• No results found

Sharp constants for some inequalities connected to the p-Laplace operator

N/A
N/A
Protected

Academic year: 2021

Share "Sharp constants for some inequalities connected to the p-Laplace operator"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

http://jipam.vu.edu.au/

Volume 6, Issue 2, Article 56, 2005

SHARP CONSTANTS FOR SOME INEQUALITIES CONNECTED TO THE p-LAPLACE OPERATOR

JOHAN BYSTRÖM

LULEÅUNIVERSITY OFTECHNOLOGY

SE-97187 LULEÅ, SWEDEN

johanb@math.ltu.se

Received 14 May, 2005; accepted 19 May, 2005 Communicated by L.-E. Persson

ABSTRACT. In this paper we investigate a set of structure conditions used in the existence theory of differential equations. More specific, we find best constants for the corresponding inequalities in the special case when the differential operator is the p-Laplace operator.

Key words and phrases: p-Poisson, p-Laplace, Inequalities, Sharp constants, Structure conditions.

2000 Mathematics Subject Classification. 26D20, 35A05, 35J60.

1. I

NTRODUCTION

When dealing with certain nonlinear boundary value problems of the kind ( − div (A (x, ∇u)) = f on Ω ⊂ R

n

,

u ∈ H

01,p

(Ω) , 1 < p < ∞,

it is common to assume that the function A : Ω × R

n

→ R

n

satisfies suitable continuity and monotonicity conditions in order to prove existence and uniqueness of solutions, see e.g. the books [6], [9], [11] and [12]. For C

1

and C

2

finite and positive constants, a popular set of such structure conditions are the following:

|A (x, ξ

1

) − A (x, ξ

2

)| ≤ C

1

(|ξ

1

| + |ξ

2

|)

p−1−α

1

− ξ

2

|

α

, hA (x, ξ

1

) − A (x, ξ

2

) , ξ

1

− ξ

2

i ≥ C

2

(|ξ

1

| + |ξ

2

|)

p−β

1

− ξ

2

|

β

,

where 0 ≤ α ≤ min (1, p − 1) and max (p, 2) ≤ β < ∞. See for instance the articles [1], [2], [3], [4], [7], [8] and [10], where these conditions (or related variants) are used in the theory of homogenization. It is well known that the corresponding function

A (x, ∇u) = |∇u|

p−2

∇u

ISSN (electronic): 1443-5756

2005 Victoria University. All rights reserved.c 158-05

(2)

for the p-Poisson equation satisfies these conditions, see e.g. [12], but the best possible constants C

1

and C

2

are in general not known. In this article we prove that the best constants C

1

and C

2

for the inequalities

1

|

p−2

ξ

1

− |ξ

2

|

p−2

ξ

2

≤ C

1

(|ξ

1

| + |ξ

2

|)

p−1−α

1

− ξ

2

|

α

,

1

|

p−2

ξ

1

− |ξ

2

|

p−2

ξ

2

, ξ

1

− ξ

2

≥ C

2

(|ξ

1

| + |ξ

2

|)

p−β

1

− ξ

2

|

β

, are

C

1

= max 1, 2

2−p

, (p − 1) 2

2−p

 , C

2

= min 2

2−p

, (p − 1) 2

2−p

 , see Figure 1.1.

0 0.5 1 1.5

2

1 2 3 4 5 6 7 8

p C

2 1

C

Figure 1.1: The constants C1and C2plotted for different values of p.

2. M

AIN

R

ESULTS

Let h·, ·i denote the Euclidean scalar product on R

n

and let p be a real constant, 1 < p < ∞.

Moreover, we will assume that |ξ

1

| ≥ |ξ

2

| > 0, which poses no restriction due to symmetry reasons. The main results of this paper are collected in the following two theorems:

Theorem 2.1. Let ξ

1

, ξ

2

∈ R

n

and assume that the constant α satisfies 0 ≤ α ≤ min (1, p − 1) .

Then it holds that

1

|

p−2

ξ

1

− |ξ

2

|

p−2

ξ

2

≤ C

1

(|ξ

1

| + |ξ

2

|)

p−1−α

1

− ξ

2

|

α

,

(3)

with equality if and only if

 

 

 

 

 

 

 

 

ξ

1

= −ξ

2

, for 1 < p < 2,

∀ξ

1

, ξ

2

∈ R

n

, for p = 2,

ξ

1

= ξ

2

, for 2 < p < 3 and α = 1, ξ

1

= kξ

2

, 1 ≤ k < ∞, for p = 3,

ξ

1

= kξ

2

when k → ∞, for 3 < p < ∞.

The constant C

1

is sharp and given by

C

1

= max 2

2−p

, (p − 1) 2

2−p

, 1 . Theorem 2.2. Let ξ

1

, ξ

2

∈ R

n

and assume that the constant β satisfies

max (p, 2) ≤ β < ∞.

Then it holds that

1

|

p−2

ξ

1

− |ξ

2

|

p−2

ξ

2

, ξ

1

− ξ

2

≥ C

2

(|ξ

1

| + |ξ

2

|)

p−β

1

− ξ

2

|

β

, with equality if and only if

 

 

ξ

1

= ξ

2

, for 1 < p < 2 and β = 2,

∀ξ

1

, ξ

2

∈ R

n

, for p = 2, ξ

1

= −ξ

2

, for 2 < p < ∞.

The constant C

2

is sharp and given by

C

2

= min 2

2−p

, (p − 1) 2

2−p

 . 3. S

OME

A

UXILIARY

L

EMMAS

In this section we will prove the four inequalities |ξ

1

|

p−2

ξ

1

− |ξ

2

|

p−2

ξ

2

≤ c

1

1

− ξ

2

|

p−1

, 1 < p ≤ 2,

1

|

p−2

ξ

1

− |ξ

2

|

p−2

ξ

2

, ξ

1

− ξ

2

≥ c

2

(|ξ

1

| + |ξ

2

|)

p−2

1

− ξ

2

|

2

, 1 < p ≤ 2, |ξ

1

|

p−2

ξ

1

− |ξ

2

|

p−2

ξ

2

≤ c

1

(|ξ

1

| + |ξ

2

|)

p−2

1

− ξ

2

| , 2 ≤ p < ∞,

1

|

p−2

ξ

1

− |ξ

2

|

p−2

ξ

2

, ξ

1

− ξ

2

≥ c

2

1

− ξ

2

|

p

, 2 ≤ p < ∞.

Note that, by symmetry, we can assume that |ξ

1

| ≥ |ξ

2

| > 0. By putting η

1

=

ξ1

1|

, |η

1

| = 1, η

2

=

ξ2

2|

, |η

2

| = 1, γ = hη

1

, η

2

i , − 1 ≤ γ ≤ 1, k =

1|

2|

≥ 1, we see that the four inequalities above are in turn equivalent with

k

p−1

η

1

− η

2

≤ c

1

|kη

1

− η

2

|

p−1

, 1 < p ≤ 2, (3.1)

k

p−1

η

1

− η

2

, kη

1

− η

2

≥ c

2

(k + 1)

p−2

|kη

1

− η

2

|

2

, 1 < p ≤ 2, (3.2)

k

p−1

η

1

− η

2

≤ c

1

(k + 1)

p−2

|kη

1

− η

2

| , 2 ≤ p < ∞, (3.3)

k

p−1

η

1

− η

2

, kη

1

− η

2

≥ c

2

|kη

1

− η

2

|

p

, 2 ≤ p < ∞.

(3.4)

Before proving these inequalities, we need one lemma.

(4)

Lemma 3.1. Let k ≥ 1 and p > 1. Then the function

h (k) = (3 − p) 1 − k

p−1

 + (p − 1) k − k

p−2



satisfies h (1) = 0. When k > 1, h (k) is positive and strictly increasing for p ∈ (1, 2) ∪ (3, ∞) , and negative and strictly decreasing for p ∈ (2, 3) . Moreover, h (k) ≡ 0 for p = 2 or p = 3.

Proof. We easily see that h (1) = 0. Two differentiations yield

h

0

(k) = (p − 1) (p − 3) k

p−2

+ 1 − (p − 2) k

p−3

 , h

00

(k) = (p − 1) (p − 2) (p − 3) k

p−3

 1 − 1

k

 ,

with h

0

(1) = 0 and h

00

(1) = 0. When p ∈ (1, 2) ∪ (3, ∞) , we have that h

00

(k) > 0 for k > 1 which implies that h

0

(k) > 0 for k > 1, which in turn implies that h (k) > 0 for k > 1. When p ∈ (2, 3) , a similar reasoning gives that h

0

(k) < 0 and h (k) < 0 for k > 1. Finally, the lemma

is proved by observing that h (k) ≡ 0 for p = 2 or p = 3. 

Remark 3.2. The special case p = 2 is trivial, with equality (c

1

= c

2

≡ 1) for all ξ

i

∈ R

n

in all four inequalities (3.1) – (3.4). Hence this case will be omitted in all the proofs below.

Lemma 3.3. Let 1 < p < 2 and ξ

1

, ξ

2

∈ R

n

. Then

1

|

p−2

ξ

1

− |ξ

2

|

p−2

ξ

2

≤ c

1

1

− ξ

2

|

p−1

, with equality if and only if ξ

1

= −ξ

2

. The constant c

1

= 2

2−p

is sharp.

Proof. We want to prove (3.1) for k ≥ 1. By squaring and putting γ = hη

1

, η

2

i , we see that this is equivalent with proving

k

2(p−1)

+ 1 − 2k

p−1

γ ≤ c

21

k

2

+ 1 − 2kγ 

p−1

, where −1 ≤ γ ≤ 1. Now construct

f

1

(k, γ) = k

2(p−1)

+ 1 − 2k

p−1

γ

(k

2

+ 1 − 2kγ)

p−1

= (k

p−1

− 1)

2

+ 2k

p−1

(1 − γ) (k − 1)

2

+ 2k (1 − γ) 

p−1

. Then

f

1

(k, γ) < ∞.

Moreover,

∂f

1

∂γ = − 2k 

(1 − k

p−2

) (k

p

− 1) + (2 − p) 

2k

p−1

(1 − γ) + (k

p−1

− 1)

2



(k

2

+ 1 − 2kγ)

p

< 0.

Hence we attain the maximum for f

1

(k, γ) (and thus also for pf

1

(k, γ)) on the border γ = −1.

We therefore examine

g

1

(k) = p

f

1

(k, −1) = k

p−1

+ 1 (k + 1)

p−1

. We have

g

10

(k) = − p − 1

(k + 1)

p

1 − k

p−2

 ≤ 0,

with equality if and only if k = 1. The smallest possible constant c

1

for which inequality (3.1) will always hold is the maximum value of g

1

(k) , which is thus attained for k = 1. Hence

c

1

= g

1

(1) = 2

2−p

.

This constant is attained for k = 1 and γ = −1, that is, when ξ

1

= −ξ

2

. 

(5)

Lemma 3.4. Let 1 < p < 2 and ξ

1

, ξ

2

∈ R

n

. Then

1

|

p−2

ξ

1

− |ξ

2

|

p−2

ξ

2

, ξ

1

− ξ

2

≥ c

2

(|ξ

1

| + |ξ

2

|)

p−2

1

− ξ

2

|

2

, with equality if and only if ξ

1

= ξ

2

. The constant c

2

= (p − 1) 2

2−p

is sharp.

Proof. We want to prove (3.2) for k ≥ 1. By putting γ = hη

1

, η

2

i , we see that this is equivalent with proving

k

p

+ 1 − k

p−2

+ 1 kγ ≥ c

2

(k + 1)

p−2

k

2

+ 1 − 2kγ , where −1 ≤ γ ≤ 1. Now construct

f

2

(k, γ) = k

p

+ 1 − (k

p−2

+ 1) kγ

(k + 1)

p−2

(k

2

+ 1 − 2kγ) = (k

p−1

− 1) (k − 1) + (k

p−1

+ k) (1 − γ) (k + 1)

p−2

(k − 1)

2

+ 2k (1 − γ)  . Then

f

2

(k, γ) > 0.

Moreover,

∂f

2

∂γ = − k (1 − k

p−2

) (k

2

− 1)

(k + 1)

p−2

(k

2

+ 1 − 2kγ)

2

≤ 0,

with equality for k = 1. Hence we attain the minimum for f

2

(k, γ) on the border γ = 1. We therefore examine

g

2

(k) = f

2

(k, 1) = k

p−1

− 1 (k − 1) (k + 1)

p−2

. By Lemma 3.1 we have that

g

20

(k) = (3 − p) (1 − k

p−1

) + (p − 1) (k − k

p−2

) (k − 1)

2

(k + 1)

p−1

≥ 0,

with equality if and only if k = 1. The largest possible constant c

2

for which inequality (3.2) always will hold is the minimum value of g

2

(k) , which thus is attained for k = 1. Hence

c

2

= lim

k→1

g

2

(k) = lim

k→1

k

p−1

− 1

(k − 1) (k + 1)

p−2

= (p − 1) 2

2−p

.

This constant is attained for k = 1 and γ = 1, that is, when ξ

1

= ξ

2

.  Lemma 3.5. Let 2 < p < ∞ and ξ

1

, ξ

2

∈ R

n

. Then

1

|

p−2

ξ

1

− |ξ

2

|

p−2

ξ

2

≤ c

1

(|ξ

1

| + |ξ

2

|)

p−2

1

− ξ

2

| , with equality if and only if

 

 

ξ

1

= ξ

2

, for 2 < p < 3, ξ

1

= kξ

2

when 1 ≤ k < ∞, for p = 3, ξ

1

= kξ

2

when k → ∞, for 3 < p < ∞.

The constant c

1

is sharp, where c

1

= (p − 1) 2

2−p

for 2 < p < 3 and c

1

= 1 for 3 ≤ p < ∞.

Proof. We want to prove (3.3) for k ≥ 1. By squaring and putting γ = hη

1

, η

2

i , we see that this is equivalent with proving

k

2(p−1)

+ 1 − 2k

p−1

γ ≤ c

21

(k + 1)

2(p−2)

k

2

+ 1 − 2kγ , where −1 ≤ γ ≤ 1. Now construct

f

3

(k, γ) = k

2(p−1)

+ 1 − 2k

p−1

γ

(k + 1)

2(p−2)

(k

2

+ 1 − 2kγ) = (k

p−1

− 1)

2

+ 2k

p−1

(1 − γ)

(k + 1)

2(p−2)

(k − 1)

2

+ 2k (1 − γ)  .

(6)

Then

f

3

(k, γ) < ∞.

Moreover,

∂f

3

∂γ = 2k (k

p−2

− 1) (k

p

− 1)

(k + 1)

2(p−2)

(k

2

+ 1 − 2kγ) ≥ 0,

with equality for k = 1. Hence we attain the maximum for f

3

(k, γ) (and thus also for pf

3

(k, γ)) on the border γ = 1. We therefore examine

g

3

(k) = p

f

3

(k, 1) = k

p−1

− 1 (k − 1) (k + 1)

p−2

. First we note that

g

3

(k) ≡ 1

when p = 3, implying that c

1

= 1 with equality for all ξ

1

= kξ

2

, 1 ≤ k < ∞. Moreover, we have that

g

03

(k) = (3 − p) (1 − k

p−1

) + (p − 1) (k − k

p−2

) (k − 1)

2

(k + 1)

p−1

.

By Lemma 3.1 it follows that g

3

(k) ≤ 0 for 2 < p < 3 with equality if and only if k = 1. The smallest possible constant c

1

for which inequality (3.3) will always hold is the maximum value of g

3

(k) , which thus is attained for k = 1. Hence

c

1

= lim

k→1

g

3

(k) = lim

k→1

k

p−1

− 1

(k − 1) (k + 1)

p−2

= (p − 1) 2

2−p

, for 2 < p < 3.

This constant is attained for k = 1 and γ = 1, that is, when ξ

1

= ξ

2

.

Again using Lemma 3.1, we see that g

3

(k) ≥ 0 for 3 < p < ∞, with equality if and only if k = 1. The smallest possible constant c

1

for which inequality (3.3) will always hold is the maximum value of g

3

(k) , which thus is attained when k → ∞. Hence

c

1

= lim

k→∞

g

3

(k) = lim

k→∞

k

p−1

− 1

(k − 1) (k + 1)

p−2

= 1, for 3 < p < ∞.

This constant is attained when k → ∞ and γ = 1, that is, when ξ

1

= kξ

2

, k → ∞.  Lemma 3.6. Let 2 < p < ∞ and ξ

1

, ξ

2

∈ R

n

. Then

1

|

p−2

ξ

1

− |ξ

2

|

p−2

ξ

2

, ξ

1

− ξ

2

≥ c

2

1

− ξ

2

|

p

, with equality if and only if ξ

1

= −ξ

2

. The constant c

2

= 2

2−p

is sharp.

Proof. We want to prove (3.4) for k ≥ 1. By squaring and putting γ = hη

1

, η

2

i , we see that this is equivalent to proving

k

p

+ 1 − k

p−2

+ 1 kγ

2

≥ c

22

k

2

+ 1 − 2kγ 

p

, where −1 ≤ γ ≤ 1. Now construct

f

4

(k, γ) = (k

p

+ 1 − (k

p−2

+ 1) kγ)

2

(k

2

+ 1 − 2kγ)

p

= ((k

p−1

− 1) (k − 1) + (k

p−1

+ k) (1 − γ))

2

(k − 1)

2

+ 2k (1 − γ) 

p

. Then

f

4

(k, γ) > 0.

(7)

Moreover,

∂f

4

∂γ = 2k ((p − 2) A (k) + B (k)) A (k) (k

2

+ 1 − 2kγ)

p+1

> 0, where

A (k) = k

p−1

− 1 (k − 1) + k

p−1

+ k (1 − γ) , B (k) = k

p−2

− 1 

k

2

− 1 .

Hence we attain the minimum for f

4

(k, γ) (and thus also for pf

4

(k, γ)) on the border γ = −1.

We therefore examine

g

4

(k) = p

f

4

(k, −1) = k

p−1

+ 1 (k + 1)

p−1

. We have

g

40

(k) = (p − 1) (k

p−2

− 1) (k + 1)

p

≥ 0,

with equality if and only if k = 1. The largest possible constant c

2

for which inequality (3.4) will always hold is the minimum value of g

4

(k) , which thus is attained for k = 1. Hence

c

2

= g

4

(1) = 2

2−p

.

This constant is attained for k = 1 and γ = −1, that is, when ξ

1

= −ξ

2

. 

4. P

ROOF OF THE

M

AIN

T

HEOREMS

Proof of Theorem 2.1. Let 1 < p < 2. Then the condition 0 ≤ α ≤ min (1, p − 1) = p − 1 implies that p − 1 − α ≥ 0. From Lemma 3.3 it follows that

1

|

p−2

ξ

1

− |ξ

2

|

p−2

ξ

2

≤ c

1

1

− ξ

2

|

p−1−α

1

− ξ

2

|

α

≤ c

1

(|ξ

1

| + |ξ

2

|)

p−1−α

1

− ξ

2

|

α

,

with c

1

= 2

2−p

, and we have equality when ξ

1

= −ξ

2

. Now let 2 < p < ∞. Then 0 ≤ α ≤ min (1, p − 1) = 1 implies that 1 − α ≥ 0. From Lemma 3.5 it follows that

1

|

p−2

ξ

1

− |ξ

2

|

p−2

ξ

2

≤ c

1

(|ξ

1

| + |ξ

2

|)

p−1−α

(|ξ

1

| + |ξ

2

|)

1−α

1

− ξ

2

|

≤ c

1

(|ξ

1

| + |ξ

2

|)

p−1−α

1

− ξ

2

|

α

, with

a) c

1

= (p − 1) 2

2−p

, equality for ξ

1

= ξ

2

when α = 1 for 2 < p < 3, b) c

1

= 1, equality for ξ

1

= kξ

2

when k → ∞ for 3 < p < ∞.

The case p = 2 is trivial and the case p = 3 has equality for ξ

1

= kξ

2

, 1 ≤ k < ∞, both cases with constant c

1

= 1. The theorem follows by taking these two inequalities together.  Proof of Theorem 2.2. Let 1 < p < 2. Then the condition 2 = max (p, 2) ≤ β < ∞ implies that β − 2 ≥ 0. From Lemma 3.4 it follows that

1

|

p−2

ξ

1

− |ξ

2

|

p−2

ξ

2

, ξ

1

− ξ

2

≥ c

2

(|ξ

1

| + |ξ

2

|)

p−β

(|ξ

1

| + |ξ

2

|)

β−2

1

− ξ

2

|

2

≥ c

2

(|ξ

1

| + |ξ

2

|)

p−β

1

− ξ

2

|

β

,

(8)

with c

2

= (p − 1) 2

2−p

and equality for ξ

1

= ξ

2

when β = 2. Now let 2 < p < ∞. Then p = max (p, 2) ≤ β < ∞ implies that β − p ≥ 0. From Lemma 3.6 it follows that

1

|

p−2

ξ

1

− |ξ

2

|

p−2

ξ

2

, ξ

1

− ξ

2

≥ c

2

1

− ξ

2

|

p−β

1

− ξ

2

|

β

≥ c

2

(|ξ

1

| + |ξ

2

|)

p−β

1

− ξ

2

|

β

,

with c

2

= 2

2−p

and equality for ξ

1

= −ξ

2

. The case p = 2 is trivial, with constant c

2

= 1. The theorem is proven by taking these two inequalities together. 

R

EFERENCES

[1] A. BRAIDES, V. CHIADÒ PIAT

AND

A. DEFRANCESCHI, Homogenization of almost periodic monotone operators, Ann. Inst. Henri Poincaré, 9(4) (1992), 399–432.

[2] J. BYSTRÖM, Correctors for some nonlinear monotone operators, J. Nonlinear Math. Phys., 8(1) (2001), 8–30.

[3] J. BYSTRÖM, J. ENGSTRÖM

AND

P. WALL, Reiterated homogenization of degenerate nonlinear elliptic equations, Chin. Ann. Math. Ser. B, 23(3) (2002), 325–334.

[4] V. CHIADÒ PIAT

AND

A. DEFRANCESCHI, Homogenization of quasi-linear equations with nat- ural growth terms, Manuscripta Math., 68(3) (1990), 229–247.

[5] G. DAL MASO

AND

A. DEFRANCESCHI, Correctors for the homogenization of monotone oper- ators, Differential Integral Equations, 3(6) (1990), 1151–1166.

[6] P. DRÁBEK, A. KUFNER

AND

F. NICOLOSI, Quasilinear Elliptic Equations with Degenerations and Singularities, De Gruyter, Berlin, 1997.

[7] N. FUSCO

AND

G. MOSCARIELLO, On the homogenization of quasilinear divergence structure operators, Ann. Mat. Pura. Appl., 146 (1987), 1–13.

[8] N. FUSCO

AND

G. MOSCARIELLO, Further results on the homogenization of quasilinear opera- tors, Ricerche Mat., 35(2) (1986), 231–246.

[9] S. FU ˇ CIK

AND

A. KUFNER, Nonlinear Differential Equations, Elsevier Scientific, New York, 1980.

[10] J.L. LIONS, D. LUKKASSEN, L.-E. PERSSON

AND

P. WALL, Reiterated homogenization of nonlinear monotone operators, Chin. Ann. Math. Ser. B, 22(1) (2001), 1–12.

[11] A. PANKOV, G-Convergence and Homogenization of Nonlinear Partial Differential Operators.

Kluwer, Dordrecht, 1997.

[12] E. ZEIDLER, Nonlinear Functional Analysis and its Applications II/B. Springer Verlag, Berlin,

1980.

References

Related documents

Omvendt er projektet ikke blevet forsinket af klager mv., som det potentielt kunne have været, fordi det danske plan- og reguleringssystem er indrettet til at afværge

I Team Finlands nätverksliknande struktur betonas strävan till samarbete mellan den nationella och lokala nivån och sektorexpertis för att locka investeringar till Finland.. För

För att uppskatta den totala effekten av reformerna måste dock hänsyn tas till såväl samt- liga priseffekter som sammansättningseffekter, till följd av ökad försäljningsandel

Från den teoretiska modellen vet vi att när det finns två budgivare på marknaden, och marknadsandelen för månadens vara ökar, så leder detta till lägre

40 Så kallad gold- plating, att gå längre än vad EU-lagstiftningen egentligen kräver, förkommer i viss utsträckning enligt underökningen Regelindikator som genomförts

The increasing availability of data and attention to services has increased the understanding of the contribution of services to innovation and productivity in

Regioner med en omfattande varuproduktion hade också en tydlig tendens att ha den starkaste nedgången i bruttoregionproduktionen (BRP) under krisåret 2009. De

Generella styrmedel kan ha varit mindre verksamma än man har trott De generella styrmedlen, till skillnad från de specifika styrmedlen, har kommit att användas i större