• No results found

II il

N/A
N/A
Protected

Academic year: 2021

Share "II il"

Copied!
25
0
0

Loading.... (view fulltext now)

Full text

(1)

Det här verket har digitaliserats vid Göteborgs universitetsbibliotek och är fritt att använda. Alla tryckta texter är OCR-tolkade till maskinläsbar text. Det betyder att du kan söka och kopiera texten från dokumentet. Vissa äldre dokument med dåligt tryck kan vara svåra att OCR-tolka korrekt vilket medför att den OCR-tolkade texten kan innehålla fel och därför bör man visuellt jämföra med verkets bilder för att avgöra vad som är riktigt.

Th is work has been digitized at Gothenburg University Library and is free to use. All printed texts have been OCR-processed and converted to machine readable text. Th is means that you can search and copy text from the document. Some early printed books are hard to OCR-process correctly and the text may contain errors, so one should always visually compare it with the ima- ges to determine what is correct.

01234567891011121314151617181920212223242526272829 CM

(2)
(3)

1 Utförande institution/Rappartutgivare

t Fiskeristyrelsen. tel. 031 176380

! Hydrografiska laboratoriet.

PROJEKTBESKRIVNING 2 Accessions™

4 Àrendebetaekning (Oiarienr)

LXj TITELBLADRAPPORTER

3 Datum

PR

1983 08 23 I *

i l it

c

J5

-Q *

c "U

II il

is s.i 1 ;

mM C jr JO

5 - 7...-..... ... *... « 7 Ml «HOiektRr

a Projekt

~11 Uppläggning 2 Komplettering 3 Avslutat

0 Ml rapport™

10 11 Kontraktnr 12 Startär 13 Slutär 14 Ml projektnr (t förek fall)

15 Finansierande organ

Fiskeristyrelsen

16 Projektbeskrivning/Rapportens titel och undertitel

The distribution of urea in the Baltic Sea.

17 Projektledare/Författare

Jorge C. Valderrama

IS Sammandrag (ange gärna målsättning, metod, teknik, resultat m m)

The vertical distribution of urea has been determined during a five-year period (from June 1976 to May 1981) at 21 different stations in the Baltic Sea on samples collected during 20 cruises. Results show pronounced seasonal variations with the highest concentrations (up to 1.86 pi) toward the end of spring, while the lowest (down to 0.10 yuM) were found during winter months. A total average of 0.32 p was calculated. Except for some stations in the western Baltic Sea (Arkona basin, Hand bight and Bornholm deep) the concentrations were notably higher above the halo- cline than below it. Areas around the Gulf of Finland and the Hand bight show ele­

vated average concentrations (0.48 and 0.36 yuM respectively) while the lowest ave­

rage were found in the central part of the Baltic i.e. north of the Gotland deep (0.27 yuM).

20 Förslag till nyckelord

19 Sammandraget skrivet av

Jorge C. Valderrama

Urea, Baltic Sea, seasonal variations.

21 Klasslflkationstyttem och klass

22 Indexterm (ange källa)

23 övriga bibliografiska uppgifter

Meddelande från Havsfiskelaboratoriet - Lysekil Nr 294 Institute of Hydrographic Research Series No 21

26 Hemligt I paragraf 27 Språk 28 Antel sidor 2» Pris

x| Nej Ja jämlikt § sekretesslagen Engelska 21

24 ISSN

25 ISBN

30 Projektbeskrivning/Rapporten beställt hos

Fiskeristyrelsen, Hydrografiska laboratoriet, Box 2566 403 17 Göteborg.

; Blanketten beställs hos

Ml LJÖDAT ANÄMNDEN

Postadress

Jordbruksdepartementet Fack

103 20 STOCKHOLM

Telefon 08 • 763 10 00

(4)

International Council for the Exploration of the Sea

C.M. 1983 /

c

Î 14

Hydrography Committee

THE DISTRIBUTION Off UREA IN THE BALTIC SEA

Jorge C. Valderrama

National Board of Fisheries

Institute of Hydrographic Research P.0. Box 2566

S-403 I? Göteborg SWEDEN

ABSTRACT

The vertical distribution of urea has been determined during a five-year period (from June 1976 to May 1981) at 21 diffe­

rent stations in the Baltic Sea on samples collected during 20 cruises. Results show pronounced seasonal variations with the highest concentrations (up to 1.86 uM) toward the end of spring, while the lowest (down to 0.10 yuM) were found during winter months. Å total average of 0.32 juM v/as calculated. Ex- oept for some stations in the western Baltic Sea (Arkona ba­

sin, Hand bight and Bornholm deep) the concentrations were notably higher above the halocline than below it. Areas around

the Gulf of Finland and the Hand bight show elevated average concentrations (0.48 and O.36 jiîî respectively) while the lo­

west average were found in the central part of the Baltic i.e, north of the Gotland deep (0,27 ^uK).

SOMMAIRE

La distribution verticale de l’urée a été déterminé pendant une période de cinq, ans (Juin 1976 à Mai 1981 ) dans 21 diffé­

rentes stations dans la Baltique sur des échantillons recuei­

llis dans 20 croisières. Les résultats montrent des variations saisonnières très distinctes, avec les plus hautes concentrations (jusqu'à 1,86 vers la fin du printemps, alors que les plus

(5)

2

basses (jusqu'à 0,10 yuM) ont été trouvées durant les mois d'hi­

ver. Une moyenne totale de 0,52 yuM a été calculée. Sauf dans quelques stations en Baltique occidentale (le bassin d'Arkona, la baie d'Hanô et le trou de Bornholm) les concentrations étaient notablement plus hautes au-dessus de l'halocline qu'au dessous.

Certaines zones autour du Golfe de Finlande et de la baie d'Hano montrent une moyenne plus elevée de concentrations (0,48 et 0,3-5 yuM, respectivement) tandis que les moyennes les plus basses ont

été trouvées dans la partie centrale de la Baltique, c'est-â-dire au nord du le trou de Gotland (0,27 jÆ.),

INTRODUCTION

Urea (carbaraid or carbonyldiamide) , HgN - CO - NH2, is excreted into the environment as an end product of nitrogen metabolism by many higher organisms and as a product of micro­

bial action on amino acids, purines and pyrimidines,

A considerable amount of urea found in some coas­

tal marine environments may be added by freshwater discharges, especially through sewage from densely populated areas, since man ana other terrestrial vertebrates represent a primary source of urea. In addition, drainage from agricultural regions also might contribute heavily if urea - based fertilizers are used

(Hemsen et al, 1974/.

Urea - decomposing bacteria have been shown to be present in both freshwater and marine environments (Steinmann, 1976). Marine phytoplankters have also been shown to utilize urea as a source of nitrogen, Most cf these are inhabitants of estuaries or inshore areas (Carpenter, 1972), which suggest that urea should be considered as an important part of the ni­

trogen reserve in coastal waters, especially where nitrogen is the limitating factor, and during periods when nitrate levels in the euphotic layer are minimal (Vaccaro, 1953).

During the two last decades, the distribution of urea in coastal and other oceanic waters has been studied. Ne­

well (1967) found concentrations as high as 1,54 ytiM in surface waters of the English Channel; McCarthy (1972) reported 0.27

(6)

to 0,50 pM in waters off La Jolla, California, and values up to O.54 pH in surface waters along the Peruvian coast? Hemsen (1971) found values from 0,27 to 2,50 pM in surface waters off the continental shelf between Panamå and Callao, Peru, and from 0,12 pM on the 1830 m depth line between Cape Cod and Cape May along the continental shelf of the northeast United States to high of 5*60 pïi within New York Harbor? Koroleff

0

974)

in

a preliminary study in Baltic waters reported values from 0,05 to 1,00 pM, and more recently, Steinmann (1976) re­

ported levels for the Kiel bight from 0,01 to 4,52 uM, To date, there have been rather few measurenraents of urea in the Baltic Sea,

The present report attempts to outline the results of a five-year study of urea levels at different stations in the Baltic Sea, For convenience, the area under investigation has been divided into section A, from Arkona basin (BY 2) through Karlsö deep (BY 38) to Landsort deep (BY 31)» and section B,

from Bornholm deep (BY 5) through Gotland deep (BY 15) to the Gulf of Finland (BY 23), as described in figure 1, Some stations were visited only few times. For that reason they have been grouped in order to get more representative values (BY 29/28, BY 27/26 ana BY 25/24/23).

About 4OOO samples, from 21 stations, obtained during the course of 20 cruises carried out during different seasons from June 1976 to May 1981, were analyzed.

MATERIALS AND METHODS

Urea was determined by the spectrophotometric me­

thod originally proposed by Newell et al. (1967) and modified mainly by Koroleff (1976). It is based on the reaction with diacetylmonoxime and semicarbazide in the presence of controlled amounts of a weak oxidant in a strongly acidic medium where chloride ions are included in excess to sensitize the reaction.

Manganous ions stabilize the resultant magenta coloured molecu­

lar complex and the presence of phosphate ions enables reasonable reproducibility to be achieved. Reaction takes place under heating at 70 °C. It is positive for compounds having the general formula

(7)

4.-

H-NH-CO-NH-Hg, where H^ is hydrogen or a single aliphatic radical and ii9 not an acyl radical. The reaction is quantitati­

ve for urea. Maximun absorbance occurs at 520 nm. When a 5 cm cell is used, concentrations from 0.10 to 10.0 pH of urea can be measured. At the 2 pM level the relative standard deviation is t 2.6$, whereas at the 0.2 pH level it has been estimated to be ±15$, liven if at the Baltic Intercalibration Workshop in Kiel (March 1977), no statistical treatment of the data were done, the deviations from the true values were within the error of the method (Grasshoff, 1977)»

The common ions present in the natural waters do not interfere, nor are there interferences by ammonia, leuci­

ne, tyrosine, cystine, arginine, lysine, histidine, taurine or uric acid. Thiourea and biurea react to some extent as do al- lantoine and citrulline. That might cause some problems in water samples having a high animal production (Hemsen, 1971), but all these compounds normally are not present in natural waters in large enough amounts to interfere with the method (K'oroleff, 1976). No interference from hydrogen sulphide in anoxic waters has been detected (Valderrama, 1979),

The samples were collected directly from the Hydro - Bios TPN polycarbonate water samplers together with samples for analysis of other nutrients, from the standard depths generally used in the Baltic. Aliquots of 100 ml were poured into glass bottles and 0.5 ml of a saturated HgCl^

solution was used as preservative. The samples were analyzed 4 to 6 weeks after collection in 25 ml replicates. Preserva­

tion tests showed that ures samples remain unalterable for at least two months after sampling using this procedure (Yal­

derrama, 1979).

With each series of samples replicates of blank and standard solutions at different concentrations (0.2, 0.5, 1.0, and 2,0 pM) were analyzed in order to calculate the

concentration factor of reagents, which for a 5 cm ceil should be close to 9.

(8)

RESIJLTS

Table I gives mean values of the vertical profile concentration of urea determined during each of the 20 cruises showing results for sections A and B, as for the total studied area (T). At the left of each column values in the water masses above (upper figure) and below (lower figure) the halocline, and at the right the total mean values for the all area are shown. Values are plotted in figures 2 and 3» Except for the cruise on June 1976 all measurenments show higher levels of concentration above than below the halocline.

From the Table I and figures 2 and 3 a pronoun­

ced seasonal variation of the concentration can be observed»

The highest values were determined during May and June and they may reach up to 0*49 pM (on an average) but some isolated values may reach up to 1,86 pH. The lowest levels were determi­

ned in January and on an average they may reach down to 0.17

pM

with some isolated values down to 0.10 pM.

V/hen a graph with the values obtained during all the different cruises is plotted for a »representative» year the figure 4 is obtained. During spring and early summer urea levels reach a maximun which decreases later during autumn and winter with two smaller maximums during late summer and autumn - early winter (respectively September and November — December)•

Tables II and III and figures 5 and 6 give a pic­

ture of the seasonal variation and distribution of the concen­

tration above and below the halocline for the different stations included in the two sections. The Hand bight (station HB in the section A) and the Gulf of Finland (Stations BY 25/24/23 in the section B) were the areas having the highest levels of concen­

tration, which is especially outstanding during spring months, respectively 0.55 end 0«o0 pM. In the Gulf of Finland these high levels were observed even during all other periods. Sta­

tions as Norkoping deep (BY 32), Fârîi deep (BY 20) and Ryss­

hålan (BY 8) presented the lowest average concentrations even daring spring.

(9)

6.~

Figure 7 show the average concentrations found during the entire investigated period for each station indica­

ting values above and below the halocline. The concentration average of all samples (section Å 0,32 pH and section B 0.31

even as for the levels above and below the halocline

(section A respectively 0»34 and 0.29 pH and section B respec­

tively 0.55 and O.27 pH). A total average of 0.32 pH for the entire investigated area was calculated, 0.35 and 0.28 pH for respectively above and below the halocline.

Figure 8 shows the integrated values of concen­

tration levels for the two sections during the four seasonal periods, they are nearly similar for both sections.

Except for stations BY 2 (during spring, summer and autumn), HB (during spring and summer), BY 39 (during

spring), and BY 5 (during spring) all other stations exhibit the highest concentrations above the halocline (Tables II and III, and figures 6 and 7)® The mentioned stations are located in the south - western part, that is near the only communica­

tions (through the Belts and Öresund) that the Baltic Sea has with the rest of the world ocean, and where the halocline is more pronounced, and where heavy salt water from the Kattegatt flows easterly as a boiton current below the outflowing brackish surface water.

The diffex-enoes in concentration levels of urea between the two water layers separated by the halocline are higher toward the eastern areas of the Baltic, especially du­

ring spring and summer. These differences may reach up to 77$

in the station BY 27/26 during spring and 78$ in the station BY 29/28 during summer (Table III and figure 6),

Figures 9 and 10 show the concentration isople- tes in a vertical profile for respectively section A and sec­

tion B during a typical spring period. The halocline level is indicated with a segmented line.

The results obtained during the investigated period suggest that the high urea levels measured above the

ERRATA:

Page 6, line 4» between "of" and "all", it should be said:

••• the two sections were nearly bhe same as the average of • • •

(10)

halooline and especially during spring and, to some extent, during autumn months, are connected with the primary produc­

tion, and in areas such as the Gulf of Finland and the Hand bight even with freshwater discharges from the surrounding densely populated areas. It is more difficult to explain why this pattern is inverted in the south-western part of the Baltic, As a preliminary explanation it may be assumed that it is connected with inputs arising from Öresund which repre­

sents another high populated area.

In the Baltic, nutrients such as nitrate, nitri­

te and ammonium build up during the winter months and in the euphotic zone they are consumed during a few weeks in spring.

An intensive primary production then occurs and the system becomes nitrogen limited during the end of spring and summer

(Rönner, 1983)* Therefore, urea may be considered an impor­

tant nitrogen reserve source in the Baltic Sea,

REFERENCES

Carpenter, E.J., C.C. Remsen, and S«¥. Watson (1972). "Utiliza­

tion of urea by some marine phytoplankters". Limnology and Oceanography, 17 (1972) 265 - 269,

Grasshoff, K. (1977). Report of the Baltic Iniercalibration 'Workshop, pp. 88, Interim Commission for the Protection of the Environment of the Baltic Sea.

Koroleff, F. (1974)* "On the determination of urea in sea water and some preliminary data from the Baltic". 9th Conferen­

ce of the Baltic Oceanographers» Paper No. 25 a. 1974»

Koroleff,?. (19?6), "Determination of urea". Ins E. Grasshoff (Editor), Methods of Seawater Analysis» Verlag Chemie, Weinheim, pp. 145 - 149»

McCarthy, J.J, and D. Kamykowski (1972). "Urea and other nitro­

genous nutrients in La Jolla Bay during February, March, and April 1970". Fishery Bulletin, JO (1972) 4 1261 - 1274.

Newell, B.S. (1967). "The determination of ammonia in seawater".

J. Mar. Biol. ass. U.K. 2? (196?) 271 - 280.

(11)

8.-

Kewell, B«8., B. Morgan» and J. Cundy (1967). ”The determination of urea in seawater", J. of Mar, Res, 25 (1967) 201 -202, Remsen, C.C. (19T1)• "The distribution of urea in coastal and

oceanic waters". Limnology and Oceanography, 16 (1971) 732 -740.

Remsen, C.C., E.J. Carpenter, and B.W. Schroeder (1974). "The ro­

le of urea in marine microbial ecology". In: Effect of the ocean environment on microbial activities, pp. 286-504.

2nd. US-Japan Conf. of Marine microbiology. Edited by R.

Colwell and R.T. Mori. University Park Press. Baltimore. USA.

Rönner, U. (1985). "Biological nitrogen transformations in mari­

ne ecosystems with emphasis on denitrification". Disserta­

tion, Dept, of Marine Microbiology, University of Gothem- burg. 45 PP.

Steinmann, J. (1976). "Untersuchungen über der bakteriellen Ab­

bau von Harnstoff und Harnsäure in der westlichen Ostsee".

Botanica Marina, 19 (1976) 47 - 58.

Vaccaro, R.E. (1963). "Available nitrogen and phosphorus and the biochemical cycle in the Atlantic off Hew England. J. of Mar. Res. 21 (1963) 284- 501,

Valderrama, J. (1979). "Ureahalten i Östersjön". Svenska Bavs- forskningsföreningen. Meddelande Hr. 14» pp. 54-65.

(12)

• • » *

G 3 ffi ß

Errri.i.!i uzrazirxiEn: nr~i~i:: .nxrrrn

rrxrxrxrrrm tr—r~m-~T-rr~r—mr :r ~ irnrrr.n:

* O

26*

(13)

10

TABLE I.- Average concentrations of urea (in juM) during 20 cruises to the Baltic Sea, pointing out the levels above and below the halocline.

Cruise Section A Section 3 TOTAL (T)

1976.O0.I6 - O6.23

08.24 - 09.08

11.22 - 12.04

1977.06.01 - 06.14

08.30- 09.20

11.22- 12.03

1978.01.24 - 01.31

O3.I8-O3.29

05.17 -06.01

08.22 -O9.O6

11.14- 11.23

i979.OI.l6-OI.i9

O5.29 - 06.16

08.21 -08.24

11.06 - 11.28

0.41 0,42 0.45

0.43 0.44

0.42 0.40 0.41

0.31 O.32 O.32

0.28 0.28

0.24 0,24 O.24

0.33 O.32 0.30

0.30 0.31

O.32 O.30 O.31

0.44 O.4I

0.40 0.36 O.42

0.35 0.30 0.32

O.32

O.3I 0.37

0.33 0.34

0.30 0.28 0.30

O.40 0.36 O.32

0.30 0,36

0.30 0.29 0.29

0.28 O.27 0.28

O.25 O.24

O.23 0.20 0.21

O.4I 0 « 40 0.44

O.40 O.42

0.58 0,37 O.33

0.49 0.45 0.47

0.39 0.48

0.37 0.29 O.32

O.27 0,39

0.32 0.34

0.26 O.25

O.25 0,25

0.32

0.31 0,34

0.32 0.33

0.31 0.29 0.30

0.31 0.28 0.34

0.31 0.33

0.22 0,26 0.25

0.38 0.36 0.39

0.34 0.53

0.33 0.30 0.31

O.27 0,26 O.27

0.24

O.27

0.23 0.19 0.21

0.28 O.27 O.27

0.24 0.28

O.27 0.20 O.23

0.43

0.28

O.3I

0.38

O.32

0.33

0.24

O.40

0.42

0.30

O.31

0.30

0.35

O.25

O.25

(14)

TABLE I (cont.).-

Section A Section B TOTAL (T)

1980.01.15 -01.22

05.28-06.13

10.27 - 11.13

1981.03.10-03.13

05.12-05.31

TOTAL AVERAGE

0.27

O.24

0.20

0.20 0.17

0.46

0.44

0.48

O.4O 0.34

O.24 0.22 0.22

0.20 0.20

O.25

O.24

0.21

0.22 0.18

0.38

0.38

0.36

0.37 0.34

0.34

O.32 0.35

0.29 O.27

0.19 O.23

0.18 0.21

0.42 0.47

0.36 0.43

0.21 O.23

0.20 0.22

0.20 O.23

0.20 0.22

0.35 0.37

0.35 0.36

O.31 0.35

0.28 O.32

(15)

urea

12

o

Figure2.-Averageconcentrationsofureameasuredduring20cruisestothe BalticSeapointingout thelevelsabove(o--0)andbelow(A-

-A)thehalocline.SectionA.

(16)

urea

o

Figure3.-Averageconcentrationsofureameasuredduring20cruisestotheBalticSeapointingout thelevelsabove(O

~Q)andbelow(A---S&)thehalocline.SectionB.

(17)

14

.H urea

0.20

i’igure 4»~ Characteristic mean values for the vertical profile concentration of urea in the Baltic Sea during a

”representative" year, based on measurements done during 5 years (June 1376 to May 1ÿS'i),

(18)

TABLEIISeasonaldistributionoftheconcentrationsofureaaboveandbelowthehalocline

NN NN NN KN N\ WN CM NN NN

« * « « *

TOTAL o O o o O O O O O

O M3 v£> t— CM r- tCS CM VO ON t— t— NN VO NN C~— -V ON NN NN NN NN tes te\ NN tC\ NN CM NN CM NN CM NN CM NN CM

• • * • * « * • • • • • * • • • • o o o o O O O O O o O o O o O o O o

o o CM co KN o o V* VO ON

0) NN NN CM KN NN NN KN CM CM

ÇA « * 9 <*

»i

1

o O O O O o O O O

S3o P VO CO «sf- o CO CM *4* CM T- CO NN f- CM ON CO "vi* O CO

CM NN NN NN CM CM KN KN NN CM NN CM KN CM CM CM WN CM

o • » • • • « * » • « • • • • • • m

o O o O O O o O O O o O O O O O O O o

Pi T"** 1— CM o M3 NN NN P— CO

0> KN NN NN NN CM CM CM CM CM

CO « * m *

6oH H

i O O O O O O O O O

<

ch O T* CO VO vo CM UN CO NN t— CT\ vo O O VO C\ VO

1—( KN KN CM NN NN CM NN CM CM CM CM t— CM CM NN CM CM CM

P « • • « e • * * • • • • • * «

*■3 O O O o O o O o O o O o O o O o O o

c CO UN on O NN VO O

3 NN UN NN •M" vt <=*• KN NN

>-3 60 P

•H

U

« « « *

*r.~4a

O O O O O O O O o

Pt

03 CM o -st' C— CO O T- 00 UN O co KN o ON O KN NN C—

h KN tf\ UN UN NN “si*- NN -M- ’M" KN •M- CM 'M' KN -st- NN

Pi • « • • 6 « • * a « » » • » • * • •

< o o o o O O o O o o o o O O o o O O

H O UN vo ON ON O NN co co

NN CM CM CM CM KN CM CM CM

<$ s ^ * « « 9 «

O O O O O O O O O

0o

^ $

&t .îj® O

H

•ri

g 38 CM f~ VO -v*- P- NN O v* CM UN t— C*— VO T“ T- vo O un O NN CM CM CM CM CM KN CM NN CM KN CM CM CM NN CM NN CM

0) • • « « » m • « • » • • * • « •

M N} O o O O O o O o O o o o O O O O O O

1

<rtO co

in <uP r4 co UN co co CM NN VO ON ONCM

P"-

<U Pi vo O CM t-~ CM CfN co

*> rO S T— CM T* T~ CM CM r NN

w J3 <0

CD 3 co

P Ö

(Hrt

>

S

O

#*-»

pi e0)

co■Vf 82 O

UN

CM

112 UN

OT-

UN

O

CM 459

& Td

4> r~

-P60 Xi <3>

a

BY2 -H ON <$jj co -V CM r- H a

■Ho cd

rQ :o

NN

>-<

T’

m U

NN

>-i

N*\

>-*

NN

>-<

KN «i o

E4 *H O +>

PA 6a m (A fA PQ (H O

<u co

C/3 » co&

(19)

TABLEIII.-Seasonaldistributionoftheconcentrationofureaaboveandbelowthehalocline Meanvalues,in uM.SectionB.

16

Ai B rd0

•H

-Prf

CO

ON o

OJ KN

*

o o

o CO T~ o

r<N OJ KN KN

* . 9

O o o o

VO

cm CM

«■

o o

1—1» vo vo OJ 04 OJ CM

» .

o O o c

KN KN

a o

t- CO UN CM KN CM kn KN

9 »

o o o o

St T~*

n\ KN

* m

o o

CM VO Ol o KN KN NN KN

® 9 *

o o O o

CM Os

CM CM

* *

o o

o ON CO OJ CM OJ CM

9 « 9 «

o o o o

NN CM

NN on

OJ v—

*c— KN

ON 00

in t"-*

pHfm P3

ON ON

CVJ CVJ

. *

o o

o VO CM UN K\ OJ m OJ

« 9

o o o o

NN OJ

OJ CVJ

* 9

o o

T— OJ T~

CM CM OJ CM

9 9 9

o o o o

vo ON

OJ CM

9 «

o O

ON on OJ m OJ T~ NN CM

•» « »

o o o o

vo

kn kn

* ©

o o

m kn CJN T~

kn kn NN m

« 9 9 ©

o o o o

in

CM CM

« ©

o o

VO kn CM

CM OJ KN CM

« 9 9 *

o a o O

CM

kn vo

v~ CM

OS c-~

O CM

T~ r*

CD ON

fn

pq FO

T— r~

m OJ

© 9

o o

vo t*— r* kn m CM kn CM

« « «

o O o o

CO in

CM CM

«t 9

o o

O t— 00 NN

KN OJ Ol CM

9 9 9 9

o o o o

T— m

KN CM

« 9

o o

CO t— On

nn CM CM T-~

9

o o o o

r-~ CM

kn kn

»

o o

kn o VO n- -=3* NN kn CM

9 a « 9

o o o o

vo VO

CM CM

9 a

o o

on •'s!“ O K\

CM CM NN CM

* 9 9

o o O o

o vo

m o

m NN

ON rn

st o

OJ CM

UN O

9— CM

pq M

t~ N\

NN NN

»

o o

in r— ON VO m CM NN CM

« 9 9

o O o o

00 o

01 nN

*

o o

V" vo CM r—

m CM m CM

* *

o o o O

m nn

OJ OJ

9 .

o o

OJ CO o\ c—

NN V" Ol T-

* 9

O o o o

VO Sfr"

nn *e-

*

o o

ON OJ in T~

KN NN in NN

9 « ©

o O o O

o**

OJ OJ

« «

o o

KN UN KN KN CM CM CM

9 9 « «

o o O o

OJ st

NN OJ

\ "'s.

O -M*

VO t>-

OJ OJ

o m

O r*

OJ T- r~ sa-

co vo

OJ OJ

"'s. 's,

ON C~

CM OJ

>-* >-i

pq W

CO r-

•V#- NN

» »

o o

V* CM UN

in KN CM

« «

o o O o

vo c—

NN OJ

9 9

o o

0- KN ON UN NN KN CM CM

9 9 9

o o o o

CO ON

NO OJ

. <-■

o o

O O st NN

sr nn m oj

* * .

o o o o

o CO

VO NN

«

o o

CO t— CM CM VO **3* KN

9 «

o o o O

t— VO

OJ OJ

* a

o o

co UN CO NN OJ CM Ol CM

«

o O o O

OJo

CO oCO

'no

t—

"s.

NN r—

NN m

OJ

>-3 a

St o

Ol EH •H O -A UN HH O

OJ 0J

in CO

«

(20)

0,60

0.50

0.40

0.30

0.20 0.10

0

0.40

0.30 +

0.20 0.10

0

0.40

0.30 -f

0.20 0.10

0

Apr May Jun

Jul Aug Sep

i

? 1

m? 2

iil

Oct Nov Dec

HB

il

32 31

W

1

%

■Pr.

1

&L

TOTAL Figure 5.- Seasonal variations of the average concentration of urea

on section A stations (June 1976 -May 1981), above ( ® ) and below ( O ) the halocline.

(21)

18

.-

0.60"

0.50

0.40

0.30 +

0.20 0.10--

0

0.40

0.30

0.20 0.10

0

0.30-

0.20 0.10 +

0

Apr May Jun

Jul Aug Sep

I

I

p

Jk

14

If

?l

■4

1 3

Oct Nov Dec

i

ft

20 29/28 27/26 25/24/23 TOTAL

Figure 6.- Seasonal variations of the average concentration of urea on section B stations (June 1976 -May 1981), above (

S )

and below (

D

) the halocline.

(22)

0.40 --

0.30-

0.20-

0.10-.

0 ..

BY 0.50-

0.40 —

0.30..

0.20- 0.10-

0 • *

BY

Figure 7.- Average concentration of urea in different stations of the Baltic Sea from June 1976 to May 1981, above ( M ) and below ( □ ) the halocline.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 8.- Seasonal variation of the average concentration of urea in the Baltic Sea from June 1976 to May 1981, above ( Ü ) and below ( t3 ) the halocline.

(23)

Hb

*

20.-

BY 2

*

39 SI 38 34 32 31

i si t i t «l1

450

(24)

CO <r-

a

cr> ^

JZ CL C

Q; L- TJ

(25)

References

Related documents

För det tredje har det påståtts, att den syftar till att göra kritik till »vetenskap», ett angrepp som förefaller helt motsägas av den fjärde invändningen,

Muscle samples of Arctic char (Salvelinus alpinus; ana- dromous, resident and landlocked populations), common eider (Somateria mollissima), Bru¨nnich’s guillemot (Uria lomvia),

The combined dataset presented in this thesis shows that charge transport in disordered organic solar cells is governed by the gradual thermalization of the photo-generated

In this paper we introduce the MRBrainS challenge eval- uation framework (http://mrbrains13.isi.uu.nl/), an online framework to evaluate automatic and semiautomatic algo- rithms

In this chapter, three resonant clock distribution networks with different clock frequencies have been compared to the conventional scheme from power dissipation

In a cohort of stage T2,M0 breast cancer with 99 patients (paper III) the presence of involved axillary nodes and low histologic grade were independent prognostic

Differences with respect to platelet reactivity and activity between the two groups having artrial fibrillation (n=18) and sinus rhythm (n=15) 26±8(SD) months after the

To ensure that executable simulation application generated by OMC is run properly in a non-interactive mode according to the set parameters of the OpenModelica actor through