• No results found

W h a t A re W e T ry in g t o U n d er st a n d ? W h a t is t h e b eh a v io r o f m a tt er a t a sy m p to ti c e n er g y d en si ty ? W h a t is t h e m a tt er i m p o rt a n t fo r h ig h e n er g y h a d ro n s?

N/A
N/A
Protected

Academic year: 2022

Share "W h a t A re W e T ry in g t o U n d er st a n d ? W h a t is t h e b eh a v io r o f m a tt er a t a sy m p to ti c e n er g y d en si ty ? W h a t is t h e m a tt er i m p o rt a n t fo r h ig h e n er g y h a d ro n s?"

Copied!
27
0
0

Loading.... (view fulltext now)

Full text

(1)

R H IC R E S U L T S : T h e S ea rc h f o r H ig h D en si ty M a tt er W h a t a re w e tr y in g t o u n d er st a n d ? W h a t h a v e w e a lr ea d y l ea rn ed ? W h a t d o w e ex p ec t to l ea rn ? W h a t d o w e h o p e to l ea rn ?

(2)

W h a t A re W e T ry in g t o U n d er st a n d ? W h a t is t h e b eh a v io r o f m a tt er a t a sy m p to ti c e n er g y d en si ty ? W h a t is t h e m a tt er i m p o rt a n t fo r h ig h e n er g y h a d ro n s?

Q u a rk G lu o n P la sm a C o lo r G la ss C o n d en sa te

E /V > 1 G ev /F m E /A > 1 G ev /F m

E a rl y u n iv er se , n eu tr o n s ta rs U n iv er sa l h ig h e n er g y l im it o f st ro n g i n te ra ct io n s

3 2

(3)

T h e Q u a rk G lu o n P la sm a L o w E n er g y D en si ty − > H ig h E n er g y D en si ty

N u cl eo n s, m es o n s − > q u a rk s, g lu o n s − >

(4)

T t ~ 1980 t ~ 1990

HadronGas HadronGas

Quark Gluon Plasma Quark Gluon Plasma

RapidCrossOver

T Tt ~ 2000 Quark Gluon Plasma Hadron GasColor Superconductivity

Tri−critical point

T h e E v o lv in g P h a se D ia g ra m C ri ti ca l T em p er a tu re 1 5 0 2 0 0 M eV C ri ti ca l D en si ty ½ 2 B a ry o n s/ F m

3 Recent work stimulated by Wilczek and Rajagopal; Schaeffer and Shuryak on Color Superconductivity; also Stephanov, Son, Pisarski, Rischke.

(5)

W h a t h a v e la tt ic e si m u la ti o n s sh o w n ? C h ir a l sy m m et ry : m , m ~ 0 , M ~ 1 G eV

updownnucleon

H o w d o p a rt ic le s g et t h ei r m a ss ? W h y i s th e p io n m a ss s o s m a ll ? Is t h is r el a te d t o c o n fi n em en t?

Lattice simulations of Bielefeld group, Columbia group, MILC Collaboration

(6)

Is t h e co n fi n in g f o rc e st il l li n ea r a t T > T ?

dec

W h a t is t h e eq u a ti o n o f st a te ? S o u n d v el o ci ty ?

(7)

T h e C o lo r G la ss C o n d en sa te H a d ro n i n f ra m e w h er e it h a s h ig h m o m en ta : H ig h m o m en ta c o n st it u en ts g en er a te l o w m o m en tu m w ee p a rt o n s. D en si ty o f g lu o n s p er u n it a re a b ec o m es l a rg e. F ie ld s a re r a n d o m o n t h in s h ee t tr a v el in g n ea r sp ee d o f li g h t. U n iv er sa l h ig h e n er g y b eh a v io r fo r a ll h a d ro n s. R a n d o m N o n A b el ia n W ie zs a ck er W il li a m s F ie ld s

v ~ c

(8)

C o lo r G la ss C o n d en sa te a n d S a tu ra ti o n I G luon density grows until insert here formula for density

D imensionful scale Q sat formula W eak coupling formula

Hera Data Gribov, Levin, Ryskin; Mueller; McLerran,Venugopalan

(9)

C o lo r G la ss C o n d en sa te C o lo r: M a d e o f co lo re d g lu o n s G la ss : W ee f ie ld s ( lo w m o m en tu m ) a re p ro d u ce d b y h ig h er m o m en tu m c o n st it u en ts . T im e sc a le s a re L o re n tz co n tr a ct ed c o m p a re d t o n a tu ra l ti m e sc a le s C o n d en sa te : G lu o n d en si ty a s la rg e a s it c a n

Minnesota Mob and East Coast and European Affiliates

(10)

S p a ce T im e E v o lu ti o n o f U lt ra re la ti v is ti c N u cl ea r C o ll is io n s

Mclerran, Kovner, Weigert; Krasnitz, Nara, Venugopalan

(11)

S p a ce T im e E v o lu ti o n o f U lt ra re la ti v is ti c N u cl ea r C o ll is io n s

Bjorken

(12)

S p a ce T im e E v o lu ti o n i n U lt ra re la ti v is ti c N u cl ea r C o ll is io n s A v a ri et y o f in te rm ed ia te t im e sc a le s b et w ee n t h er m a li za ti o n a n d d ec o u p li n g : Q u a rk G lu o n P la sm a u n ti l it b eg in s h a d ro n iz in g i n to a m ix ed p h a se o f q u a rk s g lu o n s a n d h a d ro n s M ix ed p h a se e x p a n d s u n ti l it i s en ti re ly a h a d ro n g a s D ec o u p li n g o cc u rs a t ro u g h ly t h e ti m e th e m a tt er i s e n ti re ly h a d ro n g a s, a t R H IC e n er g ie s, t ~ 1 0 F m /c

(13)

W h a t H a v e W e L ea rn ed ? T h e M u li tp li ci ty a s a F u n ct io n o f E n er g y

(14)

W h a t H a v e W e L ea rn ed ? B o u n d s o n e n er g y d en si ty E n er g y D en si ty i s T o o B ig f o r a H a d ro n G a s !

(15)

W h a t H a v e W e L ea rn ed ? G ro ss P ro p er ti es o f M u lt ip li ci ti es C o n si st en t w it h C o lo r G la ss !

PHOBOS

(16)

C o ll ec ti v e F lo w a n d v 2

It i s M a tt er a n d I t In te ra ct s S tr o n g ly ! Q u a rk G lu o n P la sm a o r C o lo re d G la ss ? (o r b o th ? )

Heinz et al; Teaney, ShuryakNara, Krasnitz, Venugopalan

W h a t H a v e W e L ea rn ed ?

(17)

W h a t W o u ld D o W e E x p ec t to L ea rn ? D o es t h e m a tt er e q u il ib ra te ?

Problems with interpretation: 1) Large uncertainty in pp data 2) Systematic uncertainty in AA data 3) Nuclear modification of gluon distribution 4) Transverse momentum limited by statistics

P T Sytematics reduced by comparing data at same energy in same detector Nuclear modification of distribution functions determined by pA (or eA) Higher transverse momentum with higher accelerator luminosityGyulassy, Wang; Dokshitzer, Mueller, Baier, Schiff; Levai; Wiedemann

(18)

W h a t D o W e E x p ec t to L ea rn ? Is t h e p T S p ec tr u m M o d if ie d B ec a u se o f C o lo r G la ss o r Q u a rk G lu o n P la sm a ? R es u lt s a re c o n si st en t w it h C o lo r G la ss p ic tu re !

SchaffnerBielich et al

(19)

W h a t D o W e E x p ec t to L ea rn ? A ls o C o n si st en t w it h H y d ro d y n a m ic s o f Q u a rk G lu o n P la sm a !

Shape of curve predicted in hydrodynamics. Deviations from Mt scaling at Mt ~ M. Deviation larger for more massive particles

For Hydrodynamics: ForColorGlass: Nontrivial relations for different centrality Correctly generates dependence of strong coupling

P ro b a b ly b o th c o n tr ib u te ?

Heinz, Huovinen, Kolb; Shuryak, Teaney; HironoSrivastava

If h y d ro d y n a m ic s is v a li d , ca n d et er m in e eq u a ti o n o f st a te !

(20)

W h a t D o W e H o p e to L ea rn ? D o es d ec o n fi n em en t o cc u r in h ig h d en si ty m a tt er ? D o es c h ir a l sy m m et ry r es to ra ti o n c h a n g e p a rt ic le m a ss es ?

Spectrum of low mass dileptons: Measured at CERN Probably resonance broadening Rapp, Weise, Wambach Difficult to measure low mass pairs at RHIC due to backgrounds.

V er y d if fi cu lt , b u t v er y p o w er fu l te ch n iq u e.

(21)

W h a t D o W e H o p e to L ea rn ? M el ti n g o f th e J /P si

Matsui, Satz Blaizot, OllitraultSuppressors: Kharzeev Twister: Qiu Rescatter: Capella Enhancers: Rafelski, Thews, Stachel, BraunMunzinger, Redlich, Gorenstein

(22)

W h a t D o W e H o p e to L ea rn ? L if et im e a n d s p a ti a l ex te n t o f m a tt er p ro d u ce d

Difficult to interpret the ratio of Ro/Rs: Might be due to Color Glass initial conditions? Might be new phenomena associated with phase transition?

D o w e re a ll y u n d er st a n d th e sp a ce

ti m e ev o lu ti o n

? Soff, Bass, Dumitru; Kolb, Heinz; Teaney

= R si d e = 4 .4 2 (0 .2 2 ) F m R o u t = 4 .4 5 (0 .2 2 ) F m R lo n g = 5 .2 8 (0 .3 2 ) F m

(23)

W h a t D o W e H o p e to L ea rn ? F la v o r C o m p o si ti o n o f Q u a rk G lu o n P la sm a

Can fit particle abundances with temperature and chemical potential for baryon number and strangeness. It works too well! Works for electronpositron collisions! Are we not understanding something fundamental and universal about hadron collisions? Is strangeness abundance a signal for quarkgluon plasma? Mueller, Rafelski; Cleymans, Redlich; Braun−Munzinger, Stachel; Gorenstein Gazdzicki

(24)

S u m m a ry : W h a t a re w e tr y in g t o u n d er ts a n d :

New forms of matter: Color Glass Condensate and Quark Gluon Plasma

W h a t h a v e w e a lr ea d y l ea rn ed :

Matter has been produced at energy densities so high it can only be made from quarks and gluons The matter is strongly interacting Multiplicity distributions consistent with Colored Glass Flow and pT distributions consistent with both Colored Glass and Quark−Gluon Plasma

(Color Glass at early times, Plasma later)

(25)

W h a t d o w e ex p ec t to l ea rn :

By measuring low pT heavy hadrons, resolve differences between various theory descriptions. By measuring high pT hadrons in AA and pA collisions determine whether jet quenching occurs, and to what degree thermalization occurs.

If t h er m a li za ti o n i s es ta b li sh ed , th en c a n m ea su re p ro p er ti es o f E q u a ti o n o f S ta te

(26)

W h a t d o w e h o p e to l ea rn :

Through lepton pair measurements, whether or not resonances shifted in mass, boadened or melted. What the HBT determined sizes tell us about the space−time pictures. What flavor abundances tell us about properties of high density matter

W e m u st t u rn t o t h e p ro b le m o f d et er m in in g t h e p ro p er ti es o f th e h ig h d en si ty m a tt er m a d e in h ea v y i o n c o ll is io n s

We are learning what are the useful theoretical and experimental tools Will need experiments on AA and pA to resolve: Initial state effects: Color Glass Condensate Evolution of the matter: Quark Gluon Plasma (eA for precise determination of Color Glass)

(27)

References

Related documents

Då alla fönster inte lämpar sig för utanpåliggande solskyddande markiser rekom- menderar vi att man istället monterar invändiga solskyddsgardiner typ Draper

En situation där Bitcoin tar över som en global valuta skulle alltså kunna likna problemen guld hade när silver ”förbjöds”.. Guld gick inte att dela

Eventuellt iordningställande av allmänna anläggningar (främst eventuellt befintliga vägar som idag ej ingår i Skällentorp Ga:1 eller Skällentorp Ga:2) till en sådan stan- dard

[r]

Förhållandet mellan en rektangel och en cirkel, i hvilken diametern är lm, är lika stort med produkten af basens och höjdens metertal samt förhållandet mellan 4 och n... Tiden

The income statements and balance sheets in the Annual Report of the Pension System are based on the financial statements of the First–Fourth and Sixth National Pension Funds,

[r]

(Grandchild and dementia affected grandfather. Author’s private photo, 2008).