastochastic modellingapproachandmodelledtheAlloy718systemasNi-Nb

bi-Fig.A1. (a),(c)PredictedmorphologyoftheLavesphaseattwodifferentthermalconditionsand(b),(d)respectiveexperimentallyobservedLavesphasemorphology inthemicrostructure(size80μmx80μm).

(16)

narysystemwithoutconsideringtheLavesphaseformationexplicitly. WhereasinourcasewehavemodelledtheAlloy718as6element sys-tem(Ni-Cr-Fe-Mo-Nb-Ti)andexplicitlymodelledtheformationofLaves phaseinthemicrostructure.Inadditiontothat,Nieetal.haveusedfixed orientationforthenew𝛾 grainsthatformintheliquid.Themodel pre-dictionsinourcurrentstudywerealsoinabetteragreementwiththe experimentalobservations(seeFig.A1)reportedinNieetal.[30]. Appendix: B

Directageingheat-treatmentsimulationsusingMICRESS

Herein,DA,asper AMS5383,wassimulatedusing MICRESS.The microstructure resulted from theL-DED thermal cycle simulationin [23] wasusedastheinitialstartingmicrostructure.Duringthe simu-lation,onlythenucleation(randomly)of𝛾″inthematrixwassetfor simplicity. Thegrid resolution of the L-DEDsimulation was 50 μm. Therefore,thecorrectsizeandmorphologyof𝛾″couldnotberesolved correctlyunderthisgrid resolution.Toovercome this,theanalytical curvaturemodel[82,85,86]implementedin MICRESSwasused.The anisotropyof𝛾 /𝛾″wasneglected,andanisotropicinteractionmodel wasadopted.Aninterfacialenergyof1×10−5 J/cm2[87] wasused.

NophaseinteractionbetweentheLavesphaseand𝛾″wasmodeled.The restoftheparameters,includingsimplifiedAlloy718composition,were takenfrom[23].

Appendix: C

Continuouscoolingexperimentswithoutpressure

HIPedEB-PBFAlloy718sampleswereusedforthecontinuous cool-ingexperiments.Samples(17mm×15mm×55mm)wereprintedwith anArcamA2XmachineusingArcamStandardparameters.Beforethe continuouscooling,thesampleswereagainhomogenizedat1120°Cfor 1h.Theexperimentsrelatedto0.5°C/minand2°C/mincoolingrates wereconductedusinganaluminatubefurnace(modelR120/500/13, NaberthermGmbH,Germany)inaninertargonatmosphere.Therestof thecoolingrateexperimentswereconductedusingaGleeble3800D sys-tem(DynamicSystemsInc,Poestenkill,NY,USA).Allthecoolingrates weremaintainedupto500°C,andthereafterthesampleswerequenched toroomtemperature.Thesamplesweremetallographicallypreparedfor hardnessevaluation.Hardnessmeasurementswereperformedusinga ShimadzuHMV-2microhardnesstesterwith1kgloadand15sdwell time.

Continuouscoolingexperimentswithpressure

ThecontinuouscoolingratestudiesinsidetheHIPfurnace(Model QIH21,QuintusTechnologies,Sweden)wereperformedunderpressure. EB-PBFAlloy718sampleswerefirstHIPed at1120°C/100MPa for 4hbeforebeingcontinuouslycooledat5°C/minand20°C/min. How-ever,duringcooling,thepressuregraduallydroppedwithtemperature toavalueof40 MPa.Thesamplesweremetallographicallyprepared forhardnessevaluation.Hardnessmeasurementswereperformedusing aShimadzuHMV-2microhardnesstesterwith1kgloadappliedfor15 s.

References

[1] S.S. Babu , et al. , Additive Manufacturing of Nickel SuperAlloy 718 s: Opportunities for Innovation and Challenges Related to Qualification, Metall. Mater. Trans. A 49 (9) (Sep. 2018) 3764–3780 .

[2] T. DebRoy , et al. , Additive manufacturing of metallic components – Process, struc- ture and properties, Prog. Mater. Sci. 92 (Mar. 2018) 112–224 .

[3] M.M. Attallah , R. Jennings , X. Wang , L.N. Carter , Additive manufacturing of Ni-based superAlloy 718 s: The outstanding issues, MRS Bull 41 (10) (2016) 758–764 .

[4] S. Sui , et al. , The influence of Laves phases on the room temperature tensile proper- ties of Inconel 718 fabricated by powder feeding laser additive manufacturing, Acta Mater 164 (2019) 413–427 February .

[5] M. Anderson , A.-L. Thielin , F. Bridier , P. Bocher , J. Savoie , 𝛿 Phase precipitation in Inconel 718 and associated mechanical properties, Mater. Sci. Eng. A 679 (Jan. 2017) 48–55 .

[6] G.A. Knorovsky , M.J. Cieslak , T.J. Headley , A.D. Romig , W.F. Hammetter , INCONEL 718: a solidification diagram, Metall. Trans. A 20 (10) (Oct. 1989) 2149–2158 . [7] R.W. Hayes , Creep Deformation of Inconel Alloy 718 in the 650°C To 760°C, in:

SuperAlloy 718 s 718, 625 and Various Derivatives, 1991, 1991, pp. 549–562 . [8] C. Kumara , Microstructure Modelling of Additive Manufacturing of Alloy 718, 2018 . [9] J.F. Radavich , The physical metallurgy of cast and wrought alloy 718, SuperAlloy

718s 718 Metall. Appl. (1989) 229–240 .

[10] M. Sundararaman , P. Mukhopadhyay , S. Banerjee , Precipitation of the Delta-Ni3Nb phase in two nickel base superAlloy 718s, Metall. Trans. A 19 (3) (1988) 453–465 . [11] S. Azadian , L.Y. Wei , R. Warren , Delta phase precipitation in inconel 718, Mater.

Charact. 53 (1) (2004) 7–16 .

[12] T. Antonsson , H. Fredriksson , The effect of cooling rate on the solidification of IN- CONEL 718, Metall. Mater. Trans. B 36 (1) (Feb. 2005) 85–96 .

[13] J.T. Tharappel , J. Babu , Welding processes for Inconel 718- A brief review welding processes for Inconel 718- a brief review, IOP Conf. Series: Materials Science and Engineering, 330, 2018 .

[14] D. Deng , R.L. Peng , H. Söderberg , J. Moverare , On the formation of microstructural gradients in a nickel-base superAlloy 718 during electron beam melting, Mater. Des. 160 (2018) 251–261 .

[15] Y. Zhang , Z. Li , P. Nie , Y. Wu , Effect of cooling rate on the microstructure of laser-remelted INCONEL 718 coating, Metall. Mater. Trans. A 44 (12) (Dec. 2013) 5513–5521 .

[16] J.K. Tien , T. Caulfield , SuperAlloy 718s, supercomposites and superceramics, Aca- demic Press, 1989 .

[17] W.M. Haynes , CRC Handbook of Chemistry and Physics - Google Books, 97th ed., CRC Press, 2016 .

[18] R. Trivedi , W. Kurz , Solidification microstructures: a conceptual approach, Acta Met- all. Mater. 42 (1) (1994) 15–23 .

[19] Z. Wang , K. Guan , M. Gao , X. Li , X. Chen , X. Zeng , The microstructure and mechan- ical properties of deposited-IN718 by selective laser melting, J. Alloy 718s Compd. 513 (2012) 518–523 .

[20] D. Deng , R.L. Peng , H. Brodin , J. Moverare , Microstructure and mechanical proper- ties of Inconel 718 produced by selective laser melting: sample orientation depen- dence and effects of post heat treatments, Mater. Sci. Eng. A 713 (October 2017) 294–306 2018 .

[21] S. Ghosh , et al. , Single-track melt-pool measurements and microstructures in Inconel 625, Jom (2018) February .

[22] S. Ghosh , M.R. Stoudt , L.E. Levine , J.E. Guyer , Formation of Nb-rich droplets in laser deposited Ni-matrix microstructures, Scr. Mater. 146 (2017) 36–40 .

[23] C. Kumara , et al. , Microstructure modelling of laser metal powder directed energy deposition of Alloy 718, Addit. Manuf. 25 (2019) 357–364 .

[24] C. Kumara , D. Deng , F. Hanning , M. Raanes , J. Moverare , P. Nylén , Predicting the Microstructural Evolution of Electron Beam Melting of Alloy 718with Phase-Field Modeling, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 50 (5) (2019) 2527–2537 . [25] H. Qi , M. Azer , A. Ritter , Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured INCONEL 718, Metall. Mater. Trans. A 40 (10) (Oct. 2009) 2410–2422 .

[26] W. Huang , J. Yang , H. Yang , G. Jing , Z. Wang , X. Zeng , Heat treatment of Inconel 718 produced by selective laser melting: Microstructure and mechanical properties, Mater. Sci. Eng. A 750 (2019) 98–107 February .

[27] G.D. Janaki Ram , A. Venugopal Reddy , K. Prasad Rao , G.M. Reddy , J.K. Sarin Sun- dar , Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds, J. Mater. Process. Technol. 167 (1) (Aug. 2005) 73–82 .

[28] X. Li , et al. , Effect of heat treatment on microstructure evolution of Inconel 718 Alloy 718 fabricated by selective laser melting, J. Alloy 718s Compd. 764 (2018) 639–649 .

[29] J.J. Schirra , R.H. Caless , R.W. Hatala , The effect of laves phase on the mechanical properties of wrought and cast + HIP Inconel 718, in: SuperAlloy 718s 718, 625 and Various Derivatives, 1991, 1991, pp. 375–388 .

[30] P. Nie , O.A. Ojo , Z. Li , Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superAlloy 718, Acta Mater 77 (Sep. 2014) 85–95 .

[31] F.D.J. Kurz W. , Fundamentals of solidification, 1988, CRC Press, 1998 June 1 . [32] Ø. Grong , Metallurgical modelling of welding, Institute of Materials, 1997 . [33] A.R. Balachandramurthi , J. Olsson , J. Ålgårdh , A. Snis , J. Moverare , R. Pederson , Mi-

crostructure tailoring in Electron Beam Powder Bed Fusion additive manufacturing and its potential consequences, Results Mater 1 (2019) 100017 August .

[34] N. Raghavan , et al. , Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing, Acta Mater 112 (2016) 303–314 .

[35] G. Lindwall , et al. , Simulation of TTT curves for additively manufactured Inconel 625, Metall. Mater. Trans. A 50 (1) (Jan. 2019) 457–467 .

[36] Y. Tian , et al. , Rationalization of microstructure heterogeneity in INCONEL 718 builds made by the direct laser additive manufacturing process, Metall. Mater. Trans. A 45 (10) (Sep. 2014) 4470–4483 .

[37] R.G. Carlson , J.F. Radavich , Microstructural characterization of cast 718, SuperAlloy 718s 718 Metall. Appl. (1989) 79–95 .

[38] A. Segerstark , J. Andersson , L. Svensson , O. Ojo , Microstructural characterization of laser metal powder deposited Alloy 718, Mater. Charact. 142 (Aug. 2018) 550–559 June .

References

Related documents

Generally, a transition from primary raw materials to recycled materials, along with a change to renewable energy, are the most important actions to reduce greenhouse gas emissions

För att uppskatta den totala effekten av reformerna måste dock hänsyn tas till såväl samt- liga priseffekter som sammansättningseffekter, till följd av ökad försäljningsandel

Från den teoretiska modellen vet vi att när det finns två budgivare på marknaden, och marknadsandelen för månadens vara ökar, så leder detta till lägre

The increasing availability of data and attention to services has increased the understanding of the contribution of services to innovation and productivity in

Generella styrmedel kan ha varit mindre verksamma än man har trott De generella styrmedlen, till skillnad från de specifika styrmedlen, har kommit att användas i större

Närmare 90 procent av de statliga medlen (intäkter och utgifter) för näringslivets klimatomställning går till generella styrmedel, det vill säga styrmedel som påverkar

I dag uppgår denna del av befolkningen till knappt 4 200 personer och år 2030 beräknas det finnas drygt 4 800 personer i Gällivare kommun som är 65 år eller äldre i

Den förbättrade tillgängligheten berör framför allt boende i områden med en mycket hög eller hög tillgänglighet till tätorter, men även antalet personer med längre än