• No results found

Spatial complexity and fit between ecology and management: Making sense of patterns in fragmented landscapes

N/A
N/A
Protected

Academic year: 2021

Share "Spatial complexity and fit between ecology and management: Making sense of patterns in fragmented landscapes"

Copied!
30
0
0

Loading.... (view fulltext now)

Full text

(1)

Spatial  complexity  and  fit  between  ecology  and  management Making  sense  of  patterns  in  fragmented  landscapes

Arvid  Bergsten

Doctoral  thesis  in  Natural  Resource  Management Stockholm  Resilience  Centre

Stockholm  2013

(2)

Doctoral  dissertation  2014 Stockholm  Resilience  Centre Stockholm  University SE-­‐106  91  Stockholm,  Sweden

©  Arvid  Bergsten

ISBN  978-­‐91-­‐7447-­‐834-­‐1,  pages  1-­‐30 Cover  illustration:  Concetta  Flore  

Printed  by  Universitetsservice  US-­‐AB  in  Stockholm  2013

Paper  1,  2  and  3  are  reprinted  with  permission  from  the  publisher

(3)

Abstract

Avoiding  the   negative  effects   of  habitat  fragmentation   on   biodiversity   is   especially   challenging  when   also  the   management  institutions   are   spatially  and  administratively   distributed.  This   doctoral   thesis   introduces   five   case   studies   that   investigate   ecological,  social   and   social-­‐ecological   relations   in   frag-­‐

mented  landscapes.  I  present  new  approaches  in  which   research  and  governance  can  detect  and  man-­‐

age  mismatches  between  landscape  ecology  and  planning.  The  case  studies  include  urban  and  forested   landscapes  where  an  intense  land-­‐use  is  limiting  the  connectivity,  i.e.,  the  potential  for  many  species  to   disperse   between   the  remaining  patches   of   habitat.   Graph-­‐theoretic  (network)  models   are  applied   to   map  connectivity  patterns  and  to  estimate  the  outcome  for  dispersing  species  at  the  patch  level  and  for   the  whole  study  system.  In  particular,  the  network  models  are  applied  to  evaluate  the  spatial  complex-­‐

ity  and  the  potential  mismatches  between  ecological  connectivity  and  geographically  distributed  man-­‐

agement   institutions   like   protected   areas   and   municipalities.   Interviews   with   municipal   ecologists   complement  the  spatial  analysis;  revealing  some   problems  and  ways  forward  regarding  the   communi-­‐

cation  and  integration  of  ecological  knowledge  within  local  spatial-­‐planning  agencies.  The  results   also   show   that   network   models   are   useful   to   identify   and   communicate   critical   ecological   and   social-­‐

ecological  patterns  that  call  for  management  attention.  I  suggest  some  developments  of  network  mod-­‐

els   as   to   include   interactions   between   species   and   across   governance   levels.   Finally,  I  conclude   that   more  effort  is  needed  for  network  models  to  materialize  into  ecological  learning  and  transformation  in   management  processes.

Keywords:   Connectivity;  Conservation;   Dispersal;   Ecological   knowledge;   Ecology;   Forest;   Fragmenta-­‐

tion;   Graph   theory;   Institutional   fit;  Landscape;   Management;   Metapopulation;   Municipal   ecologist;  

Network;  Planning;  Protected  area;  Scale  mismatch;  Social-­‐Ecological;  Urban;  Wetland

(4)

Populärvetenskaplig  sammanfattning

Växelverkan  mellan  människan  och  andra  arter  skapar  komplexa  mönster  i  landskapet.  Arters  utbred-­‐

ning  beror  på  var  de  finner  livsmiljöer  (habitat)  och  spridningsmöjligheter.  Spridning  mellan  habitat-­‐

fläckar  skapar  mönster  av  "konnektivitet",  vilket  avgör  var  vi  påträffar  många  arter  och  som  är  nödvän-­‐

digt  för  arters  långsiktiga  överlevnad  i  fragmenterade  landskap.  Människan  omformar  konnektiviteten   när  vi  bygger  städer  eller  skördar  mat  och  material.  Dessa  aktiviteter  är  utspridda,  genom  människors   direkta  användning  av  landskapet,  och  indirekt  genom  samarbete  mellan  t  ex  kommuner,  bönder  eller   skogsägare.  Förlusten  och  fragmenteringen  av  sammanhängande  livsmiljöer  till  avskilda  habitatfläckar   är  det  största  hotet  mot  världens  biologiska  mångfald  och  tillgång  på  ekosystemtjänster.  Vi  måste  där-­‐

för  se  till  att  de  livsmiljöer  som  återstår  –  eller  som  återskapas  –  utnyttjar  den  begränsade  ytan  på  ett   sätt  som  är  rumsligt  effektivt.  Detta  innebär  att  naturresurserna  hålls  tillgängliga  både  för  människan   och  för  arter  som  behöver  spridas  för  att  överleva.  

I  doktorsavhandlingen  "Spatial  complexity  and  fit  between  ecology  and  management:  Making  sense  of   patterns  in  fragmented  landscapes"  studeras  olika  samband  mellan  landskapsplanering  och  arters  kon-­‐

nektivitet  i  fragmenterade  landskap.  Denna  forskning  bygger  på  att  hotade  arter  kan  skyddas  om  vi  tar   fram  verktyg  för  att  kartlägga  platser  och  strukturer  i  landskapet  som  är  kritiska  för  arternas  spridning,   och  sedan  tillämpar  sådan  kunskap  i  landskapsplaneringen.  Författaren  presenterar  fem  uppsatser  som   studerar  såväl  enskilda  arter  som  artgrupper,  och  som  undersöker  landskapsförvaltning  i  form  av  om-­‐

rådesskydd  och  kommuners  fysiska  planering.  Avhandlingen  tar  fram  ny  kunskap  som  är  användbar  i   både  forskning  och  planering,  samt  utforskar  hinder  och  metoder  för  ett  ökat  utbyte  mellan  de  två  sfä-­‐

rerna.

I  ett  norrländskt  skogslandskap  tillämpas  nätverksmodeller  av  konnektivitet  för  att  förklara  förekoms-­‐

ten  av  sorkar  och  för  att  utvärdera  hur  produktionsskog  och  olika  områdesskydd  kompletterar  varand-­‐

ra.  I  Stockholmsregionen  tillämpas  en  nätverksmodell  av  våtmarker  och  mellankommunala  samarbe-­‐

ten.  Baserat  på  en  arts  spridningsavstånd  och  avståndet  mellan  habitatfläckar,  kan  nätverksanalys  påvi-­‐

sa  kritiska  områden  samt  jämföra  olika  landskap  eller  scenarier.  Nätverksmodellerna  tillämpas  i  analy-­‐

sen  på  nya  sätt  för  att  undersöka  hur  konnektiviteten  klaffar  med  planeringsområden  i  det  "administra-­‐

tiva  landskapet".  Problem  kan  uppstå  till  exempel  om  funktionen  hos  en  våtmark  i  kommun  A  är  bero-­‐

ende  av  konnektivitet  till  våtmarker  i  kommun  B,  fast  kommunerna  saknar  dialog  om  våtmarker  och   om  sin  respektive  planering.  Resultaten  visar  också  att  vissa  arter  kan  nå  fram  till  värdefulla  skogar  i   naturreservat  genom  att  sprida  sig  via  nyckelbiotoper  och  äldre  produktionsskogar.    

Nätverksanalyserna  kompletteras  av  intervjuer  med  kommunekologer  om  hur  ekologisk  kunskap  kan   produceras  och  kommuniceras  bättre  inom  fysisk  planering.  Resultaten  visar  att  kommunerna  saknar   systematiska  verktyg  för  att  förstå  och  hantera  konnektivitet  i  landskapet,  särskilt  över  kommungrän-­‐

ser  där  mer  samarbete  krävs.  Nätverksmodellen  sågs  som  ett  kraftfullt  verktyg  av  tjänstemän  som  hade   testat  ett  datorprogram  skräddarsytt  för  planering.  Vidare  visar  intervjuerna  vilka  områden  av  ekolo-­‐

gisk  kunskap  som  kommunekologerna  framhäver  i  planeringsdiskussioner.  Lättast  har  de  att  förmedla   naturens  betydelse  för  människan  och  minst  förståelse  möter  de  för  sin  kunskap  om  arter  och  ekosy-­‐

stemens  dynamik  och  komplexitet.  Intervjuresultaten  betonar  att  planeringens  lärandeprocesser  och   anpassning  till  det  lokala  ekosystemet  förbättras  om  kommunekologer  verkar  inom  planeringsgrup-­‐

perna,  i  motsats  till  när  "färdigproducerad"  kunskap  tas  in  utifrån,  inte  minst  vad  gäller  nätverksanaly-­‐

ser  av  arters  spridningsmöjligheter.  Slutligen  föreslås  ny  forskning  om  hur  nätverksmodellen  kan  in-­‐

kludera  interaktioner  mellan  arter  och  mellan  aktörer  på  lokal  och  regional  nivå.

(5)

List  of  papers

1. Magnusson  M,  Bergsten  A,  Ecke  F,  Bodin  Ö,  Bodin  L  &  Hörnfeldt  B  (2013).  Predicting  grey-­‐

sided  vole  occurrence  in  northern  Sweden  at  multiple  spatial  scales.  Ecology  and  Evolution   3:4365–4376.

2. Bergsten  A,  Bodin  Ö  &  Ecke  F  (2013).  Protected  areas  in  a  landscape  dominated  by  logging  –  A   connectivity  analysis  that  integrates  varying  protection  levels  with  competition–colonization   tradeoffs.  Biological  Conservation  160:279–288.

3. Bergsten  A  &  Zetterberg  A  (2013).  To  model  the  landscape  as  a  network:  A  practitioner’s  per-­‐

spective.  Landscape  and  Urban  Planning  119:35–43.

4. Bergsten  A.  Communicating  ecology  in  local  planning  –  the  role  of  embedded  ecologists.  Manu-­‐

script.

5. Bergsten  A,  Galafassi  D  &  Bodin  Ö.  The  problem  of  fit  in  social-­‐ecological  systems:  Detecting   spatial  mismatches  between  ecological  connectivity  and  land  management  in  an  urban  region.  

In  review  in  Ecology  and  Society.

My  contributions  to  the  papers

For  all  papers  I  developed  the  research  design  and  performed  the  analysis  in  collaboration  with  the  co-­‐

authors.  I  led  the  writing  of  all  papers  except  paper  1,  to  which  I  contributed  mainly  with  the  habitat   mapping,  fieldwork,  connectivity  analysis  and  manuscript  preparation.  

(6)

Table  of  contents

1. Introduction   7

1.1. The  spatial  relation  of  ecology  and  governance  patterns   7 1.2. Understanding  mismatches  through  spatially  explicit  models   8 1.3. Connecting  landscape  research  and  management   8

1.4. Aim  and  research  questions   9

Scope  of  papers

2. Background   10

2.1. Connectivity  and  landscape  change   10

Land-­‐use  change  drives  habitat  fragmentation Connectivity  and  landscape  planning

Metapopulation  theory Dynamic  landscapes

The  graph  model  of  connectivity

2.2. Empirical  background  to  the  case  studies   12 Conservation  and  change  in  boreal  forests  (Q1)

Wetlands  in  an  urban  region  (Q3)

Municipal  spatial  planning  and  coordination  (Q2+3)

Ecologists  and  knowledge  in  municipal  planning  practice  (Q2)

3. Methods   15

3.1. Methods  for  data  collection   15

3.2. Methods  for  data  analysis   16

Qualitative  data  analysis  (QDA) Spatial  analysis  using  GIS

Graph-­‐theoretic  analysis  of  connectivity

Using  the  IIC  measure  to  study  connectivity  and  fit

4. Results  and  discussion  of  the  papers   18

5. Future  research   23

6. Conclusions  for  governance   26

Acknowledgements   26

References   27

(7)

1. Introduction

Systems   approaches   such   as   ecosystem-­‐based   man-­‐

agement   state   that   natural   resource   management   should   recognize   interactions   in   ecosystems,   rather   than  focusing  on  single  components  in  isolation  (e.g.,   Christensen  et  al.  1996).  A  species’  role  in   an  ecosys-­‐

tem  can  be   seen   in  several   dimensions,  for  example,   through   its   interaction   with  other   species   in   a  local   community   (e.g.,   Montoya   et   al.   2006;   Dyer   et   al.  

2010);   through   its   interactions  with   the   abiotic  envi-­‐

ronment   (e.g.,   Chapin   &   Shaver   1996;   Jones   et   al.  

1994;  Lawrence  et  al.  2012);  or  through  its  importance   for  human  societies  (e.g.,  Cardinale  et  al.  2012;   Con-­‐

stanza   et   al.   1997;   Naeem   et   al.   2009).   Another   di-­‐

mension  is  the  species  distribution,  and  how  this  de-­‐

pends   on   the   species’   interaction   with   the   distribu-­‐

tion   of   resource   (habitat)   patches.   The   spatial   con-­‐

figuration   of   habitat   affects   the   functioning   of   indi-­‐

vidual  patches  and   the   local   species  populations   liv-­‐

ing  there,  as  well  as  it  affects  the  system-­‐level  proper-­‐

ties  on  a  metapopulation,  landscape  or  seascape  level   (Hanski   1998).   A   greater   distance   between   two   patches   generally   means   a   weaker   connection   in   terms   of   organism   movement,   flows   of   energy   and   nutrients,   exchange   of   genetic   material,   and   other   processes.  

Ecological   processes   across   space   create   a   connec-­‐

tivity   pattern   whose   complexity   increases   exponen-­‐

tially   with   the   spatial   scale   of   observation   (Levin   1992).  Connectivity  is   thus  the  outcome  of   the   inter-­‐

action   between  an   organism’s   behavior   and  the   spa-­‐

tial  distribution  of  relevant  landscape  features  (Taylor   et   al.   1993).   A   patch-­‐connectivity   perspective   can   support  the  evaluation   of   ecosystem   complexity   and   of  structure–function  relationships  (Fortin  et  al.  2003;  

Pickett   et  al.   2005).   Important   interactions   exist   on   specific  spatial  (or   temporal)   scales  as   well   as  across   scales  (e.g.  Holling  1992;  Olff  &  Ritchie  2002).  Spatial   processes   have,   just   like   local   multitrophic   interac-­‐

tions,  the  potential   to   generate   nonlinear   effects   on   biodiversity   and   on   ecosystem   functioning   .   Cross-­‐

scale   interactions   involve   elements   or   functions   on   more  than  one  level  of  ecological  organization,  which   may   produce   unexpected   effects   at   scales   larger   or   smaller  than  the  observation  scale.  For  example,  the  

loss  of  a  few  critical  habitat  patches  may  cause  a  spe-­‐

cies   to   vanish  from  an  entire  landscape,  and  a  slight   general  population  decline  may  produce  local  extinc-­‐

tions.

1.1. The spatial relation of ecology and governance patterns

In  order  to  have  the  capacity  to  avoid  harmful  spatial   mismatches,  ecosystem-­‐based   management  must  A)   operate  on   a  spatial   scale   large  enough   to   deal  with   those  ecological  processes  and  functions  that  are  con-­‐

sidered  important,   and   B)  be  capable  to   learn   about   such   processes   and   the   related   cross-­‐scale   interac-­‐

tions  in  a  way  that  is  useful  to  the  governance  system   and  to  society.  Hence,  applying  a  large-­‐scale  perspec-­‐

tive   is   often   necessary,   but   with   large   scales   comes   the   problem  that  spatial   compositions   become  more   difficult   to   understand  and  manage,  as   the   potential   complexity  skyrockets.  

In   addition,  the  number  of   potential   spatial  interac-­‐

tions   multiplies   when   we   take   into   account   the   ar-­‐

rangement  of  spatially  distributed   actors.  Actors  are   often  interconnected  by  various  socioeconomic  proc-­‐

esses  (e.g.,  Pickett  et  al.  2005);  and  linked  to   natural   resources,   as   emphasized   by   the   social-­‐ecological-­‐

systems   perspective   (SES;  Folke   2006).  The  manage-­‐

ment  of  most  ecosystems   operates  within  the   spatial   subdivisions   delimited  primarily  by   the   jurisdictions   from  local  up  to  multinational  governance  levels,  and   secondarily   by   the   individual   actors'   planning   and   implementation  of   management  actions  within  their   respective   areas   of   operation.   Mismatches   between   ecological   and   administrative  patterns   lead   to   prob-­‐

lems   for   the   social   system   responsible   for   manage-­‐

ment   and/or   for   the   ecological   systems   being   man-­‐

aged  (Berkes  2006;  Borowski  et  al.  2008;  Brondizio   et   al.  2009;  Brown   2003;  Cumming   et  al.  2006;  Folke  et   al.  1997,   2007;   Guerrero   et   al.   2013;   Young   2002).   It   may   cause   local   loss   of   system   elements   and  disrupt   or   inhibit   system   functions,   like   self-­‐maintenance,   nutrient   cycles,   dispersal   processes   or   provision   of   ecosystem   services   (Cumming   et   al.   2006;   Levin   1999).  

(8)

1.2. Understanding mismatches through spatially explicit models

This   thesis   recognizes   that   long-­‐term   solutions   to   spatial   mismatches   will   depend   on   the   capacity   of   managing   actors   and   agencies   to   identify   spatially   explicit   ecological   dependencies   (patterns   and   proc-­‐

esses),  to  understand  their  causes  and  consequences,   and   to   accordingly   adjust   their   policy   and   manage-­‐

ment  practices  at  appropriate  scales.  During  my  PhD   I   have  received   response   from  practitioners   at  local,   regional  and  national  governance  agencies  (mainly  in   Sweden)  and  from  researchers  and  forest  companies;  

indicating   a   large   and   relatively   unrealized   learning   potential  in  heuristic  modeling  tools  that  help  institu-­‐

tions  to  learn  about  spatial  ecological  patterns,  and  to   manage   them   so   harmful   social-­‐ecological   mis-­‐

matches  can  be  avoided.  

To  be  effective  for  learning  and  management,  I  argue,   such  model  should  fulfill  two  criteria.  It  should  1)  rep-­‐

resent   ecological   connectivity   in   a   valid   way   and  2)   promote   cognition   and/or   communication   for   the   practitioners   or   researchers   that  apply  the  model   or   use   the   results.   System   models   typically   exhibit   a   general   tradeoff   between  the  two   criteria.   While   the   inclusion  of  more  variables,  interactions  and  dynam-­‐

ics   can  achieve  a   more  realistic  model  of  system  be-­‐

havior;   it   also   involves   additional   sources   of   errors   and  biases   and  a  more   costly  estimation  of   parame-­‐

ters   and  state  variables  (Ascough  et  al.  2008;  Perz   et   al.  2013).  Furthermore,  a  more  complex  model  usually   demands   a  higher   competence   for   using   the   model,   and  it  tends  to  be  less  versatile  in  terms  of  robustness   and   applicability   to   different   case   contexts.   In   con-­‐

trast,    reducing   the  model  complexity  may  make  the   model  more  flexible  to  varying  cases,  and  the  outputs   more  intelligible  to  diverse  users.  However,  a  simpler   model  may   fail   to   adequately   predict  and   represent   the  system  due  to  the  simplifications  of  key  processes   that  affect  real-­‐world  complexity  (Nihoul  1994).  Find-­‐

ing  this  model  balance  is   even   more  difficult  for  ap-­‐

plication   in  multilayered  governance  system.  For   ex-­‐

ample,  while  models  used  in  conservation  planning  at   the   regional  scale  may   effectively   deal   with  comple-­‐

mentarity   and   connectivity   of   protected   areas,   they   often   fail   to   inform   local   management   actions   in   a  

useful   way   (Mills   et  al.  2010).  Hence,  reflecting   over   the  spatial  scales  of  policy  and  practice  is  essential  for   the   development   of   socially   functional   ecological   models.

This  thesis   specifically  explores   the   potential  of  con-­‐

nectivity   graph   (abbreviated   “CG”   in   this   text;   the   graph-­‐theoretic   model   of   spatial   connectivity   is   ex-­‐

plained  in  the  methods  chapter).  It  is  argued  that  this   type  of  model  balances  the  tradeoff  between  criteria  1   and  2  above  in  a  way  that  captures  spatial  ecological   complexity   relevant  for  evaluating   management  sce-­‐

narios  (Bodin  &  Norberg  2007;  Bunn  et  al.  2000;  Cal-­‐

abrese  &  Fagan  2004;  Keith  et  al  1997;  Laita  et  al.  2011;  

Minor   &   Urban   2008;   Pascual-­‐Hortal   &   Saura   2006;  

Rayfield   et  al.   2011.)   The   CG   provides   a  quantitative   modeling   framework   to   evaluate   ecological   function   at   multiple   levels   of   ecological   organization,   from   nodes  (e.g.,  patches)  to  graph  components  (groups  of   connected  patches,  to  the  whole  graph  (all  patches  in   the  study  system).  It  is  a  robust  model  given  the  rela-­‐

tively  low   demands  on  data  (Urban  et  al.  2009).  This   thesis  will  later  outline  how  I  used  the  CG  to  evaluate   ecological   and   social-­‐ecological   spatial   patterns,   in   three  large  study  areas  comprising  up  to  20,000  habi-­‐

tat  patches.

1.3. Connecting landscape research and management

My  PhD  research  builds  on  the  belief   that  landscape   research  and  management  mutually  benefit  from  in-­‐

teracting   with  each   other.   Research   helps   landscape   management  and  planning  to  sustain  ecological  func-­‐

tioning  by  developing  applied  and  conceptual  knowl-­‐

edge   and   assessment   tools.   Management   practice   helps   academic   research   by   signaling   problems,   by   evaluating   the   usability  of   solutions  proposed  by   re-­‐

searchers,  and  by  helping  research  to   pose  questions   important   beyond  academia.  However,   the   different   agendas   that   drive   the   two   spheres   do   not   always   stimulate  interaction.  Practitioners  generally  concen-­‐

trate  on   meeting   the   demands   of   end  users   such   as   urban  dwellers  (in  the  case  of  urban  planning)  or  for-­‐

est  owners  (in  the  case  of  forestry),  while  simultane-­‐

ously   trying   to   take   in   advice   regarding   landscape  

(9)

ecology   and  sustainability   in  general   from   scientists   and   policy-­‐makers.   Landscape   researchers,   on   the   other  hand,  often  concentrate  on  the  ecological  func-­‐

tion  of  a   species   or  a  local  community,  with   pristine   environments  in  focus  or  as  benchmark,  disregarding   the   human   domination   of   most   landscapes   (Ellis   &  

Ramankutty   2008).  The  papers   in  this  thesis  seek   to   contribute  to   the  research   as  well  as  to   the  manage-­‐

ment   of   landscapes,  by   developing  and   applying   ap-­‐

proaches  that  connects  the  two  spheres.  

1.4. Aim and research questions

The  aim  of  this   thesis  is  to  improve  the  understand-­‐

ing  of  complexity  of  social-­‐ecological  landscapes,  in  a   way   that   advances   the  research   as   well   as   the   man-­‐

agement  of   landscapes,  and  that  facilitates  the   inter-­‐

action  between  the  two   spheres.  In  paper  1,  2  and  5  I   use  connectivity  graphs  (CGs)  to  capture  complexity   with  respect  to  ecological  interactions  and  to   admin-­‐

istrative  arrangements,  with  the  intention  to  produce   results  useful  and  intelligible  to  management  institu-­‐

tions,  but  also   to   point  out  some   needs   for   further   development   of   spatially   explicit   ecosystem   models.  

Paper  3  and  4   are  based  on  interviews  with  practitio-­‐

ners  in  which  I  investigate  the  factors  that  make  eco-­‐

logical   knowledge   useful   in   municipal   spatial-­‐

planning  practice;  in  a  way  that  I  hope  contributes  to   the   salience   and   adaption   of   landscape-­‐ecological   knowledge  in  decision  and  policy  making.  To  sum  up,   the  five  papers  connect  the  three  thesis  questions  on   the  right  hand  side.  

Scope  of  papers

Table   1   shows   how   the  papers   focus   different   thesis   questions.  Paper  1  tackles  Q1  by  studying  connectivity   in  combination  with  other  ecological  factors  that  hy-­‐

pothetically  predict  occurrence  of  the  grey-­‐sided  vole   (Myodes  rufocanus)  in  Swedish  boreal  forests.  Paper  2   links  the  concept  of   habitat  connectivity  to   the   spe-­‐

cies'   tradeoff   in   colonization–competition   ability,   through  differentiating  the  ways  whereby  mature  for-­‐

est  patches   contribute  to   the   total   connectivity  of   a   habitat   network.   Paper   2   also   addresses   Q3   by   the  

way  our  analysis  differentiates  between  forest  patches   prioritized  for  wood  production,  versus   for   biodiver-­‐

sity   through   multiple   area-­‐protection   institutions.  

Paper  3  approaches  Q2  by  studying  the  consideration   of   ecological   connectivity   in   the   spatial-­‐planning   process   of   municipalities   in   the   Stockholm   region,   and  by   examining   the   pros   and   cons   that  practitio-­‐

ners   see  with  using  a   CG   software  tool  to  assess   and   communicate   connectivity   in   planning   discussions.  

Paper  4  investigates  these  municipal  ecologists'  tech-­‐

niques   and   difficulties   when   trying   to   integrate   di-­‐

verse  ecological   knowledge   in   the   planning   process.  

Paper   5   researches   Q3   by   localizing   mismatches   ay   municipal   boundaries   between  wetland  connectivity   and  collaboration  regarding  wetland  management.

Table  1.  Main  focus  of  the  five  papers.

Thesis  Ques)ons Thesis  Ques)ons Thesis  Ques)ons

Q1 Q2 Q3

Paper  1 Paper  2 Paper  3 Paper  4 Paper  5

Q1. How  can  CGs  further  our  understanding  of   diverse  ecological  processes,  in  a  way  that  is   meaningful  for  conservation  and  landscape   planning?

Q2. How  is  ecological  knowledge  in  general  and   in  particular  about  connectivity  communi-­‐

cated  by  municipal  practitioners  and  re-­‐

ceived  in  the  local  planning  process?

Q3. How  can  CG  models  of  the  match  between   ecological  connectivity  and  spatially  dis-­‐

tributed  governance  institutions  enhance   the  knowledge  about  social-­‐ecological  fit   and  improve  landscape  planning?

(10)

2. Background

This  chapter  provides  some  theoretical  and  empirical   background  to  the  papers  presented  in  chapter  4.

2.1. Connectivity and landscape change

Several   of   the   papers   study   ecological   connectivity.  

This   section   introduces   some   different   perspectives   on  connectivity  and  related  research  fields.

Land-­‐use  change  drives  habitat  fragmentation As  the  world’s  population  has  increased  we  have  seen   an  intensified  use  of   land  and  water  areas.  Urbaniza-­‐

tion  and  the  increased  production  of  food  and  mate-­‐

rials   drives   landscape   fragmentation,   which   alters   abiotic  processes   (Saunders   et  al.  1991)  and  increases   the  loss  and  isolation  of  many  habitat  types  (Bogaert   et  al.  2005).  As   a   response,   92   countries  so   far   have   signed   the   Nagoya   protocol   aiming   to   decrease   the   loss  of  ecosystem  functions  and  services  by  protecting   at  least  17%  of  their  respective  land  area  in  “well  con-­‐

nected   systems”   (in   combination   with   other   meas-­‐

ures;   Aichi   Biodiversity   Target   #11,   CBD   Secretariat   2010).  Many  of  these  ecosystem  services  are  sustained   by  species  whose  survival,  reproduction  and  mobility   are  impinged  by   habitat   fragmentation,  i.e.,   the   loss   of  connectivity  between  resource  patches  (Debinski  &  

Holt  2000;  Ewers  &  Didham  2006;  Fahrig  2003;  Frank-­‐

lin   et   al.   2002;   Foley   et   al.   2005;   Lindenmayer   &  

Fischer   2006;  Pimm   &   Raven   2000).  The  risk   of   re-­‐

gional  species  extinction  accelerates  when  the  habitat   area  fall  below   10-­‐30%  of  the  historical  coverage  (de-­‐

pending   on   the   species'   area   requirements;   Andrén   1994,  1997;  cf.  Betts  2006;  Fahrig  2002;  Radford  et  al.  

2005).  

Connectivity  and  landscape  planning

What   spatial   configurations   of   habitat   patches   are   then   desirable  given   a   limited  total   area   of   habitat?  

Connectivity   is   commonly   defined   as   the   degree   to   which   the   landscape   facilitates   or   impedes   the   movement  of  species  among   resource  patches  and  is  

thus   an  outcome   of   an  organism’s   behavior  in   inter-­‐

action   with   the   distribution   of   landscape   features   (Merriam  1984;  Taylor   et  al.  1993;  Wiens  1989).  Con-­‐

nectivity  can  be  managed  and  protected  by  prioritiz-­‐

ing  the  conservation  or  restoration  of  habitat  at  sites   that   are   critical   to   connectivity   at   the   system  scale,   for  example,   when  allocating   a  limited  area  for  con-­‐

servation   or   when   compensating   for   connectivity   losses  due  to  development  or  climate  change  (Carroll   et   al.   2004;   Crooks   &   Sanjayan   2006;   Hanski   2011;  

Heller  &  Zavaleta  2009;  Huxel   &  Hastings  1999;  Gur-­‐

rutxaga  et   al.  2011).  Hence,   while   combating   habitat   loss  is  the  principal  challenge  for  biodiversity  conser-­‐

vation,   a   simultaneous   and   well-­‐informed   manage-­‐

ment   of   connectivity   will   increase   the   cost-­‐benefit   ratio  of  conservation  actions  (Pressey  &  Bottrill  2009;  

cf.  Hodgson  et  al.  2009;  Yaacobi  et  al.  2007).

Metapopulation  theory

In   landscape  research,  the  understanding  of  connec-­‐

tivity  has   developed   around   metapopulation   theory,   which  was  initiated  by  Levins  (1969)  and  advanced  by   Hanski   (1991,   1998).   A   metapopulation   consists   of   local   populations   located  in   separate   but   connected   habitat   patches.  Most  local   populations   are  so   small   that  they  will  likely  disappear  due  to  stochastic  events   of   local  extinction,  if   it  were  not  for   the  spatial  con-­‐

text  that  enables  local  extinctions  to   be  compensated   for   through   colonization   from   local   populations   in   other  patches.  Metapopulation  theory  predicts  that  a   species  will  persist  in   a  landscape  or  seascape   if   the   recolonization   rate   compensates   for   the  rate  of   ran-­‐

dom   local   extinctions   (Hanski   1998).   The   rate   of   colonization  between  two  local  populations  generally   depends   on  1)  the  distance  between  and  2)  the  areas   of   the  two   habitat  patches  (Fig  1;  Hanski   &  Ovaska-­‐

inen   2000).   The   patch   area   (possibly   weighted   by   habitat  quality)  determines  the  maximum  local  popu-­‐

lation   size,  which  determines   the  rate  of   emigrating   individuals.  A   larger  patch   is  also   more  likely   to   re-­‐

ceive   colonizers,   which   influences   the   immigration   rate.  A  larger  distance  decreases  the  colonization  rate   between  two   patches.  However,  a  dispersing  individ-­‐

ual   may   experience  the  distance  as   shorter  or  longer   depending   on   the   land-­‐cover   between   the   patches,  

(11)

which  is  referred  to   as  the  ”matrix  quality”  (Kupfer  et   al.  2006;  Vandermeer  &  Carvajal  2001).  

Fig   1.   Migration   to   and   from   a   subpopulation   in   the   left   patch.   Letter   d  represents  the   interpatch   distance   (Euclid-­‐

ean   or   land-­‐cover   weighted),   and   a   represents   the   patch   attribute  (area  and/or  habitat  quality).  

Dynamic  landscapes

In   a   social-­‐ecological   system,   local   extinctions   are   caused  not  only  by  random  population  dynamics  but   also   by  human  drivers   like   urbanization,  agriculture   or  forestry.  Anthropogenic  disturbance  and  fragmen-­‐

tation  increase  the  role  of  dispersal  for  species  persis-­‐

tence   (Bengtsson   2010).   On   the   other   hand,   human   drivers   also   make   new   habitat   patches   available,   for   example   through   habitat   restoration   projects,   or   as   forest  stands  regrow  after  logging.  These  activities  are   spatially  distributed,  affecting  specific  habitat  patches   and   leaving   the   remaining   ones   intact.   Also,   most   activities  are  planned  in  time  and  space;  by  individu-­‐

als,  associations  or  authorities.  The  connectivity  pat-­‐

tern   is  therefore  changing  dynamically   as  a  result  of   both  planned  an   unplanned  “disturbances”.  The  spa-­‐

tial  resilience  of  a  metapopulation  in  a  dynamic  land-­‐

scape  or  seascape   can   be   defined  as   its   ability  to   re-­‐

cover   and   persist  over   time  in  the   face  of   spatially   distributed   disturbances   (cf.   Bengtsson   et   al.   2003;  

Cumming   2011;   Nyström  &  Folke  2001).   In   this   con-­‐

text,  landscape  research  can  be  made  useful  to  land-­‐

scape  management  and  conservation,  by  linking  pat-­‐

terns  of  connectivity  and  disturbances  to  the  viability   of  species  in  dynamic  landscapes  (Cabeza  &  Moilanen   2003;  Teeffelen  et  al.  2012).

d Emigration rate = f(d, a1 ,a2)

Immigration rate = f(d, a1 ,a2)

a

2

a

1

The  graph  model  of  connectivity

A   spatial-­‐planning   process   will   increase   or   decrease   the  spatial  resilience  of  fragmented  metapopulations,   depending   on   how   knowledge   about  connectivity   is   produced,  heeded  and  applied.  Science  has  developed   connectivity  models  useful  to  compare  spatial  scenar-­‐

ios   or   to  evaluate  the  consequences   of  specific  land-­‐

use  changes.  A  recent  model  is  the  graph-­‐theoretical   model  of  connectivity,  which  is  implemented  in  many   quantitative  measures  of  connectivity,  such  as  the  IIC   measure  described  in  the  methods  chapter.  As  speci-­‐

fied  by  the   metapopulation   model,  the  IIC  estimates   connectivity  between  two   habitat  patches   as  a  prod-­‐

uct  of  on  1)  the  distance  between  and  2)  the  areas  of   the  two  patches.  

Landscape  ecology  and  in   particular   metapopulation   models   often  represent  habitat  areas   as   patches   in  a   surrounding  non-­‐habitat  matrix  (Forman   1995).  In  a   connectivity   graph,   nodes   represent   patches,   con-­‐

nected  by   links   that   represent   the   potential   for   an   organism  to   move  between  two   patches,  for  example   during  dispersal  (Fig.  2;  Dale  &  Fortin  2010;  Urban  et   al.  2009).  Nodes  are  connected  by  links  only  when  the   distance   between   two   patches   does   not   exceed   the   maximum  dispersal  distance  for  the  model  organism.  

Most  applications  of  network  analysis  have  used  geo-­‐

graphic  distance  (Galpern  et  al.  2011),  whereas   others   have   applied   traversal-­‐cost   thresholds   based   on   the   landscape   permeability   experienced   by   a   species   when  dispersing  through  different  types  of  land  cover   in  the  matrix  (e.g.,  Bunn  et  al.  2000).  Hence,  links  are   not  interpreted  as  structural  features  of  the  landscape   such   as   corridors,  but   as   functional  connections   be-­‐

tween  patches  as  a  dispersing  organism  might  experi-­‐

ence   them.   Additional   information   about   a   species’  

biology   and   empirical   observations   can   be   used   to   validate   or   calibrate   existing   network   models   (e.g.,   Andersson   &   Bodin   2009;   Fall   et  al.   2007;   Minor   &  

Urban  2008).  Critical   connectivity  thresholds   can   be   identified   in   models   by   systematically   removing   nodes  or  links   (e.g.,  Bascompte  et  al.  2006;  Bodin   et   al.  2006;  Brooks  2006;  Saura  &  Rubio  2010).

(12)

Fig.  2.  All  the  nodes  and  links  in  the  image  make  up  the   graph.  An  organism  inhabiting  a  node  within  a  network   component  can  disperse  to  other  nodes  in  the  same  compo-­‐

nent,  although  the  dispersal  probability  decreases  if  several   intermediate  nodes  need  to  be  traversed  (cf.  Pascual-­‐Hortal  

&  Saura  2006).  Dark  gray  represents  high  betweenness  cen-­‐

trality,  i.e.,  that  a  patch  is  identified  as  a  stepping-­‐stone  for   organisms  dispersing  between  other  patches.

2.2. Empirical background to the case studies

This  section  provides  a  background  to  the  case  stud-­‐

ies,  performed  where  indicated  in  Fig.  3.

Fig  3.  Map  of  northern  Europe.  The  grey  surface  comprises   the  two  northernmost  counties  in  Sweden  and  mainly  for-­‐

ested  land.  The  black  surface  comprises  Stockholm  County   and  the  largest  metropolitan  area  in  the  Nordic  countries.

Conservation  and  change  in  boreal  forests  (Q1) Forest   ecosystem   services   are   fundamental   to   the   human   communities   in   northern   Sweden.   Mature  

Paper 2

Paper 3, 4 and 5 Paper 1

forests  are   concentrations  of   valuable  timber   as  well   as   of   services   more   dependent   on   biodiversity,   like   hunting   and   recreation.   Forest   stands   outside   pro-­‐

tected  areas  (PAs)  in  the   boreal  forest  belt  represent   26%   of   the   forested   area   globally,   which   is   frag-­‐

mented   at   several   scales   (Riitters   et   al.   2000).   The   forest   landscape   in   northern   Sweden   is   seriously   fragmented   with   a   steady   decline   in   amount   of   old   forests  due   to   selective  cutting  before   the   1950s   and   thereafter   large-­‐scale   clear-­‐cutting   (Axelsson   &  

Östlund  2001;  Esseen  et  al.  1997).  

During   the   20th   century   PAs   were   increasingly   set   aside   for  wildlife  and   recreation,  as   the  surrounding   natural   habitats   were   swept   away   by   industrial   for-­‐

estry,   agriculture   and   urbanization.   Although   area   protection   remains   the   most   important   measure   to   protect   biodiversity,   the   focus   has   shifted   from   ”is-­‐

land  conservation”  to   systems   of   connected  reserves,   as  awareness  has  grown  about  connectivity  and  resil-­‐

ience,  including  the  risks  of  genetic  isolation,  climate   change   and   other   consequences   of   altered   distur-­‐

bances  regimes  and   renewal   cycles  (Bengtsson  et  al.  

2003).  Old  pine  trees,  which  constitute  a  habitat  fac-­‐

tor  in  paper  1  and  2,  were  favored  by  wildfire  that  was   previously  the  dominating   disturbance  in  boreal  for-­‐

ests,   and   favored   to   some   extent   also   by   intensive   reindeer  grazing  (Hellberg  et  al.  2004),  whereas  they   were  removed  by  the  selective  cutting  that  dominated   the   subsequent  regime   in  which   fire   was   suppressed   (Granström  2001).  While  patch  area  and  isolation  af-­‐

fect  the  size,  frequency  and  intensity  of   disturbances   like  fire  in  forest  patches  (Baker  1989),  alterations  of  a   patch's   disturbance  regime  may  be  determined  to  an   even   greater  degree  by  the  surroundings,  which  may   transmit   disturbance   or   modify   the   connectivity   to   other   patches.   For   example,   the   probability   of   both   fire  ignition  and  rate  of  fire  spread  have  been   shown   to   differ   across   different   types   of   human-­‐modified   habitat  (Cochrane   et  al.  1999).  In  paper   1   and  2,  our   evaluation  of  the  connectivity  of  patch  configurations   relates  to   patch-­‐scale   habitat  qualities   (paper   1)   and   different  hypothetical  interactions   with  the   "matrix",   including  connectivity  to  stone  fields  (paper  1)  and  to   the   (harvest)   disturbance   regime   outside   the   focal   protected  areas  (paper  2).

(13)

In   Scandinavian   forests,   there   are   presently   too   few   large   stands   of   old-­‐growth   forest   to   ensure   a   func-­‐

tional   and   resilient  reserve   system   (Bengtsson   et   al.  

2003).  As   a   response,  conservation  planning   is  look-­‐

ing  beyond  the  borders   of  PAs   into   the  surrounding   forests  dominated  by  logging.  Swedish  policy  during   the  last  decades  has  sought  to   provide  incentives   for   forest   companies   to   harvest   some   areas   less   inten-­‐

sively,   however   this   has   not   yet   succeeded   and   the   Swedish  Forest  Agency  (2011)  found   that  every  third   felling  in   Sweden  did  not  even  fulfill  the  minimal  le-­‐

gal  standards  of  biodiversity  consideration.  Still,  there   seems  to  be  huge  potential  benefits  in  a  more  integra-­‐

tive   spatial   planning   that   more   carefully   takes   into   account  the  complementarity  of  areas  with  differenti-­‐

ated  prioritization  of   wood  production  and  biodiver-­‐

sity,   including   the   use  of   dynamic   (temporary)  pro-­‐

tection  (Bengtsson  et  al.  2003).  The  many  dimensions   of   forest  protection  has   resulted  in   multifaceted   de-­‐

bates  like  the  SLOSS   debate  (Single  Large  Or  Several   Small;  Kingsland  2002);  dynamic/temporary  PAs;  pro-­‐

tection  of   spiritual  forests;   dispersal  stepping-­‐stones   in   agricultural   landscapes   and   for   maintaining   soil   and  water  quality.  For  example,  around  lake  Bornsjön   in   Sweden,   the   water   company   Stockholm   Vatten   made  an  agreement  with  forest  owners  to  spare  large   buffer   zones   as   means   to   protecting   the   lake   as   a   source  of  drinking  water  (Dudley  &  Phillips  2006).

Papers  1  and  2  probe  Q1  by  examining  the  response  of   species  to   the   spatial  complexity   emerging  from  for-­‐

est   logging   and   protection.   They   explore   the   landscape-­‐ecological   mechanisms   that   affect   specific   species  (paper  1)  and  trait-­‐based  species   groups  (pa-­‐

per   2).   The   papers   hypothesize  that  species   depend   on   protected   forest   with   connectivity   to   geological   stone   fields   (paper   1)   and   to   other   protected   areas   (paper   2).  These   two   types  of   connectivity  are   mod-­‐

eled   more  in   detail  using  connectivity   graphs   taking   into  account  connectivity  in  the  “unprotected  matrix”  

as   lower   traversal  cost   (paper  1)  or  connector  nodes   (paper  2)  (also  see  the  methods  chapter).

Wetlands  in  an  urban  region  (Q3)

Since   1900   more   than   half   of   the   world’s   wetlands   have  been  destroyed  and  in  1975  it  was  the  first  major   ecosystem  to   be   protected  by  an  international   treaty   (Zedler   &   Kercher   2005).   Previous   research   has   at-­‐

tributed  the  failures  of  wetland  protection  policies  to   the   complexity   and   "invisibility"   of   spatial   relation-­‐

ships  among  wetland  water  and  vegetation  (Turner  et   al.  2000).  Following  habitat  loss  per  se,  lacking  con-­‐

nectivity  is  the  second  largest  threat  to  biodiversity  in   wetland   systems   (cf.   Amezaga   et   al.   2002,   Baldwin   2011).

Connectivity  planning   is   challenging   in   urban   land-­‐

scapes   where   land-­‐use   intensification   and   dispersal   barriers   significantly  constrain  the   dispersal   of   many   species  (Niemelä  2011).  I   approach   Q3   in  paper   5   by   assessing   the   potential   of   current   collaborations   across  municipal   boundaries   when  it  comes  to   man-­‐

aging  the  connectivity   of  fragmented  urban  wetland   systems.   Urban   wetlands   are   biodiversity   hotspots   and  provide   local   communities   with   important   eco-­‐

system  services  like  clean  water,  flood  control,  recrea-­‐

tion  and  supply   of   food  and  materials.  However,  ur-­‐

banization  has  driven  the  filling,  draining  and  dredg-­‐

ing  of  most  urban  wetlands.  Several  studies  on  urban   wetlands   have   found   negative   correlations   between   plant   diversity   and   inter-­‐wetland   distances   (e.g.,   Lopez   &   Fennessey   2002).  Much   of   Sweden’s   biodi-­‐

versity   is   associated   with   wetlands,   including   more   than  half  of  the  vascular  plants  and  bird  species,  40%  

of  the  mosses  and  70%  of  the  land  snails  (CBM  2007).  

In   Stockholm   County,   90%   of   the   current   wetland   area   has   been   affected  by   peat   mining   and  draining   for   farming   and   forestry   (SCAB   2013).   This   has   re-­‐

sulted   in   severely   fragmented   wetland   systems   and   reduced   recolonization   rates   (Ministry   of   Environ-­‐

ment  2012).

Paper  5  investigates  Q3  by   developing   an  integrative   modeling   approach   of   wetland   connectivity   coupled   with  a  spatially  distributed  land-­‐management  system.  

It   evaluates   the   general   degree   as   well   as   specific   mismatches   of   ecological   connectivity   vs.  collabora-­‐

tive   management  across   municipal   boundaries.  Our   case   study   uses   freely   available   GIS-­‐data   and  visual-­‐

izes   the   estimated   mismatches   and   matches   in   the  

(14)

landscape,   facilitating   interpretation   and   use   of   the   results  in  local  and  regional  management  practice.

Municipal  spatial  planning  and   coordination  (Q2+3)

Papers  3,  4  and  5  address   Q2+3  in  the  context  of   the   planning   process   in   urban   and   semi   urban   munici-­‐

palities   in   the   Stockholm   region.   Relatively   much   green   space   remains   within   and   around   the   urban   cores,   and   the   agency   “Regional   Growth,   Environ-­‐

ment  and  Planning”  has   identified  ten  green  wedges   that   each   extends   over   multiple   municipalities   (see   figure  2  in  paper  3  and  SCAB  2010).  Most  municipali-­‐

ties   seek   to   take   the   green   wedges   into   account   in   their  planning,  and   municipal  urban   planners   strug-­‐

gle   to   accommodate   an   urban   development   while   simultaneously   protecting   biodiversity   and   promot-­‐

ing   a   sensible   use   of   the  region's   natural   resources.  

Paper  3  studies  how  the  municipalities  assess  connec-­‐

tivity   more   locally,   including   how   they   may   relate   smaller  landscape   elements  to   the   green  wedges   and   the  regional  ecological  complexity.

Municipal  spatial  planning  is  the  governance  process   in  Sweden  with  the  largest  influence  on  ecology  out-­‐

side  the  protected  areas,  which  constitute  only  5%  of   the   land   area   in   Stockholm   County.   The   ”planning   monopoly”  in  Sweden  means   that  spatial  planning  is   the  exclusive  responsibility  of  municipalities,  and  that   the   Plan-­‐   and   Building   Acts   since   1987   have   con-­‐

strained   the   interference   from   national   authorities.  

Municipalities  must  maintain  a  municipal-­‐scale  com-­‐

prehensive  (strategic)  plan,  which  is   implemented  in   block-­‐scale   detailed   plans   of   specific   projects,   initi-­‐

ated  by  the  local  government  or  by  external  develop-­‐

ers.   A   few   urban   regions   in   Sweden   have   regional   planning   agencies,  but  regional  plans  have  been  po-­‐

litically  approved  only  in  the  Stockholm  County.    

Countries  differ  with  respect  to  how  planning  respon-­‐

sibilities   are  assigned  to   local,  regional   and  national   governance  levels,  yet  everywhere  planning  outcomes   are   influenced   by   the   communication   of   ecological   knowledge  within  planning  agencies,  and  potentially  

by  coordination  across  different  jurisdictions.  Paper  3   addresses  Q2   by   probing   how   the   issue   of   ecological   connectivity   is   considered   in   the   planning   process,   and  examines  the  pros   and  cons   of   using  a  CG  soft-­‐

ware   tool,   as   perceived   by   municipal   practitioners   who   provide  ecological  advice   in  the  planning   proc-­‐

ess.  Paper  4  widens  the  scope  to  ecological  knowledge   in  general,  and  investigates  the  municipal  ecologists'   techniques   and  challenges   when   it  comes  to   getting   their   knowledge   across   to   planners   and   politicians.  

Q3  is   tackled  by  paper  5,  estimating   the   potential  of   current  collaboration  between   municipalities   to   deal   with  wetland  connectivity   across  municipal  borders.  

Paper  3  and   5  also   discuss   whether  coordination  be-­‐

tween   regional   and   municipal   plans   may   effectively   deal   with   ecological   interactions   across   boundaries   and  scales.  

Ecologists  and  knowledge  in  municipal   planning  practice  (Q2)

Q2  is   investigated  in  paper  3  and  4,  looking   into   the   communication  of  ecological  knowledge  in  municipal   administrations,   which   are   required   to   implement   different   national   and   European   sustainability   poli-­‐

cies   at   the   local   level.   Many   municipalities   employ   ecologists   who   manage   natural   areas   and   who   sup-­‐

port  the  interpretation  and  operationalization  of  sus-­‐

tainability   policies   in   local   practices   like   spatial-­‐

planning.   Limited   use   of   ecological   knowledge   in   planning   is  many  times  due  to   the  difficulties  in  pre-­‐

senting  and  interpreting  information  within  planning   processes  (Yli-­‐Pelkonen  &  Niemelä  2006),  and  to   the   failure   of   researchers   to   use  a   language   apt  to   envi-­‐

sion,  negotiate,  and  manage  the  environmental  con-­‐

ditions   of   society   (Norton   1998;   Robertson   &   Hull   2001).   As   Roux   et   al.   (2006)   argue,   planning   is   a   knowledge  domain  that  demand  much  synthesis   and   input   from   the   domains   of   research   (basic   and   ap-­‐

plied),  operational  management  and  local   communi-­‐

ties;  and  this  knowledge  must  be  well  codified  (made   explicit)   for   implementation   in   planning   to   be   suc-­‐

cessful.  Hence,  there  is  a  need  for  knowledge  brokers   who   may  connect  the   knowledge  of  diverse  domains   through   matching,   sense-­‐making   and   codification/

References

Related documents

The increasing availability of data and attention to services has increased the understanding of the contribution of services to innovation and productivity in

Tillväxtanalys har haft i uppdrag av rege- ringen att under år 2013 göra en fortsatt och fördjupad analys av följande index: Ekono- miskt frihetsindex (EFW), som

Syftet eller förväntan med denna rapport är inte heller att kunna ”mäta” effekter kvantita- tivt, utan att med huvudsakligt fokus på output och resultat i eller från

Som rapporten visar kräver detta en kontinuerlig diskussion och analys av den innovationspolitiska helhetens utformning – ett arbete som Tillväxtanalys på olika

I regleringsbrevet för 2014 uppdrog Regeringen åt Tillväxtanalys att ”föreslå mätmetoder och indikatorer som kan användas vid utvärdering av de samhällsekonomiska effekterna av

Närmare 90 procent av de statliga medlen (intäkter och utgifter) för näringslivets klimatomställning går till generella styrmedel, det vill säga styrmedel som påverkar

• Utbildningsnivåerna i Sveriges FA-regioner varierar kraftigt. I Stockholm har 46 procent av de sysselsatta eftergymnasial utbildning, medan samma andel i Dorotea endast

Den förbättrade tillgängligheten berör framför allt boende i områden med en mycket hög eller hög tillgänglighet till tätorter, men även antalet personer med längre än