• No results found

Aquatic insect community structure inurban ponds: effects of environmentalvariablesJohan Andersson

N/A
N/A
Protected

Academic year: 2022

Share "Aquatic insect community structure inurban ponds: effects of environmentalvariablesJohan Andersson"

Copied!
42
0
0

Loading.... (view fulltext now)

Full text

(1)

Aquatic insect community structure in urban ponds: effects of environmental variables

Johan Andersson

Degree project inbiology, Master ofscience (2years), 2014 Examensarbete ibiologi 45 hp tillmasterexamen, 2014

Biology Education Centre and Department ofEcology and Genetics, Uppsala University

(2)

Table  of  Contents  

1.  ABSTRACT  ...  2  

2.  INTRODUCTION  ...  2  

3.  METHODS  ...  4  

3.1  STUDY  SITES  ...  4  

3.2  INSECT  SAMPLING  ...  5  

3.3  ENVIRONMENTAL  VARIABLES  ...  6  

3.4  VEGETATION  COVER  AND  SHORELINE  ...  6  

3.5  CHEMICAL  ANALYSIS  OF  WATER  SAMPLES  ...  7  

3.6  LAND  USE  AND  GIS  ANALYSIS  ...  7  

3.7  STATISTICAL  ANALYSIS  ...  8  

4.  RESULTS  ...  8  

4.1  PRINCIPAL  COMPONENTS  ON  ENVIRONMENTAL  VARIABLES  ...  8  

4.2  INSECT  RECORDS,  ABUNDANCE  AND  DIVERSITY  ...  10  

4.3  INSECT  ASSEMBLAGES  AND  POND  CHARACTERISTICS  ...  10  

4.4  RICHNESS,  ABUNDANCE  AND  DIVERSITY  ...  12  

5.  DISCUSSION  ...  13  

5.1  THE  EFFECT  OF  URBANIZATION  ON  AQUATIC  INSECT  COMMUNITY  STRUCTURE  ...  13  

5.2  ENVIRONMENTAL  EFFECTS  ON  SPECIES  RICHNESS,  ABUNDANCE  AND  DIVERSITY  ...  14  

5.3  SPECIES  DETERMINATION    HIGHER  TAXON  APPROACH  ...  15  

5.4  NEWT  PRESENCE  ...  16  

5.5.  SPECIES  OF  CONSERVATION  CONCERN  ...  16  

5.6  FINAL  CONCLUSION  ...  16  

6.  ACKNOWLEDGEMENTS  ...  17  

7.  REFERENCES  ...  17  

8.  APPENDICES  ...  21  

8.1  APPENDIX  1    SPECIES  LIST,  OCCURRENCE  AND  FREQUENCY  ...  21  

8.2  APPENDIX  2    INSECT  ORDER  SPECIFIC  RDA  BIPLOTS  ...  24  

8.3  APPENDIX  3    LAND  USE  DETAIL  SPECIFICATIONS  ...  26  

8.4  APPENDIX  4    POND  DESCRIPTIONS  ...  28    

   

(3)

1.  Abstract  

 

I  sampled  aquatic  insects  in  26  ponds  of  varying  types  in  the  urban  landscape  of   the  city  of  Stockholm  and  related  insect  community  structure  to  environmental   variables.  I  also  related  environmental  factors  to  species  richness,  diversity  and   abundance  of  the  sampled  aquatic  insects.  A  Redundancy  Analysis  (RDA)  showed   that  the  most  important  variables  in  explaining  insect  community  structure  was   the  remoteness  to  developed  area  and  the  amount  of  emergent  vegetation  in  the   ponds.  Species  richness  increased  with  distance  from  developed  area,  diversity   was  related  to  floating  vegetation  and  abundance  of  insects  increased  with   distance  from  developed  area  and  with  higher  amount  of  forestation  and   vegetation.  The  results  of  my  study  shows  that  urbanization  effects  divide  the   insect  community  into  clusters  of  species  that  are  tolerant  or  intolerant  to  effects   of  urbanisation.  One  internationally  red-­‐listed  species,  the  dragonfly  

Leucorrhinia  pectoralis  was  found  in  five  (19,2%)  of  the  ponds.  My  result  

suggested  two  important  factors  that  should  be  considered  when  planning  urban   ponds.  First,  it  is  important  to  re-­‐create  varying  types  of  ponds  and  include  green   buffer  areas  and  second,  plant  colonisation  should  be  facilitated  to  better  mimic   the  natural  states  of  ponds.  

2.  Introduction  

 

The  urban  landscape  is  continually  expanding  along  with  rising  population   levels.  The  proportion  of  people  living  in  urban  areas  is  forecasted  to  grow  from   50%  in  2008,  to  69%  globally  in  2050  (United  Nations  Population  Division   2011).  In  recent  years  the  field  of  conservation  biology  has  widened  its  

trajectory  from  a  view  of  preserving  pristine  ecosystems  to  also  include  areas   highly  influenced  by  human  activities  as  important  areas  for  nature  and  wildlife   conservation  (London  Biodiversity  Partnership  2001,  Harrison  &  Davies  2002,   Alvey  2006).  Such  areas  could  for  example  be  green  spaces  within  cities  

(Goddard  et  al.  2010),  which  is  defined  as  an  undeveloped  open  space  at  least   partly  covered  with  vegetation  including  community  gardens,  cemeteries  and   parks  that  often  contain  water  (EPA  2013).  

 

Studies  indicate  that  urbanization  degrades  biodiversity  through  various  

processes  including  e.g.  habitat  fragmentation  (Dickman  1987),  land  conversion   (Moore  1990)  and  introduction  of  alien  species  (Kowarik  2008).  The  future   projections  on  extinction  rates  are  depressive  and  the  risk  of  more  species   becoming  red-­‐listed  is  increasing  with  urban  development  (McDonald  et  al.  

2008).  However  it  has  also  been  shown  that  suburban  areas  contain  a  large   biodiversity  of  organisms,  often  higher  than  the  rural  outskirts  and  the  central   urban  areas.  This  is  due  to  a  broad  variety  of  different  habitats  (McKinney  2008).  

For  example,  the  common  frog  (Rana  temporaria)  in  Great  Britain  has  declined  in   rural  areas,  but  has  increased  its  abundance  in  urban  areas  (Carrier  &  Beebee   2003).  

 

Factors  important  for  a  stable  population  density  of  species  in  the  urban   landscape  differ.  For  some  species  landscape  barriers  hinder  migration  and  

(4)

dispersal  (Blakely  et  al.  2006),  whereas  the  major  concern  among  other  species   is  the  habitat  patch  quality  (Angold  et  al.  2006).  These  factors  might  be  especially   important  in  urban  areas  such  as  large  cities  because  of  the  high  fragmentation   and  the  low  habitat  quality.  Unfortunately  they  are  not  well  studied  in  large  cities   and  warrant  more  research  focusing  on  the  relationship  between  biodiversity   and  habitat  quality  in  these  areas.  

 Even  though  ponds  are  not  green  in  colour  they  are  an  important  part  of  green   spaces  (Fontanarosa  et  al.  2013).  The  proportion  of  green-­‐space  associated  with   water  can  be  quite  large  in  cities  (see  refs  in  Gledhill  et  al.  2008).  Traditionally   ponds  and  smaller  waters  were  filled  in  cities,  but  nowadays  many  ponds  are   often  restored  and  new  ones  created  (Gledhill  &  James  2012).  These  newly   created  ponds  are  used  for  urban  drainage,  nature  conservation,  ornament   features  and  more  (Sutherland  &  Hill  1995),  and  studies  have  suggested  that   ponds  are  important  for  human  quality  of  life  (Lees  &  Evans  2003).  

 

The  biodiversity  in  ponds  is  affected  by  many  abiotic  and  biotic  factors.  For   example,  it  has  been  shown  that  size  and  connectedness  of  the  ponds  affect  the   species  composition,  with  different  species  occurring  in  larger  ponds  than  in  a   set  of  smaller  ponds.  Interestingly,  a  few  smaller  ponds  can  even  harbour  larger   microfaunal  diversity  than  one  large  pond  (Oertli  et  al.  2002).  Many  life  history   traits  of  aquatic  insects  rely  on  interactions  with  plants.  The  relationships   between  species  richness  of  insects  and  plants  are  quite  well  studied  and  some   of  the  more  important  aspects  of  insect-­‐plant  interactions  are:  herbivory,   oviposition,  predator  evasion  and  foraging  (McGaha  1952).  Numerous  aquatic   insects  are  susceptible  to  fish  predation  and  presence  of  fish  has  been  shown  to   play  a  key  role  in  structuring  aquatic  insect  communities  (Bendell  &  McNicol   1987).  Additionally  the  local  water  chemistry  is  affecting  aquatic  insect   composition,  where  e.g.  pH  is  a  critical  factor  during  the  development  of  the   larval  stages  with  many  species  having  problems  coping  with  a  too  acidic   environment  (Bell  1971).  

 

Biodiversity  in  city  ponds  is  also  affected  by  land  use/land-­‐cover  and  perhaps   even  more  so  than  in  rural  areas  because  land-­‐cover  changes  are  extreme  in   cities.  While  we  have  some  knowledge  on  how  land-­‐cover  affects  biodiversity  for   terrestrial  systems  in  cities,  we  know  very  little  on  how  city  ponds  are  affected.  

For  terrestrial  systems  Loss  et  al.  (2009)  showed  that  bird  species  richness  was   higher  in  urban  cities  with  undeveloped  patches  and  heterogeneous  land-­‐cover   types.  Interestingly,  Tratalos  et  al.  (2007)  found  that  species  richness  of  birds  in   British  cities  showed  a  humped  shaped  relationship  with  housing  density,   suggesting  that  land-­‐cover  variables  do  not  necessarily  have  to  show  linear   relationships  with  biodiversity  variables.  With  regards  to  ponds  in  cities,  less   information  is  available  and  I  am  only  aware  of  one  study  that  focused  on  pond   biodiversity  and  environmental  land-­‐cover  variables.  In  that  study,  Goertzen  &  

Suhling  (2013)  found  that  sealed  area  (buildings  and  roads)  was  negatively   associated  with  pond  biodiversity.  

 

Since  many  of  the  urban  ponds  are  relatively  new  the  ecological  value  of  these   ponds  are  still  unknown  and  research  identifying  important  factors  affecting  the  

(5)

biodiversity  of  these  ponds  are  still  lacking  (Williams  et  al.  2008).  There  is   certainly  a  need  to  pinpoint  the  definitive  associations  between  biodiversity  and   environmental  variables  as  well  as  structural  landscape  features.  Such  

knowledge  is  important  for  city  planners  and  the  purpose  of  my  study  is  to   provide  this  knowledge.  

 

I  conducted  my  study  in  the  conurbation  of  the  Stockholm  capital  province.  This   is  Sweden’s  most  heavily  urbanized  area  consisting  of  an  archipelago  structure   with  a  mosaic  of  islands  and  suburbs  spreading  in  north-­‐south  direction  from  the   city  centre.  The  Swedish  landscape  has  a  long  history  of  ditching  and  draining   and  the  Stockholm  area  is  no  exception  (Jakobsson  2013).  Thus  the  landscape   has  been  transformed  and  reduced  of  important  wetland  habitats.  The  present-­‐

day  restorations  of  wetlands  in  Sweden  are  mainly  conducted  for  financial   benefits  and  reduction  of  agricultural  nitrogen  pollution  (Byström  1998).  It  has   also  been  recognized  as  a  cost  effective  way  to  reduce  nitrogen  emissions  in   urban  settings,  including  Stockholm,  where  wetlands  function  as  a  sink  of  

reactive  nitrogen  reducing  the  loading  and  eutrophication  of  surrounding  waters   (Gren  1994).  Both  constructed  and  natural  ponds  and  wetlands  often  contain  a   high  biodiversity,  today  considered  to  provide  important  ecosystem  services  and   amenity  values  in  urban  green  spaces  (Bolund  &  Hunhammar  1999).  The  

importance  of  ponds  for  urban  invertebrates  has  been  emphasized  along  with   the  importance  of  the  naturalness  of  green  spaces  (Moore  1990).  

 

In  this  study  I  ask  which  environmental  factors  affect  the  biodiversity  of  aquatic   insect  species  in  urban  city  ponds.  I  will  also  give  suggestions  on  what  can  be   done  in  urban  conservation  planning  to  create  a  high  biodiversity  in  these  ponds.  

 

3.  Methods  

 

3.1  Study  sites  

The  investigated  ponds  were  located  in  the  north  central  parts  of  Stockholm   (59°19'N,  18°4'E).  This  is  one  of  Sweden’s  most  highly  urbanized  areas  and  the   ponds  included  in  my  studied  were  situated  in  the  municipalities  Järfälla,   Sollentuna,  Solna,  Stockholm  and  Sundbyberg  (SCB  2010).    

 

Ponds  that  were  included  were  in  the  size  range  of  2  m2  to  2  ha,  using  the   definition  of  pond  by  Ponds  Conservation  (2002)  and  earlier  used  by  Gledhill  et   al.  (2008).  To  locate  ponds,  I  contacted  ecologist  and  official  water  

administrators  employed  at  the  municipalities.  In  addition,  I  searched  for  ponds   on  digital  overview  maps.  Twenty-­‐six  ponds  were  included  which  resulted  in   both  natural  and  constructed,  permanent  and  temporary,  both  old  (>100  years)   and  new  (one  year)  ponds  (Fig.  1).  Some  of  them  were  constructed  as  city  park   ponds  for  recreational  values  whereas  others  had  been  built  as  stormwater   ponds  to  collect  surface  runoff  and  prolong  turnover  from  surrounding  water   bodies  and  decrease  high  nutrient  and  waste/pollutant  loading.  No  golf  course  

(6)

ponds  were  included  among  the  selected  ponds.  The  invertebrate  fauna  of  golf   course  ponds  in  the  area  has  previously  been  studied  by  Colding  et  al.  (2009).    

     

Fig.  1.  Pond  locations  in  the  Stockholm  area.  Grey  areas  represent  in  falling  intensity;  developed     land,  forest,  other  open  area.  Water  area  is  represented  by  white.  Black  striped  lines  depict   municipality  borders  and  ponds  locations  are  symbolised  by  white  circles  with  black  outline.  See   Appendix  4  for  numbering  and  pond  characteristics.  Terrängkartan™  ©  Lantmäteriet  2010:  

Permission  I  2010/0058.  

 

3.2  Insect  sampling  

Aquatic  insects  were  sampled  between  May  15th  and  June  7th  2013.  I  restricted   my  sampling  to  four  insect  orders  that  are  easily  distinguishable  from  each  other   on  site:  Coleoptera,  Hemiptera,  Odonata  and  Trichoptera.  Sampling  of  these   orders  covered  species  with  different  roles  in  the  food  web,  both  herbivores  and   predators  from  various  functional  groups.  This  approach  has  the  advantage  of   simplifying  species  determination  and  is  conventionally  used  in  comparative   studies  (see  Simberloff  &  Dayan  1991).  I  sampled  the  aquatic  life  stages  of  the   selected  insects  orders  which  are  inhabiting  the  pond  and  thus  are  exposed  to   the  local  environmental  factors  for  an  extended  period  of  time  in  contrast  to   visiting  insects  i.e.  larvae  in  Odonata  and  Trichoptera  and  larvae  and  adults  in   Coleoptera  and  Hemiptera.  All  ponds  were  only  sampled  on  the  day  of  the  visits.  

For  collecting  insects  I  used  a  bottom  scoop  net  with  a  diameter  of  20  cm  and  a  

(7)

mesh  size  of  1,5  mm.  Six  samples  were  taken  in  each  pond  at  a  depth  of  2-­‐3  dm.  

The  net  was  swept  along  the  bottom  in  opposite  directions  (left  to  right)  eight   times  on  a  1  m  stretch,  which  constituted  one  sample.  By  using  six  samples  I   managed  to  cover  all  types  of  representative  microhabitats  along  the  shoreline:  

e.g.  soft  bottom,  hard  bottom  with  and  without  vegetation.  The  sampling  strategy   was  derived  from  the  guidelines  by  the  SEPA  (2006).  All  insects  were  

determined  to  order  at  the  pond  site  and  insects  from  the  four  orders  included  in   the  study  were  preserved  in  70%  ethanol,  stored  in  labelled  plastic  tubes  and   brought  back  to  the  laboratory  for  species  determination.  All  other  species  were   released  back  to  their  respective  ponds.  

     

Species  determination  of  Coleoptera  was  carried  out  by  Johannes  Bergsten   (Swedish  Museum  of  Natural  History).  Trichoptera  was  species  determined  by   Ulf  Bjelke  (Swedish  Species  Information  Centre)  and  I  determined  Hemiptera   and  Odonata.  Specimens  that  could  not  be  determined  to  species  level  were  still   included  in  the  final  analysis  and  set  to  family  or  genus-­‐level  and  hence  regarded   as  separate  taxa.  In  most  cases  these  specimens  were  early  instar  larvae.  Larvae   of  Coenagrion  pulchella  and  C.  pulchellum  are  not  distinguishable  and  were   therefore  regarded  as  same  species  in  my  analysis.  The  same  applies  to  three   cases  among  the  Trichoptera  were  larvae  could  not  be  distinguished  between   two  species.  These  were  i)  Limnephilus  affinis  and  L.  incisus,  ii)  Limnephilus   luridus  and  L.  ignavus  and  iii)  Oligotricha  stricta  and  O.  lapponica.  These  three   species  were  recorded  in  only  one  pond  each.  

 

3.3  Environmental  variables  

Most  environmental  variables  were  collected  on  the  same  date  that  I  sampled  the   insects.  Geographic  coordinates  in  RT90  2,5  GON  V  were  collected  for  each  pond   with  a  Garmin  Dakota  20  handheld  GPS  with  an  accuracy  of  5  meters  and  loaded   with  Friluftskartan™  Pro  v3.  After  the  insect  sampling  I  measured  maximum   depth  of  each  pond  with  a  carpenter’s  rule  by  wading  out  in  the  deepest  part  of   the  pond.  A  water  sample  for  chemical  analysis  was  collected  with  a  250ml   plastic  bottle  from  the  middle  of  the  pond,  approximately  30  cm  beneath  the   water  surface.  pH  was  estimated  on  site  with  a  portable  EcoSense®  pH10   pH/temperature  pen  submerged  in  the  water  sampled  for  chemical  analysis.  

During  the  visits  and  sampling  at  each  pond  I  also  noted  presence  of  fish,  Great   Crested  Newt  (Triturus  cristatus)  and  Common  Newt  (Lissotriton  vulgaris)  in  the   pond  by  means  of  visual  observations  and  catches  during  the  insect  sampling.  

For  an  overview  of  the  recorded  environmental  variables  refer  to  table  1.  

 

3.4  Vegetation  cover  and  shoreline  

Between  August  28th  and  August  30th  2013  I  revisited  the  ponds  in  order  to   estimate  vegetation  characteristics.  Vegetation  cover  of  the  ponds  was  estimated   visually  in  measures  of  tenths,  ranging  from  no  vegetation  at  all  (0/10)  to  full   cover  (10/10).  In  addition,  vegetation  cover  was  recorded  into  three  separate   categories;  floating  leaved  vegetation,  submerged  vegetation  and  emergent   vegetation.  I  also  estimated  the  percentage  of  barren  shoreline  (hard  surface   without  vegetation  e.g.  stones,  gravel)  and  bush  vegetated  shoreline  (vegetation   of  a  height  of  1  meter  or  above  within  2  meters  of  the  shoreline).  This  was  done  

(8)

by  walking  around  the  ponds  measuring  total  steps  and  steps  with  any  of  the  two   shoreline  types.  

 

3.5  Chemical  analysis  of  water  samples  

The  water  samples  collected  were  analysed  for  total  phosphorus,  total  nitrogen   and  total  organic  carbon.    

 

Total  phosphorus  was  analysed  using  the  method  described  by  Menzel  &  Corwin   (1965).  In  brief,  organically  bound  phosphorus  was  transferred  to  

orthophosphate  through  oxidative  hydrolysis  with  potassium  persulfate  and   thereafter  hydrolysis  was  performed  in  a  vaguely  acidic  environment  at  high   pressure  and  temperature  using  an  autoclave.  Afterwards  the  dissolved   phosphate  was  measured  using  the  Molybdate  Reactive  Phosphorus  method   where  a  spectrophotometer  was  used  to  measure  the  amount  of  

phosphomolybdenum  complex  to  which  the  amount  of  phosphorus  is   proportional.  

 

Total  nitrogen  was  measured  using  the  method  described  by  Rand  et  al.  (1976)   in  which  all  nitrogen  in  the  sample  was  transformed  to  nitrate  in  the  presence  of   a  strong  oxidizing  agent.  The  nitrate  was  then  analysed  using  a  

spectrophotometer.  

 

Total  organic  carbon  was  analysed  using  a  Shimadzu  TOC-­‐L  carbon  analyser  in   which  the  sample  is  first  freed  from  inorganic  carbon,  and  oxidized  under  high   temperature  after  which  the  resulting  CO2  is  measured  with  a  non-­‐dispersive  IR   gas  analyser  (Shimadzu  brochure,  Sugimura  &  Suzuki  1988).  

 

3.6  Land  use  and  GIS  analysis  

Terrain  and  land  use  around  the  ponds  was  estimated  with  the  software  ArcGIS   9  and  the  Terrängkartan™  map  from  Lantmäteriet.  Land  use  was  estimated  in  a   200-­‐meter  radius  buffer  zone  along  the  shoreline  of  the  ponds  and  excluded  the   pond  area  from  the  water  surface  land  use  category.  Smaller  ponds  were  not   marked  on  the  map  and  therefore  I  determined  the  centre  of  the  pond  (estimated   from  GPS  coordinates)  and  drew  a  200-­‐meter  radius  circular  buffer  zone  around   the  centre.  The  difference  in  total  area  between  these  two  approaches  differed  by   less  than  5%,  and  therefore  I  concluded  these  measures  to  be  comparable  for   estimating  land  use.  

 

The  following  land  use  categories  were  estimated  within  the  buffer  zones:  

coniferous  and  mixed  forest,  other  open  land,  low-­‐rise  buildings,  high-­‐rise   buildings,  water  surface,  arable  land,  leisure  homes,  industrial  land  and   precincts.  In  addition  I  estimated  the  distance  from  the  ponds  to  nearest  

developed  area,  and  for  each  pond  the  distance  to  nearest  inventoried  pond.  See   appendix  3  for  definitions  of  each  land  use  category.  

 

(9)

3.7  Statistical  analysis  

I  explored  and  explained  insect  community  structure  and  environmental   variables  using  a  multivariate  ordination  analysis.  Since  some  of  the  

environmental  variables  are  likely  to  be  correlated  I  used  a  Principal  Component   Analysis  (PCA)  to  reduce  the  26  recorded  environmental  variables  to  

uncorrelated  principal  components  (PCs).  For  explanation  of  the  PC  axes  I   considered  the  environmental  variables  with  a  factor  loading  of  at  least  ±0,7  to   be  highly  explanatory  and  included  variables  with  a  loading  of  at  least  ±0,5  for   interpretation  (Goertzen  &  Suhling  2013).  These  PCs  were  interpreted  as   meaningful  ecological  variables  depending  on  their  loading  on  each  respective   environmental  variable.  The  PCs  are  listed  depending  on  their  explanatory  value   with  PC1  axis  projecting  most  of  the  variance,  PC2  explaining  the  second  most   variance  uncorrelated  with  the  previous  axis  etc.  

 

The  relationship  between  insect  community  composition  and  environmental   variables  (the  principal  components)  was  explored  by  a  constrained  gradient   analysis,  redundancy  analysis  (RDA)  using  the  statistical  software  R  (R  Core   Team  2013).  The  insect  abundance  i.e.  the  total  number  of  specimens  per  species   and  pond  were  used  as  variables.  

 

In  order  to  assess  the  insect  diversity  of  the  ponds  I  used  the  following  metrics;  i)   species  richness,  ii)  Shannon-­‐Wiener  diversity  index  and  iii)  insect  abundance   (total  number  of  specimens  found).  I  correlated  these  measures  with  the  PCs   using  a  backwards  stepwise  multiple  regression  to  evaluate  whether  or  not  they   were  influenced  by  the  PCs.  

 

4.  Results  

 

4.1  Principal  components  on  environmental  variables  

Nine  PCs  had  eigenvalues  ≥  1,  and  together  they  explained  82,8%  of  the  total   variance  (table  1).  PC1  explained  19,4%  of  the  variance  and  had  a  high  loading   on  pond  circumference,  pond  area  and  distance  to  closest  pond  as  well  as  high   pH  but  had  high  negative  loading  on  nitrogen,  phosphorous  and  carbon.  PC1  is   therefore  associated  with  pond  size  and  primary  production.  PC2  had  high  

loadings  on  surrounding  forest,  submerged  vegetation,  bushy  shoreline  and  newt   presence  and  a  negative  loading  on  open  area  suggesting  that  PC2  is  

interpretable  as  woodland  and  vegetation.  The  high  loading  on  distance  to  built   area  for  PC3  imply  that  it  represents  remoteness  from  urban  areas.  It  also  has  a   high  loading  for  emergent  vegetation.  PC4  had  a  high  loading  on  adjacent  waters   (water  surface)  and  is  therefore  associated  with  nearby  water  (excluding  the   ponds  themselves).  It  also  got  a  negative  loading  on  adjacent  low-­‐rise  buildings,   roughly  proposing  a  contrasting  obstructive  effect  to  water  surfaces  as  semi-­‐

suitable  habitat  corridors  maybe  facilitating  connection  between  ponds.  

Interpretation  of  the  remaining  5  PCs  are  less  straightforward  since  none  of   them  have  positive  or  negative  factor  loadings  equal  to  or  above  0,7  and  in   addition  they  explain  less  than  7  %  of  the  variance  each.  PC5s  highest  factor  

(10)

loading  was  floating  leaved  vegetation  and  represent  the  different  species  of   vegetation  with  leaves  on  the  water  surface.  PC6s  highest  loadings  were  on   arable  land  and  emergent  vegetation.  PC7  and  PC8  had  no  variables  that  loaded   more  than  0,5.  The  relatively  high  loading  of  industry  land  on  PC9  should  be   interpreted  with  care  because  there  was  a  low  absolute  abundance  of  industry   area  in  the  dataset.      

 

Table  1.  Results  of  PCA  on  environmental  variables  at  ponds.  

Environmental  Variables   Factor  Loadings  and  Interpretation  

 

PC1   Size  &  

primary   product-­‐

ion  

PC2   Forestat-­‐

ion  and   vegetati-­‐

on  

PC3   Remo-­‐

teness   PC4   Other   water   areas  

PC5   Floating   vegetation  

PC6   Field   vegetati-­‐

on  

PC7  

  PC8  

  PC9  

Industry  

Pond  Circumference   0,797   -­‐0,084   -­‐0,369   -­‐0,072   0,165   -­‐0,029   0,174   0,166   -­‐0,006  

Pond  Area   0,779   0,105   -­‐0,290   0,052   0,114   -­‐0,048   0,031   0,321   0,171  

pH   0,744   0,038   0,378   0,358   -­‐0,094   0,153   -­‐0,077   -­‐0,105   -­‐0,032  

Total  Nitrogen   -­‐0,713   -­‐0,376   -­‐0,194   0,001   -­‐0,339   -­‐0,039   0,220   0,116   0,032  

Forest   -­‐0,082   0,791   0,036   0,348   0,021   -­‐0,099   0,355   0,018   0,005  

Other  open  land   0,368   -­‐0,721   0,426   0,017   0,129   -­‐0,156   0,232   0,052   -­‐0,097  

Distance  to  Built  Area   0,222   -­‐0,158   0,736   0,116   -­‐0,169   -­‐0,167   0,379   0,134   0,016  

Floating  Vegetation   -­‐0,677   0,044   -­‐0,042   0,125   0,539   0,148   0,069   -­‐0,093   -­‐0,200  

Distance  to  Closest  Pond   0,647   0,045   -­‐0,337   -­‐0,240   0,222   -­‐0,283   0,211   0,144   -­‐0,118  

Total  Organic  Carbon   -­‐0,632   0,016   -­‐0,427   0,044   -­‐0,358   -­‐0,201   0,278   0,279   0,003  

Total  Phosphorous   -­‐0,533   -­‐0,287   0,223   0,039   0,007   0,025   0,391   0,080   0,407  

Common  Newt  presence   -­‐0,065   0,696   0,447   0,088   0,095   -­‐0,138   -­‐0,174   0,148   -­‐0,131  

Submerged  Vegetation   0,134   0,671   0,192   -­‐0,088   0,152   -­‐0,091   0,089   -­‐0,235   0,313  

Bushy  Shoreline   -­‐0,151   0,556   -­‐0,397   0,441   -­‐0,033   -­‐0,029   0,326   0,091   0,145  

Low-­‐rise  buildings   -­‐0,135   0,537   -­‐0,387   -­‐0,583   -­‐0,246   0,072   -­‐0,215   -­‐0,070   -­‐0,094  

Crested  Newt  presence   -­‐0,049   0,524   0,414   -­‐0,456   0,074   -­‐0,102   0,046   -­‐0,135   0,326  

Emergent  Vegetation   0,275   -­‐0,003   0,506   -­‐0,083   -­‐0,290   0,532   -­‐0,021   0,465   -­‐0,031  

Water  surface   0,073   0,143   0,200   0,571   -­‐0,151   -­‐0,490   -­‐0,347   -­‐0,123   0,030  

Arable  land   0,184   -­‐0,037   -­‐0,051   0,122   -­‐0,368   0,610   0,183   -­‐0,403   -­‐0,039  

Industry   -­‐0,002   -­‐0,407   -­‐0,197   -­‐0,040   0,461   0,169   -­‐0,176   0,168   0,561  

Depth   0,279   0,272   -­‐0,338   0,040   0,293   0,183   0,397   0,040   -­‐0,342  

Fish  Presence   0,440   -­‐0,126   -­‐0,407   0,276   -­‐0,075   0,209   0,119   -­‐0,481   0,248  

Total  vegetation   -­‐0,399   0,396   0,414   0,017   0,405   0,468   0,100   0,109   -­‐0,051  

Barren  Shoreline   -­‐0,197   -­‐0,447   0,264   -­‐0,214   0,296   -­‐0,254   0,274   -­‐0,429   -­‐0,188  

High-­‐rise  buildings   -­‐0,386   -­‐0,248   -­‐0,206   0,489   0,312   0,131   -­‐0,344   0,136   -­‐0,074  

                   

Eigenvalue  Magnitude   4,856   3,919   3,089   1,818   1,672   1,578   1,442   1,267   1,051  

Variance  Proportion   0,194   0,157   0,124   0,073   0,067   0,063   0,058   0,051   0,042  

Bold:  High  factor  loading  ≥  0,7;  bold  and  italic:  moderate  factor  loading  ≥  0,5.  

   

(11)

4.2  Insect  records,  abundance  and  diversity  

I  recorded  65  autochthonous  species;  18  species  of  Trichoptera  with  3  groups  of   small  larvae  only  determined  to  genus,  7  species  of  Odonata  with  4  groups  of   small  larvae  only  determined  to  genus,  12  species  of  Hemiptera  with  4  groups  of   small  larvae  only  determined  to  family  level  and  28  species  of  Coleoptera  with  7   groups  of  small  larvae  determined  to  genus  level.  29  of  the  total  species  only   occurred  in  one  pond  (see  table  in  Appendix  1).  Species  richness  for  the  ponds   varied  between  1  and  20  species.  The  mean  number  of  species  per  pond  was   9,64  ±  6,11.  The  most  commonly  occurring  species  within  respective  order  were:  

Trichoptera;  Limnephilus  flavicornis  (11  ponds),  Odonata;  Coenagrion   puella/pulchellum  (11  ponds),  Hemiptera;  Notonecta  glauca  (5  ponds),   Coleoptera;  Haliplus  ruficollis  (12  ponds)  and  Hygrotus  inaequalis  (8  ponds).    

 

4.3  Insect  assemblages  and  pond  characteristics  

The  9  RDA  axes  explained  43,7%  of  the  total  variance.  The  RDA  found  that   species  composition  was  significantly  affected  by  PC3  (Remoteness)  (p  =  0,001)   and  PC6  (Field  vegetation)  (p  =  0,035)  and  almost  significant  on  PC2  

(Forestation  and  vegetation)  (p  =  0,058)  and  PC4  (Other  water  areas)  (p  =   0,052).  Hence  the  aquatic  insect  community  was  associated  with  remoteness  to   buildings,  emergent  vegetation  (PC3),  degree  of  surrounding  arable  land  (PC6)   and  to  some  extent  degree  of  surrounding  forest  and  pond  vegetation  (PC2),  as   well  as  degree  of  low  buildings  and  nearby  water  surface  (Fig  2  &  Fig  3).  

 

A  closer  look  at  the  RDA  1  and  2  showed  that  the  response  to  any  of  the   environmental  variables  is  not  uniform  among  any  of  the  insect  orders,  but   separate  taxa  respond  differently.  A  few  dragonfly  species  such  as  the  

Coenagrion  genus,  Libellula  quadrimaculata,  Leucorrhinia  pectoralis  and  Aeshna   grandis  seem  to  correspond  well  to  PC1  and  PC2  indicating  the  importance  of   pond  size,  nutrient  levels,  pond  connectedness,  vegetation  and  forest  

surroundings.  Lestes  sponsa  and  undefined  Aeshna  and  Lestes  species  seem  to  be   affected  by  PC4,  surrounding  water  surface  and  low-­‐rise  buildings  (Appendix  2,   Fig.  A3).    

 

Most  Coleoptera  species  are  clustered  in  the  centre  of  the  biplot  indicating  no  or   very  weak  responses  to  our  tested  environmental  variables  but  some  are  

scattered,  responding  to  certain  PCs.  Haliplus  ruficollis  is  associated  with  PC4,   Rhantus  sp.  with  PC3,  Hygrotus  inaequalis  with  PC1  and  PC2,  Hyphydrus  ovatus   with  PC8  and  Haliplus  immaculatus  with  PC7  (Appendix  2,  Fig.  A1).    

 

Among  the  Hemiptera  there  were  only  a  few  examples  of  insects  showing   responses  to  the  environmental  variables,  those  included;  Notonecta  glauca   which  was  weakly  associated  with  PC2,  and  Ilyocaris  cimicoides  which  was   weakly  associated  with  PC4  (Appendix  2,  Fig.  A2).  

 

Many  of  the  Trichoptera  did  not  seem  to  associate  with  any  of  the  PCs.  

Limnephilus  centralis  might  have  a  weak  association  to  PC1,  pond  size  and   nutrient  status  (Appendix  2,  Fig.  A4).  

 

(12)

Fig.  2.  RDA  ordination  biplot  of  insect  species  and  PCs,  zoomed  in  to  increase  resolution.  See    

appendix  2  for  biplots  for  specific  insect  orders.  Insect  species  are  abbreviated  with  first  letter  of   genus  and  first  three  letters  of  species  name.  Groups  are  abbreviated  with  first  three  letters  of   genus  followed  by  sp.  For  interpretation  of  PCs,  see  table  1.  

 

Fig.  3.  RDA  ordination  biplot  of  insect  species  and  PCs.  See  appendix  2  for  biplots  for  specific    

insect  orders.  Insect  species  are  abbreviated  with  first  letter  of  genus  and  first  three  letters  of   species  name.  Groups  are  abbreviated  with  first  three  letters  of  genus  followed  by  sp.  For   interpretation  of  PCs,  see  table  1.  

 

(13)

4.4  Richness,  abundance  and  diversity  

Species  richness  was  affected  by  PC3,  PC7  and  PC8.  Hence  more  species  rich   ponds  were  further  away  from  developed  areas  (Fig.  4)  and  had  more  emergent   vegetation  (Fig.  5)  as  well  as  a  low  influence  from  PC7  and  PC8,  which  is  

variation  not  explained  by  our  tested  environment  variables.  Abundance  was   affected  by  PC2  and  PC3  and  thus  vegetation  surrounding,  bordering  and  in  the   pond  positively  affected  the  total  abundance  of  insects.  Presence  of  both  species   of  newts  is  also  positively  affecting  the  total  number  of  insects.  There  was  a   significant  increase  in  both  abundance  of  insects  (t(25)abun=  3,25  p=  0,003)  and   species  richness  (t(25)sr=  2,22  p=  0,035)  between  ponds  with  no  newts  (Mabun=   28,9  SD=  ±35,4;  Msr=  7,3  SD=  ±5,6)  and  ponds  with  one  or  both  species  of  newts   (Mabun=  116,2  SD=  ±98,2;  Msr=  12,4  SD=  ±5,8).  Adjacent  low-­‐rise  buildings  are   also  included  into  PC2  and  have  a  small  positive  effect  on  insect  abundance  but   increasing  distance  to  built  area  is  also  positively  correlated  with  abundance  and   the  two  may  seemingly  stand  in  contradiction  to  each  other.  Diversity  was  

affected  by  PC5  which  is  correlated  to  the  amount  of  floating  vegetation  in  the   ponds  including  water  lilies  and  duckweed  (Table  2).    

 

Table  2.  Results  of  backward  stepwise  multiple  regression.  

Dimension   Variables   Unstandardized  Coefficients   Standardized  Coefficients   p-­‐value   Adjusted  R2  

    Beta   Standard  Error   Beta   t  

   

Richness   Constant   9,269   0,683   0,000   13,570   0,000   0,674  

  PC1   0,547   0,310   0,202   1,765   0,093  

 

  PC2   0,664   0,345   0,220   1,925   0,069  

 

  PC3   2,055   0,389   0,604   5,287   0,000***  

 

  PC7   1,472   0,569   0,296   2,588   0,018*  

   

PC8   2,359   0,607   0,444   3,889   0,001***  

Abundance   Constant   62,500   11,978   0,000   5,218   0,000   0,388    

 

PC1   8,897   5,436   0,256   1,637   0,117  

   

PC2   13,003   6,050   0,336   2,149   0,043*  

   

PC3   21,849   6,815   0,501   3,206   0,004**  

   

PC7   -­‐15,110   9,975   -­‐0,237   -­‐1,515   0,145  

Shannon  Index   Constant   1,466   0,107   0,000   13,709   0,000   0,385    

 

PC2   0,094   0,054   0,272   1,733   0,099  

   

PC3   0,095   0,061   0,244   1,557   0,136  

   

PC4   0,121   0,079   0,240   1,529   0,143  

   

PC5   0,207   0,083   0,392   2,500   0,022*  

   

PC6   0,167   0,085   0,307   1,959   0,065  

   

PC7   0,173   0,089   0,305   1,941   0,067  

   

(14)

 

Fig.  4.  Species  richness  plotted  against  distance  to  developed  area.  Species  richness  of  aquatic   insects  increases  with  distance  from  ponds  to  developed  areas.  

Fig.  5.  Species  richness  plotted  against  emergent  pond  vegetation.  Species  richness  of  aquatic    

insects  increases  with  the  relative  amount  of  emergent  vegetation.  

5.  Discussion  

 

5.1  The  effect  of  urbanization  on  aquatic  insect  community  structure  

Distance  from  ponds  to  buildings  and  the  amount  of  emergent  vegetation  where   the  two  environmental  variables  that  explained  the  majority  of  the  variation  in   insect  community  structure  in  urban  ponds.  It  emphasizes  the  importance  of   naturalness  of  the  pond  for  many  insect  species  and  shows  that  urbanization  can   divide  the  insect  community  by  supporting  urban  tolerant  species  and  pushing   away  other  species.  This  may  imply  that  the  urban  landscape  is  negatively   affecting  the  naturalness  of  the  ponds  and  may  actually  reduce  the  pond  quality.  

Hence,  the  further  away  from  developed  area,  the  more  suitable  habitat  are   available  for  many  aquatic  insects.  Booth  &  Jackson  (1997)  showed  that   urbanization  degrades  aquatic  systems  and  that  areas  with  just  10%  of   impervious  soils  (hard  impermeable  surface  layers  more  common  in  urban  

R²  =  0,31132  

0   5   10   15   20   25  

0,0   50,0   100,0   150,0   200,0   250,0   300,0   350,0   400,0  

Species  Richness  (n)  

Distance  to  developed  area  (m)  

R²  =  0,37385  

0   5   10   15   20   25  

0   0,1   0,2   0,3   0,4   0,5   0,6   0,7   0,8  

Species  Richness  (n)  

Emergent  vegetation  (frac)  

References

Related documents

changes in bacterial diversity. However, all studies that have been implemented on bacterial BEF relationships so far have been done in a closed and constant environment, and we

The results are presented as six main categories; Traditional responsibility in Chinese elderly care; Family’s financial ability and societal financing of care; “Xiao” in the form

The findings of this thesis demonstrate the significance of habitat as a structuring factor for tropical fish assemblages and predicts that coral death, subsequent erosion and

Similarly, the composition of cyanobacteria formed three clusters, stations D 1 E, A, and F, which were in relation to the oxygen concentrations at the stations (RNA data; Fig.

First the culture is based on problem-solving, which increase the efficiency of data study and analytical method whilst formalization tools are less efficient,

Taking this concept to visualization of hierarchical networks, the analogue is to show the highest ranking nodes in a module, the links between them with the highest flow, the names

However, if the marginal tax on housing wealth is sufficiently small compared to the marginal positional externality in period t + 1, the second best optimal policy includes a

Full-Potential Electronic Structure Method, Energy and Force Calculations with Density Functional and Dynamical Mean Field Theory, volume 167. Lichtenstein, John Wills, and