• No results found

Deposition of Zr(C,N) Coatings by Chemical Vapour Deposition

N/A
N/A
Protected

Academic year: 2022

Share "Deposition of Zr(C,N) Coatings by Chemical Vapour Deposition"

Copied!
41
0
0

Loading.... (view fulltext now)

Full text

(1)

DEGREE PROJECT, IN MATERIALS DESIGN AND ENGINEERING , SECOND LEVEL

STOCKHOLM, SWEDEN 2015

Deposition of Zr(C,N) Coatings by Chemical Vapour Deposition

LINN EFSING

KTH ROYAL INSTITUTE OF TECHNOLOGY

(2)

Abstract(

In#this#master#thesis#the#influence#from#process#parameters#within#the#Chemical#vapour#deposition#

process# for# a# Zirconium# Carbon8Nitride# coating# was# investigated# regarding# growth# rate,#

microstructure#and#texture.#The#interest#in#utilizing#Zirconium#Carbon8Nitride#(Zr(C,N))#is#due#to#its#

low# coefficient# of# thermal# expansion# (CTE)# relative# the# currently# commonly# used# wear# resistant#

coatings# of# Titanium8Carbon8Nitride# (Ti(C,N)).# The# process# parameters# studied# in# this# work# is# the#

ratio#of#the#partial#pressures#of#Zirconium#tetrachloride#over#Acetonitrile#(ZrCl4/CH3CN),#addition#of#

Nitrogen#respectively#hydrochloric#acid,#partial#pressures#of#the#precursors,#reactor#temperature#and#

total#gas#flow.#By#controlling#these#process#parameters#one#can#control#the#grain#size,#growth#rate#

within#the#reactor#and#texture#of#the#Zr(C,N)#coating#deposited.##

#

Key#words:#Zr(C,N),#MTCVD,#Milling#inserts,#Coating,#Growth#rate,#Microstructure,#Texture#

coefficients#

# #

(3)

Table&of&Contents&

#

1# Background#...#4#

2# Aim#of#work#...#4#

3# Introduction#...#5#

3.1# Processing#of#blanks#...#5#

3.2# The#CVD8process#...#6#

3.2.1# Thermodynamics,#kinetics#and#mass#transport#phenomena#...#8#

3.2.2# Zr(C,N)#as#coating#...#8#

4# Experimental#...#11#

4.1.1# Thermodynamic#calculations#...#11#

4.1.2# Thermal8CVD#process#...#11#

4.2# Characterization#methods#...#13#

4.2.1# Light#optical#microscope#(LOM)#...#13#

4.2.2# Scanning#electron#microscopy#(SEM)#...#13#

4.2.3# X8ray#diffraction#(XRD)#...#13#

5# Results#...#15#

5.1# Flow#ratios#dependence#...#15#

5.1.1# CH3CN#flow#dependence#...#15#

5.1.2# ZrCl4#flow#dependence#...#17#

5.2# N2#flow#dependence#...#19#

5.3# HCl#flow#dependence#...#21#

5.4# Temperature#dependence#...#23#

5.4.1# Starting#layer#temperature#dependence#...#26#

5.5# Total#gas#flow#dependence#...#28#

6# Discussion#...#30#

6.1# (ZrCl4/CH3CN)#ratio#dependence#...#30#

6.1.1# CH3CN#flow#dependence#...#30#

6.1.2# ZrCl48flow#dependence#...#31#

6.1.3# Partial#pressures#of#the#precursors#...#32#

6.2# N2#addition#dependence#...#32#

6.3# HCl#addition#dependence#...#33#

6.4# Temperature#dependence#...#34#

6.4.1# Starting#layer#temperature#dependence#...#34#

(4)

6.5# Total#gas#flow#dependence#...#35#

7# Conclusions#...#36#

8# Recommendations#...#36#

9# Acknowledgements#...#37#

10# References#...#38#

#

# &

(5)

1 Background&

Sandvik# Coromant# is# the# world’s# leading# supplier# of# tools,# tooling# solutions# and# know8how# to# the#

metal# working# industry.# The# majority# of# cutting# tools# produced# are# coated# with# a# wear# resistant#

coating.#One#commonly#used#coating#method#is#Chemical#Vapour#Deposition#(CVD).#Frequently#used#

coatings# for# the# inserts# at# Sandvik# are# currently# Titanium# Nitride# (TiN),# Titanium# Carbon8Nitride#

(Ti(C,N))# and# Aluminium# oxide# (Al2O3).# In# milling# applications# the# main# reason# for# damage# of# CVD8 coated#inserts#during#machining#operation#is#comb#cracks,#introduced#by#the#thermal#cycling#in#the#

operations.#There#have#been#indications#that#comb#cracks#are#initiated#in#the#existing#cooling#cracks#

in#the#coating#resulting#from#the#manufacturing.#Currently#there#is#an#interest#in#developing#a#CVD#

coating#free#from#cooling#cracks.##

Zirconium8Carbon8Nitride# (Zr(C,N))# is# a# material# with# properties# that# makes# it# interesting# as# a#

candidate#material#for#the#next#generation#of#wear#resistant#coating#for#milling#inserts.#This#is#due#to#

its#lower#coefficient#of#thermal#expansion#(CTE)#compared#to#Ti(C,N)#which#might#reduce#the#cracks#

from#manufacturing.#The#drawback#of#replacing#Ti(C,N)#with#Zr(C,N)#is#a#reduction#in#hardness#and#

durability#of#the#coating.#

There#have#been#various#attempts#to#produce#Zr(C,N)#coatings#within#the#Sandvik#Coromant;#multi8 layered# coatings,# wear# resistance# layer# or# colour# layer.# A# lot# of# problems# have# been# encountered#

during#the#previous#processes,#mostly#with#clogging#of#the#outlet#of#the#reactor#resulting#in#rising#of#

the#pressure#in#the#reaction#or#in#worst8case#interruption#of#the#process.#The#coated#inserts#have#also#

been#proven#to#flaking.#This#thesis#focuses#on#developing#a#stable#process#to#deposit#Zr(C,N)#by#CVD#

and# understand# the# influence# of# the# CVD# deposition# parameters# regarding# microstructure,# growth#

rate#and#texture.#

Previous#work#within#the#field#of#Zr(C,N)#film#CVD#coating#can#be#found#in#several#internal#reports.#

[1,2,3,4,5,6,7]##

2 Aim&of&work&

The#aim#of#this#thesis#is#to#map#the#influence#of#the#CVD#deposition#parameters#on#the#growth#rate#

and#microstructure#of#the#Zr(C,N)#coating,#in#particular#grain#size,#shape#and#texture.#The#project#

consists#of#a#practical#part#and#it#is#performed#sequentially#by#planning,#performing#experiments#and#

data#analysis.#The#analyzed#data#from#one#block#is#used#to#plan#the#experiments#of#the#next#block.#

These#blocks#are#divided#as#follows:#

#

1. ratio#of#ZrCl4/CH3CN#

2. addition#of#Nitrogen#(N2)#resp.#Hydrochloric#acid#(HCl)##

3. partial#pressure#of#precursors#

4. reactor#temperature#

5. combinations#of#previous#factors#

#

In#order#to#develop#processes#for#optimized#Zr(C,N)#coatings#it#is#essential#to#know#how#the#different#

process#parameter#affects#the#microstructure#and#texture#and#growth#rate#of#the#Zr(C,N)8layer.##

(6)

3 Introduction&&

The#cutting#tool#industry#has#a#constant#demand#on#high#quality#inserts,#with#optimized#functions.#

Examples#of#inserts#can#be#seen#in#Figure#1#below.##

#

Figure'1.'Examples'of'inserts'available'on'the'market.'

3.1 Processing&of&blanks&&

An# uncoated# insert# is# named# blank# or# substrate.# The# blanks# for# the# milling# tools# are# commonly#

produced#of#Cemented#carbides#(HM).#It#is#a#powder#metallurgic#manufactured#composite#material#

consisting# of# Tungsten# Carbide,# WC,# and# Cobalt,# Co,# containing# 87896%# WC# and# 4813%# Co.# Cubic#

carbides# or# nitrides# of# Tantalum# (Ta),# Titanium# (Ti)# or# Niobium# (Nb)# may# also# be# added.# The# main#

reason# for# the# extensive# use# of# WC8Co# in# cutting# tools# is# the# excellent# combination# of# toughness,#

hardness#and#abrasive#wear#resistance.#[8,#9]##

The#processing#of#blanks#mainly#consists#of#three#parts,#production#of#the#ready#to#press#powder,#RTP#

powder,# compaction# and# sintering.# In# the# manufacturing# of# RTP# powders# one# mixes# the# raw#

materials,#WC#with#Co.#By#adding#alloying#elements#or#changing#the#composition#one#can#change#the#

properties#of#the#materials#and#by#that#optimize#the#HM#suitable#for#the#desired#application.#One#can#

for# example# improve# resistance# to# specific# wear# or# corrosion.# [9]# The# raw# material# mix# will# go#

through#a#milling#step#where#also#a#binder#is#added.#The#purpose#of#the#milling#is#to#deagglomerate#

and#homogenize#the#raw#materials#and#to#control#the#size#of#the#Tungsten8Carbide,#WC,#grains.#After#

milling# a# spray# drying# is# performed# in# order# to# dry# the# suspension# into# a# flowing# powder# and# to#

improve#the#later#filling#of#the#compaction#tool.#In#this#step#it#is#possible#to#control#the#granule#size#

and#distribution#by#modifying#for#example#the#nozzle.#[10]##

After#spray8drying#the#powder#is#compacted.#The#pressing#method#depends#on#the#complexity#of#the#

wanted#geometry.#After#compaction#of#the#powder#one#gets#a#green#body#that#has#to#go#through#a#

sintering#process#before#further#handling.#The#sintering#process#has#the#purpose#to#close#pores,#WC8 grain#growth#and#redistribution#of#binder#phase.#[11]#After#sintering#the#blanks#are#ready#for#further#

processing.#Figure#2#below#shows#an#example#of#a#basic#WC8Co#cemented#carbide#substrate.##

(7)

#

Figure'2.'A'typical'WC?Co'cemented'carbide'substrate.'

The#sintering#is#followed#by#grinding.#This#is#done#in#order#to#improve#the#shape#of#the#inserts#and#to#

remove#pressing#flashes#and#thickness#variations.#It#is#also#possible#to#make#a#profile#in#the#insert#if#

wanted.# Before# the# inserts# are# ready# for# coating# deposition# a# pre8treatment# might# be# done.# Pre8 treatment#can#be#done#both#on#edges#and#on#the#surface,#by#brushing,#blasting#or#lip8grinding.#When#

performing#a#pre8treatment#on#the#surface#these#methods#can#generate#optimum#residual#stresses#

and# the# right# surface# conditions.# The# deposition# of# a# coating# is# done# in# order# to# improve# the#

properties#of#the#insert.#This#step#can#also#provide#with#a#suitable#colour#if#wanted.#More#information#

about#the#CVD#process#can#be#found#below.#After#the#inserts#are#coated#a#post8treatment#might#be#

performed#before#the#inserts#are#ready#for#usage.#This#treatment#is#done#in#order#to#reduce#tensile#

stresses#in#CVD8coatings,#improve#the#performance#by#improving#the#surface#finish,#expose#certain#

coating#material#and#improve#cosmetics.#This#might#be#done#by#top#blasting#or#edge#line#brushing.#

[10]##

3.2 The&CVDAprocess&

Within#this#thesis#the#interest#is#focused#on#one#of#the#final#steps#in#the#making#of#a#tooling#insert,#

the#deposition#of#a#wear#resistant#coating.#One#important#procedure#for#the#deposition#of#coatings#in#

the#cutting#tool#industry#is#performed#by#CVD.#[12]#In#the#CVD8process#the#deposition#of#a#material#

on#a#surface#is#done#by#using#a#chemical#reaction#between#gaseous#reagents#in#an#activated#(heat,#

light,#plasma)#environment.#[13,#14]##

The#CVD#system#includes#both#the#precursor#supply#system#as#well#as#the#CVD8reactor.#The#first#part#

is# the# chemical# vapour# precursor# supply# system# that# generates# the# vapour# precursor# that# will# be#

delivered#to#the#reactor.#The#reactants#used#could#be#in#liquid#or#solid#phase,#with#a#carrier#gas#such#

as# Hydrogen# gas# (H2),# Argon# (Ar)# or# Nitrogen# (N2).# When# using# a# liquid# reactant# there# are# two#

possible#ways#to#lead#the#precursors#into#the#reactor.#

• A#carrier#gas#is#used#as#bubbler#in#order#to#vaporize#the#reactant.#The#delivery#of#the#gaseous#

precursors#to#the#reactor#is#depending#on#the#carrier#gas#flow#and#vapour#pressure.##

• The#liquid#reactant#is#vaporized#by#a#evaporator.#

Using# a# solid# phase# reactant# the# carrier# gas# is# run# through# the# generator# where# the# reactant# are#

formed#or#sublimated.##

#

(8)

The#reactor#is#used#in#order#to#heat#the#substrate#to#the#required#deposition#temperature.#[13]#The#

basic#CVD#process#within#the#reactor#can#be#described#in#the#following#steps;#[15,#16,#17,#18]#

• mass#transport#of#the#reactant#in#the#gas#flow#region#from#the#reactor#inlet#to#the#deposition#

zone;#

• gas8phase#reactions#leading#to#the#formation#of#film#precursors#and#by8products;#

• mass#transport#of#film#precursors#to#the#growth#surface;#

• absorption#of#film#precursors#on#the#growth#surface;##

• surface#diffusion#of#film#precursors#to#growth#sites;#

• surface#reactions#and#incorporation#of#film#constituents#into#the#growing#film;#

• desorption#of#by8products#of#the#surface#reactions;#and#

• mass#transport#of#by8products#in#the#bulk#gas#flow#region#away#from#the#deposition#zone#

towards#the#reactor#exit.##

A#schematic#illustration#of#the#process#can#be#seen#in#Figure#3#below.##

#

Figure'3.'A'schematic'picture'of'the'CVD'process.'[19]'

The#main#controlling#parameters#within#the#process#are#temperature#(T),#pressure#(P),#reactant#gas#

concentration#and#total#gas#flow.#All#of#them#require#accurate#control#since#they#are#crucial#for#the#

outcome.#The#operating#temperature#for#the#process#is#determined#by#the#chemical#reaction#and#this#

parameter#is#critical#since#it#controls#both#the#thermodynamics#and#kinetics#of#the#coating.#Even#from#

this# perspective,# a# small# change# in# temperature# (e.g.# +/8# 25°C)# in# a# system# around# 1000°C# may#

influence#the#reaction#and#hence#the#sequence#of#events#inside#the#reactor.#It#is#crucial#to#maintain#a#

temperature#level#that#allows#the#reactant#gases#to#reach#the#surface#of#the#inserts#and#control#the#

uniformity# of# the# coating.# Parameters# that# control# the# transportation# of# the# precursors# are# the#

reactant8gas# partial# pressure,# the# total# reactor# pressure,# the# geometry# of# the# reactor.# All# of# these#

factors#affects#the#transport#phenomena#in#the#boundary#layer#and#hence#the#resulting#structure#and#

composition# of# the# deposited# film.# [13]# The# microstructure# is# of# interest# regarding# the# mechanical#

properties#of#the#coating.#

(9)

3.2.1 Thermodynamics,&kinetics&and&mass&transport&phenomena&

The#CVD#process#is#extremely#complex#and#the#process#includes#thermodynamics,#kinetics#and#mass#

transport.#A#thermodynamic#study#of#the#CVD#system#can#only#provide#a#basic#understanding#of#the#

process.#It#can#offer#guidelines#when#regarding#process#parameters#while#planning#experiments.#By#

thermodynamic#calculations#of#the#equilibrium#the#feasibility#of#the#reaction#can#be#determined#at#a#

specific# set# of# parameters# such# as# temperature,# pressure# and# reactant# concentration.# This# is#

performed#with#the#following#equations.#[13,#18]##

∆!! ! = ∆!!! 298 + !"#! !!!" − !!! 298 − !"#! !!! !"##################Eq.1##

∆! = ∆!!,!"#$%&'(− ∆!!,!"#$%#&%'# # # Eq.2#

∆G# is# the# Gibbs# free# energy# of# the# reaction# and# it# is# calculated# from# the# Gibbs# free# energy# of#

formation#∆G#for#the#products#and#reactants#at#a#temperature,#T.#Cp#is#the#heat#capacity,#∆!!!#and#!!# denotes# the# enthalpy# of# formation# and# entropy# both# at# 298K.# The# reactions# providing# a# negative#

value# of# the# Gibbs# free# energy# of# formation# has# the# most# stable# reaction# products# and# is# worth#

continue#to#examine.##

The#kinetics#of#a#CVD#process#consists#of#several#reactions.#They#take#place#in#the#gas#phase,#on#the#

substrate#surface,#by#chemisorption#and#desorption.#This#is#a#complex#system#but#what#can#be#said#is#

that#the#slowest#reaction#step#is#the#limiting#one.#One#way#of#obtaining#kinetic#data#is#to#determine#

the# deposition# rate;# one# equation# for# this# at# a# specific# temperature,# T# can# be# seen# in# Eq.3.# A# is# a#

constant,#!!#is#the#apparent#activation#energy#and#R#is#the#gas#constant.##

!"#$%&'&$(!!"#$ = !"#$(−!! !")########################################################Eq.3#

The#mass#transport#is#considered#to#be#the#controlling#mechanism#at#high#temperature#and#pressure.#

Parameters#controlling#the#mass#transport#are#concentration#of#reactants,#thickness#of#the#boundary#

layer,#and#diffusivity#of#the#precursors#see#Figure#3.#The#CVD8process#parameters#that#can#control#the#

above# stated# factors# are# the# deposition# temperature,# pressure,# gas# flow# and# the# geometry# of# the#

reactor.#[13,#18]

3.2.2 Zr(C,N)&as&coating&

A#wide#range#of#elements#and#compounds#can#be#obtained#by#the#CVD8process;#this#is#one#reason#

why# the# process# is# very# useful.# A# coating# system# normally# consists# of# several# layers# with# different#

purposes.# A# common# coating# design# for# cemented# carbides# consists# of# a# starting# layer# of# TiN#

followed#by#a#layer#of#hard#Ti(C,N).#On#top#of#the#Ti(C,N)#there#is#a#bonding#layer,#of#a#Carbon8Oxide8 Nitride# or# an# oxide# before# the# finishing# Al2O3# is# deposited.# Each# layer# has# their# own# required#

properties#for#the#deposition#meaning#that#the#first#layers#will#be#exposed#to#temperature#changes#

during#manufacturing.#The#typical#temperature#range#for#the#process#is#70081100˚C,#where#the#range#

7008900˚C# is# called# medium# temperature# CVD,# MTCVD.# [20]# TiN# and# Ti(C,N)# is# deposited# using#

MTCVD,#while#the#bonding#layer#and#Al2O3#are#deposited#at#higher#temperature.#The#advantage#of#

utilizing#MTCVD#for#coating#HM#is#that#one#obtains#a#columnar#growth#of#grains#and#fewer#reactions#

with# the# carbon# within# the# substrate.# It# has# also# shown# advantages# of# resulting# in# increased#

toughness#and#smoothness#compared#to#conventional#CVD#coatings.#[12]#Among#the#developed#and#

utilized#CVD#coatings#one#can#find#Ti,#Zr#and#Hf#carbon8nitrides#and#combinations#thereof.##

(10)

The#high#temperature#required#for#the#deposition#of#Al3O3#results#in#thermal#cracks#in#the#coating#by#

cooling#down# due#to#its#higher#Coefficient#of#Thermal#Expansion#(CTE)#compared#to#the# cemented#

carbide,# see# Figure# 4# for# CTE# of# three# of# the# materials.# After# deposition# tensile# stresses# will# be#

present#within#the#coating.#When#the#insert#is#later#used#in#machining#they#are#exposed#to#thermal#

cycling#again.#As#a#result#from#this#thermal#cycling,#comb#cracks#may#be#initiated#from#the#thermal#

cracks#that#may#be#resulting#from#the#manufacturing.#These#comb#cracks#are#the#primary#reason#for#

failure# of# todays# coated# inserts.# To# reduce# the# risk# of# formation# of# comb# cracks# and# prolong# the#

lifetime#of#a#milling#inserts,#interest#is#put#into#use#a#material#with#a#lower#CTE#to#replace#Ti(C,N)#in#

some#coating#systems.#A#schematic#picture#of#a#cross8section#of#a#commercial#coating#with#each#layer#

CTE#can#be#seen#in#Figure#4.#A#well8known#material#in#CVD#processes#is#Zr(C,N),#which#has#a#lower#

CTE,#but#whose#wear#resistant#properties#are#lower#than#Ti(C,N),#see#Table#1.#[21]##

Table'1.'CTE'and'Hardness'for'HM,'Ti(C,N)'and'Zr(C,N).'The'hard'metal'is'Sandvik'Coromant'substrate'479[17]'

#

#

#

#

#

Figure'4.'A'schematic'picture'with'CTE'for'the'' different'materials'to'the'right.'[21]'

The#difference#in#CTE#between#the#bulk#material#from#the#substrate#and#the#coating#will#decrease#if#

utilizing#Zr(C,N)#instead#of#Ti(C,N)#as#a#coating.#This#change#is#assumed#to#reduce#the#thermal#cracks#

in#the#coatings#after#production.##

The#general#equation#for#MTCVD#Zr(C,N)#can#be#seen#below,#Eq.4#where#Me#denotes#Zr#or#another#

cat#ion.#Eq.5#states#the#chemical#reaction#equation#for#the#formation#of#Zirconium#Carbon8Nitride#as#

a#product#of#Acetonitrile#(CH3CN)#and#Zirconium#tetra#chloride#(ZrCl4).##

2!"!"!+ !!!!" + ! +!

! !!→ 2!"!!,!!!,!+ !!!+ 2!"#$# Eq.4#

2!"!"!+ !!!!" +!!!!→ 2!"!!,!!!,!+ !!!+ 8!"## # Eq.5#

System' CTE' Hv'[GPa]'

HM'(479)' 586# 16#

Ti(C,N)' 9.2# 28#

Zr(C,N)' 7.7# 25#

Al2O3' 8.1# 20#

(11)

As# previously# stated# in# section# 3.2.1,# the# reactor# temperature# and# gas# flow# of# the# precursors# and#

partial# pressure# controls# the# events# within# the# reactor.# Therefore# it# is# of# interest# to# see# how# they#

affect#the#resulting#coating#regarding#microstructure,#growth#rate#and#texture.##

From#the#well8known#system#of#Ti(C,N)#films#deposited#by#CVD,#one#knows#that#the#film#affects#the#

properties#and#texture#of#the#film#deposited#on#top.#It#is#concluded#that#the#desired#Al2O3#will#grow#

on#a#film#with#(422)#as#crystal#direction.#From#studies#based#on#the#commonly#used#Ti(C,N)#there#has#

been# seen# that# the# ratio# of# the# partial# pressures# of# the# precursors,# (TiCl4/CH3CN),# can# be# used# in#

order#to#control#the#outcome#film#texture.#By#using#the#ratio#between#(TiCl4/CH3CN)#one#can#increase#

the#fraction#of#the#(422)#crystal#direction.#[22]#With#this#as#a#base#the#first#step#during#this#mapping#of#

influencing# factors,# parameters# were# selected# to# evaluate# the# influence# of# (ZrCl4/CH3CN)# ratio# on#

microstructure#and#texture.#[22]#From#the#deposition#of#Ti(C,N)#it#is#also#well8known#that#addition#of#

nitrogen#and#hydrochloric#acid#can#be#used#in#order#to#affect#the#growth#rate#within#the#charge#and#

influence#the#grain#size.##

# &

(12)

4 Experimental&

The#experimental#part#was#divided#into#several#blocks#with#respect#to#the#different#parameters#to#be#

evaluated.# This# is# performed# in# order# to# map# how# the# parameters# in# the# process# influences# the#

growth# rate# and# micro# structure# of# the# Zr(C,N)# coating# in# particular# grain# size# and# texture.# The#

experiments#were#designed#in#a#sequential#manner.#The#following#parameters#were#varied;#

• ratio#of#ZrCl4/CH3CN#

• addition#of#Nitrogen#(N)##

• addition#of#Hydrochloric#acid#(HCl)##

• reactor#temperature#

• total#gas#flow#

#

4.1.1 Thermodynamic&calculations&

Thermodynamic# calculations# for# reactions# in# the# CVD8reactor# can# only# be# used# as# guidelines# for#

developing#reasonable#experiments.#They#can#be#good#to#use#before#performing#experiments#since#

one#can#conclude#whether#the#system#is#stable#or#not#at#the#desired#temperature#and#pressure#with#a#

specific# concentration# of# the# precursors.# This# was# done# in# a# computational# program# named#

EKVICALC.# The# Gibbs# free# energy# is# calculated# with# the# amount# of# the# thermodynamically# stable#

phases#at#a#specific#temperature,#pressure#and#amounts#of#the#present#precursors.#The#Gibbs#free#

energy#is#stated#in#Eq.2.#

4.1.2 ThermalACVD&process&

The#reactor#system#used#at#Sandvik#Coromant#in#Västberga#consists#of#a#CVD#reactor#Bernex#325#S#

from#Ionbond.#This#is#thermally#heated#and#in#each#batch,#27#trays#can#be#placed.##

The#precursors#used#are#in#gas,#liquid#or#solid#state.#The#CH3CN#is#in#liquid#phase#and#while#used#in#

the#process#it#is#vaporized#by#dropping#the#liquid#into#a#heated#mixing#chamber#at#a#specific#ml/h.#To#

this#mixing#chamber#H2#and#N2#is#added,#the#flow#rate#is#controlled#by#mass#flow#meters.#This#mixing#

chamber#is#heated#to#200˚C.#The#TiCl4#used#for#deposition#TiN#as#the#starting#layer#is#also#in#liquid#

state#and#is#vaporized#in#the#mixing#chamber.#The#Zr#source#used#for#the#deposition#of#Zr(C,N)#is#ZrCl4.#

Zr(s)#is#heated#in#a#generator#up#to#360˚C,#ZrCl4#is#formed#by#reaction#of#HCl#and#Zr.#ZrCl4#(g)#is#mixed#

with#the#other#gases#just#before#the#entrance#to#the#reactor.#All#gases#used#are#added#to#the#reactor#

in# heated# pipes# and# the# outlet# of# the# reactor# is# heated.# The# outgoing# gases# from# the# reactor# are#

passed#by#a#cold#trap#before#further#control#and#handling.#A#schematic#picture#of#the#system#with#

gases#and#the#reactor#can#be#seen#in#Figure#5,#note#that#in#that#system#the#liquid#precursors#are#being#

vaporized#by#a#bubbler#which#is#not#the#technique#used#in#the#experiments#performed#in#this#theses.#

In#this#figure#one#can#also#see#that#the#gas#is#lead#up#through#the#reactor#by#a#vertical#pipe#and#is#

distributed#by#laminar#flow.#Figure#6#shows#the#trays#while#stacking#in#the#Västberga#system.##

(13)

Figure'5.'A'schematic'picture'of'a'CVD?system.' #

'

Figure'6.'A'picture'of'the'trays'stacked'in'the'reactor'at' #

Västberga.'

#

In#the#reactor,#21#inserts#were#used#for#the#evaluation#of#the#deposition#process.#They#were#placed#

on#level#5,#15#and#25#within#the#reactor.#On#each#tray#six#inserts#were#placed,#two#in#the#centrum,#c,#

two#in#the#middle,#m,#and#two#in#the#periphery,#p.#On#level#15,#extra#inserts#was#placed#in#position#m#

for#eventually#further#investigations.#The#positioning#of#the#inserts#can#be#seen#in#Figure#7.#

All#experiments#were#performed#in#control#furnace#pieces#(SNMA#geometry,#479#type),#from#Sandvik#

Coromant.#

Figure' 7.' A' magnified' figure' of' the' positioning' of' the'#

control' furnace' pieces.' Note' that' while' performing' a' experiment' they' are' surrounded' by' inserts' in' order' to' simulate'a'normal'run.'

#

#

(14)

4.2 Characterization&methods&

After#manufacturing,#the#inserts#were#characterized#with;#

• Light#Optical#Microscope,#LOM##

• Scanning#Electron#Microscope,#SEM#

• X8ray#diffraction,#XRD##

The#coated#inserts,#see#Figure#9,#were#embedded#in#Bakelite,#Fapsa,#see#Figure#8#and#mechanically#

polished#in#three#steps:##

1. polished#down#1mm#at#90N#

2. polished#with#9µm#diamond#slurry#for#20min#at#65N##

3. polished#with#1µm#diamond#slurry#for#20min#at#65N.##

After#the#third#step#no#visible#scratches#should#be#present#in#the#sample.#

4.2.1 Light&optical&microscope&(LOM)&

The# coating# thickness# for# all# the# samples# was# measured# at# 2000x# magnification# in# the# LOM.# With#

these# measurements# the# growth# rate# distribution# of# coating# thickness# is# determined# for# each#

experiment.#All#thickness#measurements#were#done#at#position#2,#200µm#to#the#right#of#the#upper#

left#edge#see#Figure#9.#After#LOM#evaluation#the#inserts#are#polished#with#SiO2#particles#in#order#to#

prepare#it#for#the#cross8section#SEM#analysis.##

4.2.2 Scanning&electron&microscopy&(SEM)&

In# the# SEM# two# investigations# are# performed;# first# the# surface# is# observed# in# order# to# control# the#

microstructure,# and# secondly# the# cross8section# is# observed.# The# SEM# micrographs# are# taken# on# a#

position# marked# by# a# “x”# in# Figure# 9.# The# inserts# embedded# in# the# Bakelite# from# the# LOM# are#

observed#in#order#to#study#the#grains#structure#and#visually#estimate#the#size#of#the#grains#compared#

to#the#other#inserts.##

4.2.3 XAray&diffraction&(XRD)&

The# coatings# were# also# evaluated# with# XRD,# in# order# to# get# the# texture# of# the# coating.# The# XRD# is#

performed# on# the# clearance# insert# that# is# perpendicular# to# gas# flow# during# the# CVD8process.# The#

texture#coefficients#(TC(hkl))#are#evaluated#from#diffractograms#and#defined#as##

!" ℎ!" =!!(!!")

!(!!")

!

!

!(!!")

!!(!!")

!!!!

!!# # Eq.6#

Where# l(hkl)# is# the# measured# intensity# of# the# (hkl)# reflection,# l0(hkl)# is# the# standard# intensity#

according#to#ICDD’s#PDF8card#No.#4281489,#n#is#the#number#of#reflections#used#in#the#calculation.#(hkl)#

reflections#used#are;#(111),#(200),#(220),#(311),#(331),#(420)#and#(422)#when#possible.##

It#is#also#possible#to#measure#the#edge#length#which#gives#information#about#the#C8N#relationship#so#

that#the#levels#can#be#measured.#The#edge#length#is#a#variable#that#can#be#found#as#x#in#Zr(CX,N18X).##

(15)

Figure'8.'Furnace'control'pieces'embedded'in'Bakelite'#

from'the'top,'position'c,'m,'p.'

#

Figure'9.'Zr(C,N)'coated'control'insert.'#

'

#

#

# # #

# &

(16)

5 Results&

A#number#of#experiments#have#been#performed#with#systematic#change#of#the#process#parameters#in#

order# to# conclude# how# the# different# process# parameters# affect# the# coating.# All# of# the# XRD#

measurements#were#done#on#the#inserts#positioned#at#n15m#for#each#experiment,#see#chapter#4.1.2#

for#explanation#of#designation.#In#all#experiments#a#starting#layer#of#TiN#is#deposited#on#the#substrate#

before#depositing#Zr(C,N).#Throughout#the#experiments#the#TiN#and#Zr(C,N)#is#deposited#at#930˚C#and#

the# pressure# is# set# to# be# constant# at# 160mbar# when# deposition# TiN# and# 55mbar# when# deposition#

Zr(C,N)#if#nothing#else#is#stated.#

5.1 Flow&ratios&dependence&&

5.1.1 CH3CN&flow&dependence&

The#ratios#effect#on#the#coating#was#the#first#parameter#to#be#examined;#the#only#parameter#to#be#

changed# within# this# series# was# the# percentage# of# acetonitrile.# Three# different# experiments# were#

executed#with#a#constant#percentage#of#ZrCl4.#The#percentage#of#the#two#precursors,#the#growth#rate#

for#the#three#extreme#points,#average#coating#thickness#and#the#standard#deviation#(σ),#can#be#seen#

in# Table# 2.# The# average# thickness# and# the# standard# deviation# are# calculated# from# all# nine# inserts#

within# each# batch.# σ# denotes# the# standard# deviation# in# coating# thickness# within# each# experiment,#

and#can#be#used#to#compare#the#spread#distribution#between#the#coating#runs.##

Table'2.'Growth'rate'and'thickness'parameters'of'the'CH3CN'flow'dependence.'

(ZrCl4/'CH3CN)# id' ZrCl4##

%#

CH3CN#

%#

Growth'rate'[µm/h]# Average' thickness'

[µm]' N5c' N15m' N25p' σ#

2# 14JP33# 2.71# 1.36# 0.48# 1.02# 1.16# 4.0# 1.3#

4# 14JP32# 2.73# 0.68# 0.74# 1.14# 1.00# 5.0# 1.1#

6# 14JP28# 2.74# 0.46# 1.26# 1.46# 0.18# 4.9# 3.0#

#

SEM#micrographs#of#the#surface#showing#the#microstructure#for#the#three#most#interesting#positions#

from# the# experiments# involved# in# this# series# (see# Figure# 10).# In# Figure# 11# one# can# see# the# cross8 section#of#the#coating.#For#experiments#included#in#this#series#no#XRD#was#performed.#

#

#

#

#

# #

(17)

# n5c' n15m' n25p' #

14JP33'

# # #

#

14JP32''

# # #

#

14JP28'

# # #

#

Figure'10.'All'SEM'micrographs'of'the'surface'(a)'14JP33'n5c'(b)'14JP33'n15m,'(c)'14JP33'n25p,'(d)'14JP32'n5c,'(e)'14JP32' n15m,'(f)'14JP32'n25p,'(g)'14JP28'n5c,'(h)'14JP28'n15m,'(i)'14JP28'n25p'

#

#

#

#

#

#

#

#

#

#

#

#

a b c

h i g

f e

d

(18)

# n5c' n15m' n25p' #

14JP33'

# # #

#

14JP32''

# #

# #

14JP28'

# # #

#

Figure'11.'All'SEM'micrographs'of'the'cross?section'of'the'coating'with'corresponding'thickness'(a)'14JP33'n5c'(b)'14JP33' n15m,'(c)'14JP33'n25p,'(d)'14JP32'n5c,'(e)'14JP32'n15m,'(f)'14JP32'n25p,'(g)'14JP28'n5c,'(h)'14JP28'n15m,'(i)'14JP28' n25p'

5.1.2 ZrCl4&flow&dependence&

A#series#of#experiments#with#varying#ratios#but#with#a#constant#partial#pressure#of#acetonitrile#was#

performed.#In#Table#3#one#can#see#the#results#for#the#experiments.#The#XRD#results#can#be#found#in#

Table#4.#

Table'3.'Growth'rate'and'thickness'parameters'of'the'ZrCl4'flow'dependence'study.'

(ZrCl4/'CH3CN)' id' ZrCl4##

%#

CH3CN#

%#

Growth'rate'[µm/h]# Average' thickness'

[µm]' N5c' N15m' N25p' Σ#

2# 15LE11# 0.92# 0.46# 0.62# 0.68# 0.86# 4.14# 0.8#

4# 15LE03# 1.83# 0.46# 1.44# 0.96# 0.56# 5.0# 1.6#

6# 14JP28# 2.74# 0.46# 1.26# 1.46# 0.18# 4.9# 3.0#

a b c

h i g

f e

d

2,4µm 5,1µm 5,8µm

6,3µm 7,3µm 0,9µm

5,0µm 5,7µm

3,7µm

(19)

Table'4.'Texture'coefficient'of'the'ZrCl4'flow'dependence'study.'

TC# a:'Å# (111)# (200)# (220)# (311)' (331)' (420)' (422)'

Ratio#2,15LE11# 4.640# 0.04# 0.01# 2.83# 0.37# 1.90# 0.54# 1.32#

Ratio#4,15LE03# 4.639# 0.20# 0.01# 3.34# 0.66# 1.73# 0.53# 1.40#

Ratio#6,14JP28## 4.639# 0.15# 0.14# 1.97# 1.16# 1.57# 0.48# 2.35#

#

SEM# micrographs# of# the# surface# and# cross8section# that# reveals# the# Zr(C,N)# microstructure# when#

changing#ZrCl4#flow#can#be#seen#in#Figure#12#and#Figure#13#below.##

# n5c' n15m' n25p' #

15LE11'

# # #

#

15LE03''

# # #

#

14JP28'

# # #

#

Figure'12.'All'top'view'SEM'micrographs'of'the'surface'(a)'15LE11'n5c'(b)'15LE11'n15m,'(c)'15LE11'n25p,'(d)'15LE03'n5c,' (e)'15LE03'n15m,'(f)'15LE03'n25p,'(g)'14JP28'n5c,'(h)'14JP28'n15m,'(i)'14JP28'n25p'

#

#

#

a b c

d e f

g h i

(20)

# n5c' n15m' n25p' #

15LE11'

# # #

#

15LE03''

# # #

#

14JP28'

# # #

#

Figure'13.'All'SEM'micrographs'of'the'cross?section'of'the'coating'with'corresponding'thickness'(a)'15LE11'n5c'(b)'15LE11' n15m,'(c)'15LE11'n25p,'(d)'15LE03'n5c,'(e)'15LE03'n15m,'(f)'15LE03'n25p,'(g)'14JP28'n5c,'(h)'14JP28'n15m,'(i)'14JP28' n25p'

5.2 N2&flow&dependence&

Experiments# with# three# different# amounts# of# nitrogen# was# performed# and# compared# to# the#

experiment#15LE03,#where#the#N2#flow#was#zero.Table#5#summarizes#the#results#regarding#the#coating#

thickness.#The#results#from#the#XRD#measurements#can#be#found#in# Table#6.#All#experiments#were#

executed#with#a#ratio#of#partial#pressure#of#(ZrCl4/CH3CN)#of#4.##

Table'5.'Growth'rate'and'thickness'parameters'of'the'N2'flow'dependence'study.'

N2'

%# id' ZrCl4#

%#

CH3CN#

%#

Growth'rate''[µm/h]# Average' thickness'

[µm]' N5c' N15m' N25p' σ#

0## 15LE03# 1.83# 0.46# 1.44# 0.96# 0.56# 5.0# 1.6#

16.5## 15LE08# 1.83# 0.46# 0.68# 1.04# 0.92# 4.7# 0.7#

33## 15LE04# 1.83# 0.46# 0.44# 0.60# 0.60# 3.8# 1.0#

a b c

d e f

g 6,3µm h 7,3µm i 0,9µm

3,1µm 3,4µm 4,3µm

7,2µm 4,8µm 2,8µm

(21)

Table'6.'Texture'coefficients'of'N2'flow'dependence'study.'

TC# a:'Å# (111)# (200)# (220)# (311)# (331)' (420)' (422)'

0%N2,#15LE03# 4.6392# 0.20# 0.01# 3.34# 0.66# 1.73# 0.53# 1.40#

16.5%N2,15LE08# 4.6389#

#

0.13# 0.02# 3.45# 0.67# 1.66# 0.47# 1.51#

33%N2,#15LE04# 4.637# 0.11# 0.12# 4.18# 0.27# 1.37# 0.57# 0.38#

#

# n5c' n15m' n25p' #

15LE03'

# # #

#

15LE08''

# # #

#

15LE04'

# # #

#

15LE06'

# # #

#

Figure'14.'Top'view'SEM'micrographs'of'the'surface'(a)'15LE03'n5c'(b)'15LE03'n15m,'(c)'15LE03'n25p,'(d)'15LE08'n5c,'(e)' 15LE08'n15m,'(f)'15LE08'n25p,'(g)'15LE04'n5c,'(h)'15LE04'n15m,'(i)'15LE04'n25p'(j)'15LE06'n5c'(k)'15LE06'n15m'(l)'15LE06' n25p'

a

d

c b

j

i h

g

f e

l k

(22)

# n5c' n15m' n25p' #

15LE03'

# # #

#

15LE08''

# # #

#

15LE04'

# # #

#

15LE06'

# # #

#

Figure'15.'All'SEM'micrographs'of'the'cross?section'of'the'coating'with'corresponding'thickness'(a)'15LE03'n5c'(b)'15LE03' n15m,'(c)'15LE03'n25p,'(d)'15LE08'n5c,'(e)'15LE08'n15m,'(f)'15LE08'n25p,'(g)'15LE04'n5c,'(h)'15LE04'n15m,'(i)'15LE04' n25p'(j)'15LE06'n5c'(k)'15LE06'n15m'(l)'15LE06'n25'

5.3 HCl&flow&dependence&

Two#experiments#were#performed#with#the#experiment#15LE03#as#the#reference#with#addition#of#two#

different#amounts#of#hydrochloric#acid:#8%#and#2%.#Results#regarding#the#coating#thickness#can#be#

seen#in#Table#7.#XRD#measurements#weren’t#performed#as#a#result#of#the#thin#coating#resulting#from#

the#experiments.#All#experiments#performed#with#a#ratio#of#partial#pressure#of#(ZrCl4/CH3CN)#of#4.#

#

#

# a

f a e

a d

a

c a b

i h a

a g

a

l a k

a j

a

7,2µm 4,8µm 2,8µm

4,6µm 5,2µm

3,4µm

3,0µm 4,0µm

2,2µm

3,6µm 3,6µm

2,4µm

(23)

Table'7.'Growth'rate'and'thickness'parameters'for'the'HCl'flow'dependence'study.'

HCl'

%# id' ZrCl4#

%#

CH3CN#

%#

Growth'rate'[µm/h]# Average'' thickness''

[µm]' N5c' N15m' N25p' σ#

0# 15LE03# 1.83# 0.46# 1.44# 0.96# 0.56# 5.0# 1.6#

2# 15LE10# 1.83# 0.46# 0.28# 0.24# 0.24# 1.25# 0.1#

8# 15LE05# 1.83# 0.46# 0.11# 0.10# 0.08# 0.52# 0.1#

#

#

# n5c' n15m' n25p' #

15LE03'

# # #

#

15LE10'

# # #

#

15LE05'

# # #

#

Figure'16.#Top'view'SEM'micrographs'of'(a)'13LE03'n5c'(b)'15LE03'n15m'(c)'15LE03'n25p'(d)'15LE10'n5c'(e)'15LE10'n15m,' (f)'15LE10'n25p,'(g)'15LE05'n5c,'(h)'15LE05'n15m,'(i)'15LE05'n25p'

#

#

#

#

a b c

d e f

i h

g g

(24)

# n5c' n15m' n25p' #

15LE03'

# # #

#

15LE10'

# # #

#

15LE05'

# # #

#

Figure'17.#All'SEM'micrographs'of'the'cross?section'of'the'coating'with'corresponding'thickness'(a)'13LE03'n5c'(b)'15LE03' n15m'(c)'15LE03'n25p'(d)'15LE10'n5c'(e)'15LE10'n15m,'(f)'15LE10'n25p,'(g)'15LE05'n5c,'(h)'15LE05'n15m,'(i)'15LE05'n25p'

5.4 Temperature&dependence&

A# series# of# experiments# were# performed# with# different# temperatures.# The# experiments# were#

performed# at# 870# ˚C# and# 900# ˚C# and# compared# to# the# previous# experiment# 15LE03# at# 930°C.# All#

experiments#were#performed#with#the#same#gas#flows#and#with#the#deposition#temperature#of#the#

starting#layer#the#same#as#the#deposition#temperature#of#the#layer#of#Zr(C,N).#Table#8#and#Table#9#

shows#the#results.##

# '

0,50µm

0,53µm 0,39µm

1,36µm

d e 1,24µm f 1,20µm

a b c

g

g h i

7,2µm 4,8µm 2,8µm

(25)

Table'8.'Growth'rate'and'thickness'parameters'of'temperature'dependence'study.'

Temp' ZrCl4#

[˚C]'

id' Temp'

TiN'[˚C]'

ZrCl4#

%'

CH3CN#

%#

Growth'rate'[µm/h]# Average' thickness'

[µm]' N5c' N15m' N25p' σ#

870# 15LE15# 870# 1.83# 0.46# 0.44# 0.54# 0.36# 1.9# 0.9#

900# 15LE14# 900# 1.83# 0.46# 0.42# 0.74# 0.66# 3.0# 1.0#

930# 15LE03# 930# 1.83# 0.46# 1.44# 0.96# 0.56# 5.0# 1.6#

#

Table'9.'Texture'coefficients'of'the'temperature'dependence'study.'

TC# a:'Å# (111)# (200)# (220)# (311)# (222)' (331)' (420)' (422)*'

870˚C,#15LE15# 4.635# 0.40# 0.37# 2.33# 0.82# 0.36# 1.41# 0.62# 1.70#

900˚C,#15LE14# 4.636# 0.28# 0.38# 2.10# 0.99# 0.27# 1.60# 0.54# 1.85#

930˚C,#15LE03# 4.639# 0.20# 0.01# 3.34# 0.66# 0.13# 1.73# 0.53# 1.40#

#

#

# #

(26)

# n5c' n15m' n25p' #

870˚C' 15LE15'

# # #

#

900˚C' 15LE14''

# # #

#

930˚C' 15LE03#

# # #

#

Figure'18.'Top'view'SEM'micrographs'of'(a)'15LE15'n5c'(b)'15LE15'n15m'(c)'15LE15'n25p'(d)'15LE14'n5c'(e)'15LE14'n15m,' (f)'15LE14'n25p,'(g)'15LE03'n5c,'(h)'15LE03'n15m,'(i)'15LE03'n25p'

# #

a b c

e f d

i h

g

(27)

# n5c' n15m' n25p' #

870˚C' 15LE15'

# # #

#

900˚C' 15LE14''

# # #

#

930˚C' 15LE03#

# # #

#

Figure'19.'All'SEM'micrographs'of'the'cross?section'of'the'coating'with'corresponding'thickness'(a)'15LE15'n5c'(b)'15LE15' n15m'(c)'15LE15'n25p'(d)'15LE14'n5c'(e)'15LE14'n15m,'(f)'15LE14'n25p,'(g)'15LE03'n5c,'(h)'15LE03'n15m,'(i)'15LE03'n25p'

#

5.4.1 Starting&layer&temperature&dependence&

It# is# common# practice# to# start# all# CVD# processes# starting# with# the# deposition# of# a# thin# TiN8layer#

deposited# at# 930˚C# and# 160mbar.# In# order# to# investigate# how# a# decrease# in# temperature# during#

deposition#of#the#starting#layer#might#affect#the#texture#of#the#following#Zr(C,N)8layer.#In#experiment#

15JP07#TiN#was#deposited#at#885˚C#and#400mbar.#This#TiN#promotes#TC(422)#in#TiCN.#The#subsequent#

Zr(C,N)#coating#was#deposited#at#930˚C#and#55mbar.#In#Table#10#information#regarding#the#thickness#

of#the#coating,#growth#rate#and#average#thickness#is#shown.##

Table'10.'Growth'rate'and'thickness'parameters'of'starting'layer'temperature'dependence'study.'

Temp'TiN)'

[˚C]# id'

Temp' Zr(C,N)'

[˚C]'

ZrCl4#

%'

CH3CN#

%#

Growth'rate'[µm/h]# Average' thickness'

[µm]' N5c' N15m' N25p' σ#

930# 15LE08# 930# 1.83# 0.46# 0.68# 1.04# 0.92# 4.7# 0.7#

885# 15JP07# 930# 1.83# 0.46# 1.02# 0.9# 0.64# 3.7# 1.2#

2,2µm 2,7µm 1,8µm

7,2µm

2,8µm 4,8µm

a b c

g h

f

i

d 2,1µm e 3,7µm 3,3µm

(28)

Table'11'Texture'coefficients'of'starting'layer'temperature'dependence'study.'

TC# a:'Å# (111)# (200)# (220)# (311)# (222)' (331)' (420)' (422)*'

930˚C#,15LE08# 4.639# 0.13# 0.02# 3.45# 0.67# 0.10# 1.66# 0.47# 1.51#

885˚C,#15JP07# 4.636# 0.26# 0.02# 1.42# 1.46# 0.33# 1.28# 0.42# 2.81#

#

# n5c' n15m' n25p' #

930˚C' 15LE08'

# # #

#

885˚C' 15JP07'

# # #

#

Figure'20.Top'view'SEM'micrographs'(a)'15LE15'n5c'(b)'15LE15'n15m'(c)'15LE15'n25p'(d)'15JP07'n5c'(e)'15JP07'n15m'(d)' 15JP97'n25p'

# n5c' n15m' n25p' #

930˚C' 15LE08'

# # #

#

885˚C' 15JP07''

5,1µm 4,5µm 3,2µm #

a b c

f d e

a b c

e f d

µm µm µm

(29)

5.5 Total&gas&flow&dependence&

In#experiment#15LE12#the#influence#of#the#total#gas#flow#throughout#the#reactor#was#examined.#Table#

12#and#Table#13#summarize#the#results#from#these#experiments.#

Table'12.'Growth'rate'and'thickness'parameters'of'total'gas'flow'dependence'study.' '

Total'gas' flow' [l/min]#

id' ZrCl4#

%#

CH3CN#

%#

Growth'rate'[µm/h]# Average'' thickness''

[µm]' N5c' N15m' N25p' σ#

22# 15LE12# 2.74# 0.46# 0.70# 0.74# 0.52# 3.5# 0.6#

44# 14JP28# 2.74# 0.46# 1.26# 1.46# 0.18# 4.9# 3.0#

'

Table'13.'Texture'coefficients'of'total'gas'flow'dependence'study.''

TC# a:'Å# (111)# (200)# (220)# (311)# (222)' (331)' (420)' (422)*'

15LE12# 4.636# 0.20# 0.04# 3.78# 0.51# 0.13# 1.60# 0.65# 1.09#

14JP28# 4.638# 0.15# 0.14# 1.97# 1.16# 0.18# 1.57# 0.48# 2.35#

&

In#Figure#22(a)8(f)#SEM#micrographs#shows#the#surface#in#three#different#postions#in#the#reactor#for#

the# two# experiments.# The# cross8section# corresponding# to# these# 6# surface# pictures# can# be# seen# in#

Figure#23(a)8(f).##

# #

(30)

# n5c' n15m' n25p' #

15LE12''

# # #

#

14JP28#

# # #

#

Figure'22.'Top'view'SEM'micrographs'of'the'surface'(a)'15LE12'n5c'(b)'15LE12'n15m'(c)'15LE12'n25p'(d)'14JP28'n5c'(e)' 14JP28'n15m'(f)'14JP28'n25p!

#

# n5c' n15m' n25p' #

15LE12''

# # #

#

14JP28#

# # #

#

Figure'23.'SEM'micrographs'of'the'cross?section'of'the'coating'with'respective'thickness'(a)'15LE12'n5c'(b)'15LE12'n15m' (c)'15LE12'n25p'(d)'14JP28'n5c'(e)'14JP28'n15m'(f)'14JP28'n25p'

# &

a b c

d e f

a b c

d e f

3,5µm 3,7µm 2,6µm

6,3 µm

7,3µm

0,9µm

References

Related documents

In this work XRD was employed to characterise grown samples by, first – observing formation of the crystalline material (XRD in Bragg-Brantano geometry), then determination of the

The empirical investigation of public connection as critical media connection, playful public connection and historical public connection, is based on narrative analysis and embedded

In the study of gas-phase kinetics, we combine ab ini- tio methods and DFTs with conventional transition state theory to derive ki- netic parameters for gas phase

On the macroscopic scale (reactor scale), computational fluid dynamic (CFD) is a powerful method which allows predictions of heat and mass flow distributions, the types

The middle part SoCTRix PC Card symbolizes the platform board with power-supply and system- clock generation, a device for the Communication module and Base Band Digital Signal

The zeros of the NTF can be optimized by moving them from the origin (f = 0) and placing them in the signal-band such that the in-band noise power is minimized. This would improve

The analysis of literature and interview transcripts had two purposes: firstly, to identify dimensions and characteristics of biogas policies and come up with an appropriate model

De gör sig viktiga och börjar med hemligheter.””Det finns många faktorer som skulle kunna vara förödande för ungdomen om personalen inte är kompetent,