• No results found

Re M (KWW)Re M (AL)

N/A
N/A
Protected

Academic year: 2022

Share "Re M (KWW)Re M (AL)"

Copied!
76
0
0

Loading.... (view fulltext now)

Full text

(1)

Eta and Eta’ Physics

Johan Bijnens Lund University

bijnens@thep.lu.se

http://www.thep.lu.se/bijnens

Various ChPT: http://www.thep.lu.se/bijnens/chpt.html

lavi

net

(2)

Other talks

Production of η and η (or in medium):

Plenary: Krusche

Parallel: He, Vankova, Nanova, Shklyar, Glazier, Jain, Papenbrock, Dugger, Klaja, Przerwa,

Pettersson, Takizawa

Posters: Klaja, Moskal, Czyzykiewicz Decays of η and/or η:

Plenary: Wolke

Parallel: Borasoy, Prakhov, Roy

Posters: Stepaniak, Duniec, Jany, Redmer, Janusz, Yurev

And I probably missed some

(3)

Overview

No Production

No weak decays: Typically: η : BR . 10−11 η : BR . 10−12 Both η and η decays are suppressed

=⇒ good laboratories to study nondomi- nant strong interaction effects

Give an idea of why we look at η and η

Overview of the known theory, puzzles etc

(4)

Contents

Useful proceedings/conferences ETA01 (Uppsala), ETA05 (Cracow), ETA06(Julich), ETA07 (Peniscola) Why are pseudoscalars special

Chiral Perturbation Theory (ChPT, CHPT, χPT) η → 3π: Main part of talk

η → ηππ, πππ

Reminder: many reactions can probe the anomaly

(5)

Eta Physics Handbook: ETA01

(6)

ETA05: Acta Phys.Slov. 56(2006) No 3

Acta Physica Slovaca 56(2006) C. Hanhart

Hadronic production of eta-mesons: Recent results and open questions , 193 (2006) C. Wilkin, U. Tengblad, G. Faldt

The p d -> p d eta reaction near threshold , 205 (2006)

J. Smyrski, H.-H. Adam, A. Budzanowski, E. Czerwinski, R. Czyzykiewicz, D. Gil, D.

Grzonka, A. Heczko, M. Janusz, L. Jarczyk, B. Kamys, A. Khoukaz, K. Kilian, P. Klaja, J.

Majewski, P. Moskal, W. Oelert, C. Piskor-Ignatowicz, J. Przerwa, J. Ritman, T. Rozek, R. Santo, T. Sefzick, M. Siemaszko, A. Taschner, P. Winter, M. Wolke, P. Wustner, Z.

Zhang, W. Zipper

Study of the 3He-eta system in d-p collisions at COSY-11 , 213 (2006) M. Doring, E. Oset, D. Strottman

Chiral dynamics in gamma p -> pi0 eta p and related reactions , 221 (2006)

H. Machner, M. Abdel-Bary, A. Budzanowski, A. Chatterjee, J. Ernst, P. Hawranek, R.

Jahn, V. Jha, K. Kilian, S. Kliczewski, Da. Kirillov, Di. Kirillov, D. Kolev, M. Kravcikova, T. Kutsarova, M. Lesiak, J. Lieb, H. Machner, A. Magiera, R. Maier, G. Martinska, S.

Nedev, N. Pisku\-nov, D. Prasuhn, D. Protic, P. von Rossen, B. J. Roy, I. Sitnik, R.

Siudak, R. Tsenov, M. Ulicny, J. Urban, G. Vankova, C. Wilkin The eta meson physics program at GEM , 227 (2006)

K. Nakayama, H. Haberzettl

Photo- and Hadro-production of eta' meson , 237 (2006) S.D. Bass

Gluonic effects in eta and eta' nucleon and nucleus interactions , 245 (2006)

P. Klaja, P. Moskal, H.-H. Adam, A. Budzanowski, E. Czerwinski, R. Czyzykiewicz, D.

Gil, D. Grzonka, M. Janusz, L. Jarczyk, B. Kamys, A. Khoukaz, K. Kilian, J. Majewski, W.

Migdal, W. Oelert, C. Piskor-Ignatowicz, J. Przerwa, J. Ritman, T. Rozek, R. Santo, T.

Sefzick, M. Siemaszko, J. Smyrski, A. Taschner, P. Winter, M. Wolke, P. Wustner, Z.

Zhang, W. Zipper

Correlation femtoscopy for studying eta meson production mechanism , 251 (2006) M.T. Pena, H. Garcilazo

Study of the np -> eta d reaction within a three-body model , 261 (2006) A. Gillitzer

Search for nuclear eta states at COSY and GSI , 269 (2006) A. Wronska, V. Hejny, C. Wilkin

Near threshold eta meson production in the dd -> 4He eta reaction , 279 (2006)

M. Bashkanov, T. Skorodko, C. Bargholtz, D. Bogoslawsky, H. Calen, F. Cappellaro, H.

Clem\-ent, L. Demiroers, E. Doroshkevich, C. Ekstrom, K. Fransson, L. Geren, J.

Greiff, L. Gustafsson, B. Hoistad, G. Ivanov, M. Jacewicz, E. Jiganov, T. Johansson, M.M. Kaskulov, S. Keleta, O. Khakimova, I. Koch, F. Kren, S. Kullander, A. Kupsc, A. Kuznetsov, K. Lindberg, P. Marciniewski, R. Meier, B. Morosov, W. Oelert, C.

Pauly, Y. Petukhov, A. Povtorejko, R.J.M.Y. Ruber, W. Scobel, R. Shafigullin, B.

Shwartz, V. Sopov, J. Stepaniak, P.-E. Tegner, V. Tchernyshev, P.

Thorngren-Engblom, V. Tikhomirov, A. Turowiecki, G.J. Wagner, M. Wolke, A.

Yamamoto, J. Zabierowski, I. Zartova, J. Zlomanczuk

On the pi pi production in free and in-medium NN-collisions: sigma-channel low-mass

enhancement and pi0 pi0 / pi+ pi- asymmetry , 285 (2006) K. Schonning for the CELSIUS/WASA collaboration

Production of omega in pd -> 3He omega at kinematic threshold , 299 (2006) J. Bijnens

Decays of eta and eta' and what can we learn from them? , 305 (2006) B. Borasoy, R. Nissler

Decays of eta and eta' within a chiral unitary approach , 319 (2006) E. Oset, J. R. Pelaez, L. Roca

Discussion of the eta -> pi0 gamma gamma decay within a chiral unitary approach , 327 (2006)

C. Bloise on behalf of the KLOE collaboration

Perspectives on Hadron Physics at KLOE with 2.5 fb^-1 , 335 (2006) T.Capussela for the KLOE collaboration

Dalitz plot analysis of eta into 3pi final state , 341 (2006) A. Starostin

The eta and eta' physics with crystal ball , 345 (2006) S. Schadmand for the WASA at COSY collaboration WASA at COSY , 351 (2006)

M. Lang for the A2- and GDH-collaborations

Double-polarization observables, eta-meson and two-pion photoproduction , 357 (2006) M. Jacewicz, A. Kupsc for CELSIUS/WASA collaboration

Analysis of eta decay into pi+ pi- e+ e- in the pd -> 3He eta reaction , 367 (2006) F. Kleefeld

Coulomb scattering and the eta-eta' mixing angle , 373 (2006)

C. Pauly, L. Demirors, W. Scobel for the CELSIUS-WASA collaboration

Production of 3pi0 in pp reactions above the eta threshold and the slope parameter alpha , 381 (2006)

R. Czyzykiewicz, P. Moskal, H.-H. Adam, A. Budzanowski, E. Czerwinski, D. Gil, D.

Grzonka, M. Janusz, L. Jarczyk, B. Kamys, A. Khoukaz, K. Kilian, P. Klaja, B. Lorentz, J.

Majewski, W. Oelert, C. Piskor-Ignatowicz, J. Przerwa, J. Ritman, H. Rohdjess, T. Rozek, R. Santo, T. Sefzick, M. Siemaszko, J. Smyrski, A. Taschner, K. Ulbrich, P. Winter, M.

Wolke, P. Wustner, Z. Zhang, Z. Zipper

The analysing power for the pp -> pp eta reaction at Q=10 MeV , 387 (2006) A. Nikolaev for the A2 and Crystal Ball at MAMI collaborations

Status of the eta mass measurement with the Crystal Ball at MAMI , 397 (2006) B. Di Micco for the CLOE collaboration

The eta -> pi0 gamma gamma, eta/eta' mixing angle and status of eta mass measurement at KLOE , 403 (2006)

(7)

Pseudoscalars are special

Chiral Symmetry

QCD: 3 light quarks: equal mass: interchange: U (3)V But LQCD = X

q=u,d,s

[i¯qLD/ qL + i¯qRD/ qR − mq (¯qRqL + ¯qLqR)]

So if mq = 0 then U (3)L × U(3)R.

Can also see that via v < c, mq 6= 0 =⇒

v = c, mq = 0 =⇒/

(8)

Pseudoscalars are special

Chiral Symmetry

QCD: 3 light quarks: equal mass: interchange: U (3)V But LQCD = X

q=u,d,s

[i¯qLD/ qL + i¯qRD/ qR − mq (¯qRqL + ¯qLqR)]

So if mq = 0 then U (3)L × U(3)R.

Hadrons do not come in parity doublets: symmetry must be broken

A few very light hadrons: π0π+π and also K, η Both can be understood from spontaneous Chiral Symmetry Breaking

(9)

Goldstone Modes

UNBROKEN: V (φ)

Only massive modes around lowest energy state (=vacuum)

BROKEN: V (φ)

Need to pick a vacuum

hφi 6= 0: Breaks symmetry No parity doublets

Massless mode along ridge For QCD: hφi 6= 0 −→ hqqi 6= 0 U (3)L × U(3)R → U(3)V Explains why pions light

(10)

Goldstone Modes

UNBROKEN: V (φ)

Only massive modes around lowest energy state (=vacuum)

BROKEN: V (φ)

Need to pick a vacuum

hφi 6= 0: Breaks symmetry No parity doublets

Massless mode along ridge For QCD: hφi 6= 0 −→ hqqi 6= 0 U (3)L × U(3)R → U(3)V Explains why pions light but need NINE light particles So WHY is the η NOT light?

(11)

Anomaly

U (3)L × U(3)R = SU (3)L × SU(3)R × U(1)V × U (1)A SU (3)L × SU(3)R −→ SU(3)V =⇒ π, K, η light FINE U (1)A: Is NOT a good quantum symmetry

=⇒ ∂µA = 2pNfω

ω = 1

16π2 εµναβ tr GµνGαβ

ω is gluons: strongly interacting: η heavy

(12)

But

So quantum effects break U (1)A

BUT ω is a total derivative =⇒ How does it have an effect?

(13)

But

So quantum effects break U (1)A

BUT ω is a total derivative =⇒ How does it have an effect?

’t Hooft: winding number ν = R d4x ω

• instantons lead to an effect

Creates a new problem: LQCD −→ LQCD − θω

(Strong CP problem) BUT it solved the η problem η has possibly large and very interesting nonperturbative effects and interaction with gluons as no other hadron

ms 6= ˆm: This also affects η physics

(14)

Chiral Perturbation Theory

Exploring the consequences of the chiral symmetry of QCD and its spontaneous breaking using effective field theory techniques

(15)

Chiral Perturbation Theory

Exploring the consequences of the chiral symmetry of QCD and its spontaneous breaking using effective field theory techniques

Derivation from QCD:

H. Leutwyler, On The Foundations Of Chiral Perturbation Theory, Ann. Phys. 235 (1994) 165 [hep-ph/9311274]

(16)

Chiral Perturbation Theory

Degrees of freedom: Goldstone Bosons from Chiral

Symmetry Spontaneous Breakdown (without η) Power counting: Dimensional counting in momenta/masses Expected breakdown scale: Resonances, so Mρ or higher

depending on the channel

(17)

Chiral Perturbation Theory

Degrees of freedom: Goldstone Bosons from Chiral

Symmetry Spontaneous Breakdown (without η) Power counting: Dimensional counting in momenta/masses Expected breakdown scale: Resonances, so Mρ or higher

depending on the channel

Power counting in momenta: Meson loops

p2

1/p2 R d4p p4

(p2)2 (1/p2)2 p4 = p4

(p2) (1/p2) p4 = p4

(18)

Lagrangians

U (φ) = exp(i√

2Φ/F0) parametrizes Goldstone Bosons

Φ(x) = 0 B B B B B B

@ π0

2 + η8

6 π+ K+

π π0

2 + η8

6 K0

K K¯0 2 η8

6 1 C C C C C C A .

LO Lagrangian: L2 = F402 {hDµUDµU i + hχU + χUi} , DµU = ∂µU − irµU + iU lµ ,

left and right external currents: r(l)µ = vµ + (−)aµ

Scalar and pseudoscalar external densities: χ = 2B0(s + ip) quark masses via scalar density: s = M + · · ·

hAi = T rF (A)

(19)

Lagrangians

L4 = L1hDµUDµU i2 + L2hDµUDνU ihDµUDνU i

+L3hDµUDµU DνUDνU i + L4hDµUDµU ihχU + χUi +L5hDµUDµU (χU + Uχ)i + L6U + χUi2

+L7U − χUi2 + L8U χU + χUχUi

−iL9hFµνR DµU DνU + FµνL DµUDνU i

+L10hUFµνR U F Lµνi + H1hFµνR FRµν + FµνL FLµνi + H2χi Li: Low-energy-constants (LECs)

Hi: Values depend on definition of currents/densities

These absorb the divergences of loop diagrams: Li → Lri Renormalization: order by order in the powercounting

(20)

Lagrangians

Lagrangian Structure:

2 flavour 3 flavour 3+3 PQChPT p2 F, B 2 F0, B0 2 F0, B0 2 p4 lir, hri 7+3 Lri, Hir 10+2 Lˆri, ˆHir 11+2 p6 cri 52+4 Cir 90+4 Kir 112+3 p2: Weinberg 1966

p4: Gasser, Leutwyler 84,85

p6: JB, Colangelo, Ecker 99,00





➠ replica method =⇒ PQ obtained from NF flavour

➠ All infinities known

➠ 3 flavour special case of 3+3 PQ: Lˆri, Kir → Lri, Cir

➠ 53 52 arXiv:0705.0576 [hep-ph]

(21)

Chiral Logarithms

The main predictions of ChPT:

Relates processes with different numbers of pseudoscalars

Chiral logarithms

m2π = 2B ˆm +  2B ˆm F

2  1

32π2 log (2B ˆm)

µ2 + 2l3r(µ)



+ · · ·

M2 = 2B ˆm

B 6= B0, F 6= F0 (two versus three-flavour)

(22)

LECs and µ

l3r(µ)

¯li = 32π2

γi lir(µ) − log Mπ2 µ2 .

Independent of the scale µ.

For 3 and more flavours, some of the γi = 0: Lri(µ) µ :

mπ, mK: chiral logs vanish pick larger scale

1 GeV then Lr5(µ) ≈ 0 large Nc arguments????

compromise: µ = mρ = 0.77 GeV

(23)

Expand in what quantities?

Expansion is in momenta and masses

But is not unique: relations between masses (Gell-Mann–Okubo) exists

Express orders in terms of physical masses and quantities (Fπ, FK)?

Express orders in terms of lowest order masses?

E.g. s + t + u = 2m2π + 2m2K in πK scattering Relative sizes of order p2, p2, p4,. . . can vary considerably

(24)

Expand in what quantities?

Expansion is in momenta and masses

But is not unique: relations between masses (Gell-Mann–Okubo) exists

Express orders in terms of physical masses and quantities (Fπ, FK)?

Express orders in terms of lowest order masses?

E.g. s + t + u = 2m2π + 2m2K in πK scattering Relative sizes of order p2, p2, p4,. . . can vary considerably

I prefer physical masses Thresholds correct

Chiral logs are from physical particles propagating

(25)

LECs

Some combinations of order p6 LECs are known as well:

curvature of the scalar and vector formfactor, two more combinations from ππ scattering (implicit in b5 and b6) General observation:

Obtainable from kinematical dependences: known Only via quark-mass dependence: poorely known

(26)

C i r

Most analysis use:

Cir from (single) resonance approximation

π π

ρ, S

→ q2

π

π |q2| << m2ρ, m2S

= ⇒

C

r i

Motivated by large Nc: large effort goes in this

Ananthanarayan, JB, Cirigliano, Donoghue, Ecker, Gamiz, Golterman, Kaiser, Knecht, Peris, Pich, Prades, Portoles, de Rafael,. . .

(27)

C i r

LV = 1

4hVµνV µνi + 1

2m2V hVµV µi − fV

2

2hVµνf+µνi

igV 2

2hVµν[uµ, uν]i + fχhVµ[uµ, χ]i LA = 1

4hAµνAµνi + 1

2m2AhAµAµi − fA

2

2hAµνfµνi LS = 1

2h∇µS∇µS − MS2S2i + cdhSuµuµi + cmhSχ+i Lη = 1

2µP1µP1 1

2Mη2P12 + i ˜dmP1i .

fV = 0.20, fχ = −0.025, gV = 0.09, cm = 42 MeV, cd = 32 MeV, d˜m = 20 MeV,

mV = mρ = 0.77 GeV, mA = ma1 = 1.23 GeV, mS = 0.98 GeV, mP1 = 0.958 GeV

fV , gV , fχ, fA: experiment

cm and cd from resonance saturation at O(p4)

(28)

C i r

Problems:

Weakest point in the numerics

However not all results presented depend on this

Unknown so far: Cir in the masses/decay constants and how these effects correlate into the rest

No µ dependence: obviously only estimate What we do/did about it:

Vary resonance estimate by factor of two

Vary the scale µ at which it applies: 600-900 MeV Check the estimates for the measured ones

Again: kinematic can be had, quark-mass dependence difficult

(29)

η → 3π

Reviews: JB, Gasser, Phys.Scripta T99(2002)34 [hep-ph/0202242]

JB, Acta Phys. Slov. 56(2005)305 [hep-ph/0511076]

η pη

π+pπ+ πpπ π0 pπ0

s = (pπ+ + pπ)2 = (pη − pπ0)2 t = (pπ + pπ0)2 = (pη − pπ+)2 u = (pπ+ + pπ0)2 = (pη − pπ)2 s + t + u = m2η + 2m2π+ + m2π0 ≡ 3s0 .

0π+πout|ηi = i (2π)4 δ4 (pη − pπ+ − pπ − pπ0) A(s, t, u) . hπ0π0π0out|ηi = i (2π)4 δ4 (pη − p1 − p2 − p3) A(s1, s2, s3) A(s1, s2, s3) = A(s1, s2, s3) + A(s2, s3, s1) + A(s3, s1, s2) ,

(30)

η → 3π: Lowest order (LO)

Pions are in I = 1 state =⇒ A ∼ (mu − md) or αem αem effect is small (but large via mπ+ − mπ0) η → π+ππ0γ needs to be included directly

(31)

η → 3π: Lowest order (LO)

Pions are in I = 1 state =⇒ A ∼ (mu − md) or αem

ChPT:Cronin 67: A(s, t, u) = B0(mu − md) 3√

3Fπ2



1 + 3(s − s0) m2η − m2π



(32)

η → 3π: Lowest order (LO)

Pions are in I = 1 state =⇒ A ∼ (mu − md) or αem

ChPT:Cronin 67: A(s, t, u) = B0(mu − md) 3√

3Fπ2



1 + 3(s − s0) m2η − m2π



with Q2mm22s− ˆm2

d−m2u or R ≡ mms− ˆm

d−mu m =ˆ 12(mu + md) A(s, t, u) = 1

Q2

m2K

m2π (m2π − m2K) M(s, t, u) 3√

3Fπ2 ,

A(s, t, u) =

√3

4R M (s, t, u)

(33)

η → 3π: Lowest order (LO)

Pions are in I = 1 state =⇒ A ∼ (mu − md) or αem

ChPT:Cronin 67: A(s, t, u) = B0(mu − md) 3√

3Fπ2



1 + 3(s − s0) m2η − m2π



with Q2mm22s− ˆm2

d−m2u or R ≡ mms− ˆm

d−mu m =ˆ 12(mu + md) A(s, t, u) = 1

Q2

m2K

m2π (m2π − m2K) M(s, t, u) 3√

3Fπ2 ,

A(s, t, u) =

√3

4R M (s, t, u) LO: M(s, t, u) = 3s − 4m2π

m2η − m2π

M (s, t, u) = 1 Fπ2

 4

3m2π − s



(34)

η → 3π beyond p 4 : p 2 and p 4

Γ (η → 3π) ∝ |A|2 ∝ Q−4 allows a PRECISE measurement Q ≈ 24 gives lowest order Γ(η → π+ππ0) ≈ 66 eV .

(35)

η → 3π beyond p 4 : p 2 and p 4

Γ (η → 3π) ∝ |A|2 ∝ Q−4 allows a PRECISE measurement Q ≈ 24 gives lowest order Γ(η → π+ππ0) ≈ 66 eV .

Other Source from m2K+ − m2K0 ∼ Q−2 =⇒ Q = 20.0 ± 1.5 Lowest order prediction Γ(η → π+ππ0) ≈ 140 eV .

(36)

η → 3π beyond p 4 : p 2 and p 4

Γ (η → 3π) ∝ |A|2 ∝ Q−4 allows a PRECISE measurement Q ≈ 24 gives lowest order Γ(η → π+ππ0) ≈ 66 eV .

Other Source from m2K+ − m2K0 ∼ Q−2 =⇒ Q = 20.0 ± 1.5 Lowest order prediction Γ(η → π+ππ0) ≈ 140 eV .

At order p4 Gasser-Leutwyler 1985: Z

dLIP S|A2 + A4|2 Z

dLIP S|A2|2

= 2.4 ,

(LIP S=Lorentz invariant phase-space)

Major source: large S-wave final state rescattering Experiment: 295 ± 17 eV (PDG 2006)

(37)

η → 3π beyond p 4 : Dispersive

Try to resum the S-wave rescattering:

Anisovich-Leutwyler (AL), Kambor,Wiesendanger,Wyler (KWW)

Different method but similar approximations Here: simplified version of AL

Up to p8: No absorptive parts from ℓ ≥ 2

=⇒ M(s, t, u) =

M0(s) +(s −u)M1(t) +(s −t)M1(t) +M2(t) +M2(u) − 2

3M2(s) MI: “roughly” contributions with isospin 0,1,2

(38)

η → 3π beyond p 4 : Dispersive

3 body dispersive: difficult: keep only 2 body cuts

start from πη → ππ (m2η < 3m2π) standard dispersive analysis analytically continue to physical m2η.

MI(s) = 1 π

Z

4m2π

ds ImMI(s) s − s − iε

ImMI(s) −→ discMI(s) = 1

2i (MI(s + iε) − MI(s − iε))

M0(s) = a0 + b0s + c0s2 + s3 π

Z ds s′3

discM0(s) s − s − iε , M1(s) = a1 + b1s + s2

π

Z ds s′2

discM1(s) s − s − iε , M2(s) = a2 + b2s + c2s2 + s3

π

Z ds s′3

discM2(s) s − s − iε .

(39)

η → 3π beyond p 4

• Technical complications in solving

• Only 4 relevant constants:

M (s, t, u) = a + bs + cs2 − d(s2 + tu)

M0(s) + 4

3M2(s) sM1(s) + M2(s) + s2 4L3 − 1/(64π2) Fπ2(m2η − m2π) converge better

c = c0 + 4

3c2 = 1 π

Z ds s′3

discM0(s) + 4

3discM2(s)

,

d = 4L3 − 1/(64π2)

Fπ2(m2η − m2π) + 1 π

Z ds

s′3 ˘sdiscM1(s) + discM2(s)¯

Fix a, b by matching to tree level or p4 amplitude

(40)

η → 3π beyond p 4

-0.5 0 0.5 1 1.5 2 2.5

1 2 3 4 5 6 7 8

Re M (KWW)

s/mπ2 tree

p4 dispersive

Along s = u KWW

-0.5 0 0.5 1 1.5 2 2.5

1 2 3 4 5 6 7 8

Re M (AL)

s/mπ2 Adler zero

Adler zero tree

p4 dispersive

Along s = u AL

(41)

η → 3π beyond p 4

-0.5 0 0.5 1 1.5 2 2.5

1 2 3 4 5 6 7 8

Re M

s/mπ2 p2 dispersive (match p2) dispersive (match (|M|) dispersive (match Re M)

Along s = u BG

Very simplified analysis

JB, Gasser 2002

looks more like AL

(42)

Two Loop Calculation: why

In Kℓ4 dispersive gave about half of p6 in amplitude

Same order in ChPT as masses for consistency check on mu/md

Check size of 3 pion dispersive part

At order p4 unitarity about half of correction Technology exists:

Two-loops: Amorós,JB,Dhonte,Talavera,. . . Dealing with the mixing π0-η:

Amorós,JB,Dhonte,Talavera 01

(43)

Two Loop Calculation: why

In Kℓ4 dispersive gave about half of p6 in amplitude

Same order in ChPT as masses for consistency check on mu/md

Check size of 3 pion dispersive part

At order p4 unitarity about half of correction Technology exists:

Two-loops: Amorós,JB,Dhonte,Talavera,. . . Dealing with the mixing π0-η:

Amorós,JB,Dhonte,Talavera 01

Done: JB, Ghorbani, arXiv:0709.0230 [hep-ph]

Dealing with the mixing π0-η: extended to η → 3π

(44)

Diagrams

(a) (b) (c) (d)

(a) (b)

(c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Include mixing, renormalize, pull out factor 4R3, . . . Two independent calculations (comparison major amount of work)

(45)

Dalitzplot

0.08 0.1 0.12 0.14 0.16

0.08 0.1 0.12 0.14 0.16

t [GeV2 ]

s [GeV2]

mpiav mpidiff u=t s=u t-threshold u theshold s threshold x=y=0

x variation:

vertical

y variation:

parallel to t = u

(46)

η → 3π: M(s, t = u)

-10 0 10 20 30 40

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

M(s,t,u=t)

s [GeV2] Li fit 10 and Ci

Re p2 Re p2+p4 Re p2+p4+p6 Im p4 Im p4+p6

Along t = u

-2 0 2 4 6 8

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

M(s,t,u=t)

s [GeV2] Li fit 10 and Ci

Re p6 pure loops Re p6 Lir Re p6 Cir sum p6

Along t = u parts

(47)

η → 3π: M(s, t = u)

-10 0 10 20 30 40

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

M(s,t,u=t)

s [GeV2] Li = Ci = 0

Re p2 Re p2+p4 Re p2+p4+p6 Im p4 Im p6

Along t = u Lri = Cir = 0

-10 0 10 20 30 40

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

M(s,t,u=t)

s [GeV2] Li fit 10 and Ci

Re p2+p4 µ= 0.6 GeV µ= 0.9 GeV Re p2+p4+p6 µ= 0.6 GeV µ= 0.9 GeV

Along t = u: µ dependence I.e. where Cir(µ) estimated

(48)

η → 3π: M(s = u, t)

-10 0 10 20 30 40

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

M(s,t,u=s)

s [GeV2] Re p2

Re p2+p4 Re p2+p4+p6 Im p4 Im p4+p6

Along s = u

Shape agrees with AL Correction larger:

20-30% in amplitude

(49)

Dalitz plot

x = √

3T+ − T

Qη =

√3

2mηQη (u − t) y = 3T0

Qη − 1 = 3 ((mη − mπo)2 − s)

2mηQη − 1 iso= 3

2mηQη (s0 − s) Qη = mη − 2mπ+ − mπ0

T i is the kinetic energy of pion πi z = 2

3

X

i=1,3

 3Ei − mη mη − 3m0π

2

Ei is the energy of pion πi

|M|2 = A20 1 + ay + by2 + dx2 + f y3 + gx2y + · · · 

|M|2 = A20 (1 + 2αz + · · · )

(50)

Experiment: charged

Exp. a b d

KLOE −1.090 ± 0.005+0.008−0.019 0.124 ± 0.006 ± 0.010 0.057 ± 0.006+0.007−0.016 Crystal Barrel −1.22 ± 0.07 0.22 ± 0.11 0.06 ± 0.04 (input)

Layter et al. −1.08 ± 0.014 0.034 ± 0.027 0.046 ± 0.031 Gormley et al. −1.17 ± 0.02 0.21 ± 0.03 0.06 ± 0.04

KLOE has: f = 0.14 ± 0.01 ± 0.02.

Crystal Barrel: d input, but a and b insensitive to d

(51)

Theory: charged

A20 a b d f

LO 120 −1.039 0.270 0.000 0.000

NLO 314 −1.371 0.452 0.053 0.027 NLO (Lri = 0) 235 −1.263 0.407 0.050 0.015 NNLO 538 −1.271 0.394 0.055 0.025 NNLOp (y from T0) 574 −1.229 0.366 0.052 0.023 NNLOq (incl (x, y)4) 535 −1.257 0.397 0.076 0.004 NNLO (µ = 0.6 GeV) 543 −1.300 0.415 0.055 0.024 NNLO (µ = 0.9 GeV) 548 −1.241 0.374 0.054 0.025 NNLO (Cir = 0) 465 −1.297 0.404 0.058 0.032 NNLO (Lri = Cir = 0) 251 −1.241 0.424 0.050 0.007

dispersive (KWW) −1.33 0.26 0.10 tree dispersive −1.10 0.33 0.001 absolute dispersive −1.21 0.33 0.04

error 18 0.075 0.102 0.057 0.160

NLO to NNLO:

Little change

Error on

|M(s, t, u)|2:

|M(6) M (s, t, u)|

(52)

Experiment: neutral

Exp. α

KLOE 2007 −0.027 ± 0.004+0.004−0.006 KLOE (prel) −0.014 ± 0.005 ± 0.004

Crystal Ball −0.031 ± 0.004 WASA/CELSIUS −0.026 ± 0.010 ± 0.010

Crystal Barrel −0.052 ± 0.017 ± 0.010 GAMS2000 −0.022 ± 0.023

SND −0.010 ± 0.021 ± 0.010

A20 α

LO 1090 0.000

NLO 2810 0.013

NLO (Lri = 0) 2100 0.016

NNLO 4790 0.013

NNLOq 4790 0.014

NNLO (Cir = 0) 4140 0.011 NNLO (Lri = Cir = 0) 2220 0.016

dispersive (KWW) −(0.007—0.014) tree dispersive −0.0065 absolute dispersive −0.007

Borasoy −0.031

error 160 0.032

Note: NNLO ChPT gets a00 in ππ correct

(53)

α is difficult

Expand amplitudes and isospin:

M (s, t, u) = A 

1 + ˜a(s − s0) + ˜b(s − s0)2 + ˜d(u − t)2 + · · ·  M (s, t, u) = A 

3 + ˜b + 3 ˜d 

(s − s0)2 + (t − s0)2 + (u − s0)2

+ · · Gives relations (Rη = (2mηQη)/3)

a = −2Rη Re(˜a) , b = Rη2 

|˜a|2 + 2Re(˜b)

, d = 6Rη2 Re( ˜d) . α = 1

2Rη2 Re ˜b + 3 ˜d = 1

4 d + b − R2η|˜a|2 ≤ 1 4



d + b − 1 4a2



equality if Im(˜a) = 0

Large cancellation in α, overestimate of b likely the problem

(54)

r and decay rates

sin ǫ = 4R3 + O(ǫ2)

Γ(η → π+ππ0) = sin2 ǫ · 0.572 MeV LO , sin2 ǫ · 1.59 MeV NLO , sin2 ǫ · 2.68 MeV NNLO ,

sin2 ǫ · 2.33 MeV NNLO Cir = 0 , Γ(η → π0π0π0) = sin2 ǫ · 0.884 MeV LO ,

sin2 ǫ · 2.31 MeV NLO , sin2 ǫ · 3.94 MeV NNLO ,

sin2 ǫ · 3.40 MeV NNLO Cir = 0 .

(55)

r and decay rates

r ≡ Γ(η → π0π0π0) Γ(η → π+ππ0)

rLO = 1.54 rNLO = 1.46 rNNLO = 1.47 rNNLO Cir=0 = 1.46 PDG 2006

r = 1.49 ± 0.06 our average . r = 1.43 ± 0.04 our fit ,

Good agreement

(56)

R and Q

LO NLO NNLO NNLO (Cir = 0)

R (η) 19.1 31.8 42.2 38.7

R (Dashen) 44 44 37

R (Dashen-violation) 36 37 32

Q (η) 15.6 20.1 23.2 22.2

Q (Dashen) 24 24 22

Q (Dashen-violation) 22 22 20

LO from R = m2K0 + m2K+ − 2m2π0

2 m2K0 − m2K+ (QCD part only)

NLO and NNLO from masses: Amorós, JB, Talavera 2001

Q2 = ms + ˆm

2 ˆm R = 12.7R (ms/ ˆm = 24.4)

(57)

η → ηππ and η → 3π

η decays: add a φ0 degree of freedom to the usual ChPT

Witten, DiVecchia, Veneziano, Schechter, Rosenzweig,. . .

Write the most general U (3)L × U(3)R invariant Lagrangian as a function of:

√2φ0

F + θ and U = ei

√2φ0/F ei√

2M/F with U → gRU gL

(58)

η → ηππ and η → 3π

η decays: add a φ0 degree of freedom to the usual ChPT

Witten, DiVecchia, Veneziano, Schechter, Rosenzweig,. . .

Write the most general U (3)L × U(3)R invariant Lagrangian as a function of:

√2φ0

F + θ and U = ei

√2φ0/F ei√

2M/F with U → gRU gL

Most general lagrangian: very many terms: Fi

√2φ0

F + θ

!

Order p2, mq: 5 functions (Gasser-Leutwyler)

Order p4, mqp2, m2q: 57 functions (Herrera-Siklody et al.)

(59)

η → ηππ and η → 3π

Need something more

(60)

η → ηππ and η → 3π

Need something more

Large number of colours: large Nc In this limit: µA = mqP + ω

O(Nc) O(Nc) O(1)

(61)

η → ηππ and η → 3π

Need something more

Large number of colours: large Nc In this limit: µA = mqP + ω

O(Nc) O(Nc) O(1)

So we CAN treat ω as a perturbation

=⇒ Basis of all the large Nc Chiral lagrangian predictions for η

(62)

η → ηππ and η → 3π

BUT some problems remain:

There are large ππ rescatterings possible in the S-wave channel (1/Nc suppressed but sizable) =⇒ “σ”

ρ and ω are present in the final states =⇒ obvious need to go beyond ChPT

(63)

η → ηππ and η → 3π

BUT some problems remain:

There are large ππ rescatterings possible in the S-wave channel (1/Nc suppressed but sizable) =⇒ “σ”

ρ and ω are present in the final states =⇒ obvious need to go beyond ChPT

Experiment will provide needed clues to go beyond ChPT

(64)

η → ηππ and η → 3π

BUT some problems remain:

There are large ππ rescatterings possible in the S-wave channel (1/Nc suppressed but sizable) =⇒ “σ”

ρ and ω are present in the final states =⇒ obvious need to go beyond ChPT

Experiment will provide needed clues to go beyond ChPT

Some attempts at resummation exist: e.g. Beisert, Borasoy, Nissler

(65)

η → ηππ and η → 3π

Both decays have different sources in the Chiral Lagrangian L = F2

4 hDµU DµUi + F2

4 hχU + U χi − 1

2m20φ20

(1) (2)

References

Related documents

➠ with the lower degrees of freedom, build the most general effective Lagrangian..

So Luckily: can use the n flavour work in ChPT at two loop order to obtain for PQChPT: Lagrangians and infinities Very important note: ChPT is a limit of PQChPT. =⇒ LECs from ChPT

A mesonic ChPT program framework Determination of LECs in the continuum Charged Pion Polarizabilities Finite volume

Older reviews Model independent ChPT η → 3π in ChPT η → π 0 γγ Conclusions. C

Chiral Perturbation Theory Determination of LECs in the continuum Hard pion ChPT Beyond QCD Leading logarithms.. CHIRAL PERTURBATION THEORY

These are the last fit of the order p 4 low-energy-constants L r i to data, hard pion ChPT, the recent two- loop work on EFT for QCD like theories and the high order leading

The main part is devoted to vector two-point functions where we discuss results for the disconnected and strange quark contributions and finite volume corrections at two-loop

We demonstrate the use of several code implementations of the Mellin-Barnes method available in the public domain to derive analytic expressions for the sunset diagrams that arise