• No results found

Te hi a

N/A
N/A
Protected

Academic year: 2022

Share "Te hi a"

Copied!
93
0
0

Loading.... (view fulltext now)

Full text

(1)

Fa ultyofMe hatroni sandInterdis iplinary EngineeringStudies

A ademy of S ien esof the Cze h Republi ,Prague

InstituteofComputerS ien e

Limiting A ura y of Iterative Methods

Pavel Jiranek

PhDThesis November,2007

(2)

Author: PavelJiranek

Study programme: P2612Ele trote hni sandInformati s

Field of study: 3901V025S ien eEngineering

Department: Fa ultyofMe hatroni s

andInterdis iplinaryEngineeringStudies

Te hni alUniversityofLibere

Halkova6,46117Libere

Cze hRepubli

InstituteofComputerS ien e

A ademyofS ien esoftheCze hRepubli

Pod Vodarenskouvez2,18207Prague8

Cze hRepubli

Supervisor: MiroslavRozloznk

2007PavelJiranek.

TypesetbyL A

T

E X .

(3)



zejsemtutopra ivypra ovalsamostatneauvedljsemveskereprameny,kter y hjsempouzil.

Datum: Podpis:

(4)
(5)

Jak je znamo,zaokrouhlova  hyby a nepresneresen vnitrn h uloh maj vliv na numeri ke

hovanitera n hmetodvaritmeti eskone noupresnost;obe nesnizujjeji hry hlostkonver-

gen eaovlivnujkone noupresnostspo tenehoresen.Vpra isezab yvameanal yzoumaximaln

dosazitelnepresnostinekter y hitera n hmetodproresensoustavlinearn halgebrai k y hrov-

ni .

Dizerta eje rozdelenanadve asti.Prvnzni hobsahujeanal yzulimitnpresnostimetodkry-

lovovsk y h podprostoruproresenrozsahl y huloh sedlov y hbodu.Uvazujemedvatypysegre-

govan y h metod: metodu reduk e na S huruv doplneka metodu projek e na nulov y prostor

mimodiagonalnho bloku. Ukazuje se, ze v yber vzor e pro zpetnou substitu ima vliv na ma-

ximalndosazitelnoupresnostpribliznehoresenspo tenehovaritmeti eskone noupresnost.

Druha astjevenovanaanal yzenumeri keho hovannekter y hmetodminimaln hrezidu,ktere

jsoumatemati kyekvivalentnmetodezobe nen y hminimaln hreziduGMRES.Srovnavame

dvahlavnpostupy:jeden,kdepriblizneresenjevypo tenoze soustavshorntrojuhelnkovou

mati , a jeden,kde je priblizneresen upravovano pomo  jednodu hehorekurentnho vzor e.

Ukazujese,zev yberbazemavlivnanumeri ke hovanv ysledneimplementa e.Zatm ometody

SimplerGMRESaORTHODIRjsoumenestabilndkyspatnepodmnenostizvolenebaze,baze

zkonstruovanazrezidumuzeb ytdobrepodmnena,jestlizejsounormyrezidudostate nekle-

saj .Tytov ysledkyvedouknoveimplementa i,kterajepodmnenezpetnestabiln,avjistem

smyslui vysvetluj experimentalneoveren yfakt,zemetoda GCR (ORTHOMIN)davav prak-

ti k y haplika  hvelmipresneaproxima eresen.

Kl ova slova. Rozsahle linearn soustavy, metody krylovovsk y h podprostoru, ulohy sed-

lovehobodu,metoda reduk e na S huruv doplnek,metoda projek ena nulov y prostormimo-

diagonalnhobloku,metodyminimaln hrezidu,numeri kastabilita,anal yzazaokrouhlova  h

hyb.

(6)
(7)

It is known that inexa t solution of inner systems and rounding errors ae t the numeri al

behaviorof iterativemethodsinnitepre isionarithmeti . Inparti ular,theyslowdowntheir

onvergen erateand have anee t on theultimate a ura y of the omputed solution. Here

wefo uson the analysisof the maximum attainablea ura y of several iterativemethods for

solvingsystemsoflinearalgebrai equations.

Thethesisisdividedintotwoparts. TherstpartisdevotedtotheanalysisofKrylovsubspa e

solversappliedtothelarge-s alesaddlepointproblems. Twomainrepresentativesofsegregated

solution approa hesareanalyzed: theS hur omplementredu tionmethod andthenull-spa e

proje tionmethod. Weshowthatthe hoi eoftheba k-substitutionformula an onsiderably

inuen ethemaximumattainablea ura yofapproximatesolutions omputedinnitepre ision

arithmeti .

Inthese ondpartweanalyzenumeri albehaviorofseveral minimumresidualmethods,whi h

aremathemati allyequivalenttotheGMRESmethod. Twomainapproa hesare ompared:the

approa h,whi h omputestheapproximatesolutionfromanuppertriangularsystem, andthe

approa hwheretheapproximatesolutionsareupdatedwithasimplere ursionformula. Weshow

thatadierent hoi eofthebasis ansigni antlyinuen ethenumeri albehaviorofresulting

implementation. WhileSimplerGMRESandORTHODIRarelessstableduetoill- onditioning

of hosenbasis,theresidualbasisremainswell- onditionedwhenwehaveareasonableresidual

normde rease. Theseresults leadto a new implementation, whi h is onditionally ba kward

stable, and in a sense explainan experimentally observed fa t that the GCR (ORTHOMIN)

methoddeliversinpra ti al omputationsverya urateapproximatesolutionswhenit onverges

fastenoughwithoutstagnation.

Keywords. large-s alelinearsystems,Krylovsubspa emethods,saddlepointproblems,S hur

omplement redu tion, null-spa e proje tion method, minimum residual methods, numeri al

stability,roundingerroranalysis.

(8)
(9)

Èçâåñòíî,÷òî íåàêêóðàòíûåðåøåíèÿâíóòðåííèõïðîáëåìè îøèáêèîêðóãëåíèÿ îòðàæà-

þòñÿ íà âû÷èñëèòåëüíîì ïîâåäåíèþ èòåðàöèîííûõ ìåòîäîâ. Îíè êîíêðåòíî çàòîðìîçÿò

èõ ñêîðîñòüñõîäèìîñòèè îêàçûâàþòâëèÿíèåíàèíàëüíóþàêêóðàòíîñòüâû÷èñëåííîãî

ðåøåíèÿ. Ìû çäåñü çàíèìàåìñÿ àíàëèçîììàêñèìàëüíîé äîñòèæèìîéàêêóðàòíîñòè íåêî-

òîðûõèòåðàöèîííûõìåòîäîâäëÿðåøåíèÿñèñòåìëèíåéíûõàëãåáðàè÷åñêèõóðàâíåíèé.

Ýòàäèññåðòàöèÿðàçäåëåíàíàäâå÷àñòè.Ïåðâàÿçàíèìàåòñÿàíàëèçîìëèìèòíîéàêêóðàò-

íîñòèìåòîäîâïðîñòðàíñòâ Êðûëîâà äëÿ ðåøåíèÿáîëüøèõ ñèñòåì ñåäåëüíûõòî÷åê. Ìû

ðàññìàòðèâàåì äâà òèïû ñåãðåãàöèîííûõ ìåòîäîâ: ìåòîäîì ïðåîáðàçîâàíèÿ íà äîïîëíå-

íèåØóðàèìåòîäîìïðîåêöèèíàÿäðîíåäèàãîíàëüíîãîáëîêà.Ìû óêàçûâàåì,÷òîâûáîð

îðìóëû îáðàòíîéïîäñòàíîâêèîòðàæàåòñÿ íàìàêñèìàëüíîé äîñòèæèìîé àêêóðàòíîñòè

ïðèáëèçèòåëüíîãîðåøåíèÿâû÷èñëåííîãîâàðèìåòèêåñêîíå÷íîéòî÷íîñòüþ.

Âòîðàÿ÷àñòüñîäåðæèòàíàëèçâû÷èñëèòåëüíîãîïîâåäåíèÿíåñêîëüêèõìåòîäîâìèíèìàëü-

íûõíåâÿçîê,êîòîðûåìàòåìàòè÷åñêèýêâèâàëåíòíûåìåòîäó¾GMRES¿.Ìûñðàâíèâàåìäâà

ãëàâíûåìåòîäû: îäèí,êîòîðûé îïðåäåëÿåòïðèáëèæ¼ííîåðåøåíèå èçñèñòåìû ñâåðõíåé

òðåóãîëüíîéìàòðèöîé, è îäèí,ãäå ïðèáëèæ¼ííîåðåøåíèå êîððåêòèðîâàííîåñïîìîùüþ

ïðîñòîé ðåêóððåíòíîé îðìóëû. Ìû óêàçûâàåì, ÷òî âûáîð áàçû îòðàæàåòñÿ íà âû÷èñ-

ëèòåëüíîìïîâåäåíèèêîíå÷íîãîìåòîäà.Ïîêà ìåòîäû ¾SimplerGMRES¿è¾ORTHODIR¿

ìåíååñòàáèëüíûåçàñ÷åòïëîõîîáóñëîâëåííîéáàçû,áàçàíåâÿçîêìîæåòáûòüõîðîøîîáó-

ñëîâëåííàÿ,åñëèíîðìûíåâÿçîêäîñòàòî÷íîñíèæàþòñÿ.Ýòèðåçóëüòàòûâåäóòêíîâîìóìå-

òîäó,êîòîðûéóñëîâíîîáðàòíîñòàáèëüíûé,èâîïðåäåëåííîìñìûñëåîáúÿñíÿþòýêñïåðè-

ìåíòàëüíîóäîñòîâåðåííûéàêò,÷òîìåòîä ¾GCR¿(òàêæåèçâåñòíûéêàê¾ORTHOMIN¿)

äà¼òâïðàêòè÷åñêèõàïïëèêàöèÿõî÷åíüàêêóðàòíûåàïïðîêñèìàöèèðåøåíèÿ.

Êëþ÷åâûå ñëîâà. áîëüøèåëèíåéíûå óðàâíåíèÿ,ìåòîäû ïîäïðîñòðàíñòâÊðûëîâà,ìå-

òîäïðåîáðàçîâàíèÿíàäîïîëíåíèåØóðà,ìåòîäïðîåêöèèíàÿäðîíåäèàãîíàëüíîãîáëîêà,

ìåòîäûìèíèìàëüíûõíåâÿçîê,âû÷èñëèòåëüíàÿñòàáèëüíîñòü,àíàëèçîøèáîêîêðóãëåíèÿ.

(10)
(11)

Acknowledgements

Firstof all,I wouldliketo thankMiroslavRozloznkfor beinga patientsupervisor. His ideas

andourfruitfuldis ussionsshowedmethewaywheretogoandinspiredmetoexpressmyown

reativity. I am alsogratefulto him for introdu ingme to the fas inatingworld of numeri al

mathemati sandnumeri allinearalgebra.

My thanksalso go to Martin Gutkne ht, the oauthor of the paper [

62

℄, MarioArioli, Julien

Langou,andYvanNotayfortheirsuggestionsanddis ussionswhi h onsiderablyimprovedthe

presentedresults.

Finan ial support of my work on the thesis was provided in part by the Ministry of Edu a-

tion, Youth and Sportsof theCze h Republi undertheproje t1M0554\Advan edRemedial

Te hnologies",andbytheproje t1ET400300415withintheNationalProgramofResear h\In-

formationSo iety".

Finally,Iwouldliketothankmyfamily,espe iallymyparentsandsister,fortheirattentionand

supportthroughouttheyearsofmy lifeandstudiesinLibere . Andmostof all,I amgrateful

tomygirlfriendEvawhohasbeenin rediblysupportive,understandinganden ouragingduring

thepastyearsandIthankherforloveandstandingbymeduringthegoodandbadtimes.

(12)
(13)

Contents

Abstrakt iii

Abstra t v

Àííîòàöèÿ vii

A knowledgements ix

Chapter1. Introdu tion 1

1. Thestateoftheart 2

2. Organizationofthethesis 4

3. Listofrelatedpubli ationsand onferen etalks 5

Chapter2. Saddlepointproblems 7

1. Appli ationsleadingto saddlepointproblems 7

2. Propertiesofsaddlepointmatri es 8

3. Solutionmethods 9

Chapter3. Limitinga ura yofsegregatedsaddlepointsolvers 13

1. S hur omplementredu tionmethod 16

2. Null-spa eproje tionmethod 30

3. Numeri alexperimentsinthenonsymmetri ase 42

4. Ba kwarderrorestimatefortheS hur omplementredu tion 48

Chapter4. Numeri alstabilityofsomeresidualminimizingKrylovsubspa emethods 53

1. Maximumattainablea ura yofsimplerandupdateapproa hes 57

2. Choi eofbasisandnumeri alstability 61

Chapter5. Con lusionsandopenquestions 69

Bibliography 73

(14)
(15)

Introduction

Considerasystemoflinearalgebrai equationsintheform

Ax=b; (1.1)

whereAisanNNnonsingularmatrixandbisaright-handsideve tor. Usuallyweassumethat

Aislargeandsparseasitis,e.g.,whenAisadis reterepresentationofsomepartialdi erential

operator. Wearelookingforthesolutionof(1.1)orforitssuÆ ientlya urateapproximation.

The methods for solving (1.1) are usually lassi ed as dire t and iterative. Dire t methods

aremostlybasedonthesu essiveeliminationofunknowns. Theyfa torizethesystemmatrix

(with suitablyordered rowsor olumns),e.g., into the produ t of lowerand uppertriangular

matri es as in the Gaussianelimination, or to the produ t of an orthogonal and a triangular

matrixas intheQRfa torization. Thesolution of(1.1) anbethenfound by solvingsystems

with these fa tors. In general, dire tmethods are well suitedfor dense and moderately large

systems. However, when solvinga large sparsesystem, the numberof newly reatednon-zero

elementsinbothfa tors anheavilya e tthe omputationaltimeandstoragerequirements. In

addition,even thoughdire tmethods deliverintheory theexa t solution,there is noneedfor

su hana ura yinpra ti eduetoun ertaindataordis retizationerrors.

Therefore, iterative methods be ame very popular when solving sparse systems. An iterative

method forthesolutionof(1.1)generatesa sequen eofapproximationsx

k

sothattheyideally

onverge to the exa t solution. The system matrix need not to be expli itly stored. In ea h

iterationweneedonlytoperformamatrix-ve tormultipli ation. Moreover,theapproximations

onvergeoftenmonotonously(oralmostmonotonously)insome xed normandsowe anstop

theiterationpro esswhentheapproximationisa urateenough. However,the onvergen erate

of iterativemethods an beslow ingeneral (dependingon properties of the system)and thus

hybridte hniques ombiningtheiterativeanddire tapproa h,su haspre onditionediterations,

arewidelyusedto makethepro essmoreeÆ ient.

In general, a solution method (no matter if a dire t or iterative one) an be interpreted as

a solution ofa sequen e of subproblemswhi h aresimpler to solve. In dire tmethods we an

identifyfollowingsubproblems:thefa torizationofthesystemmatrixandthesolutionofsystems

with omputedfa tors. Inea hstepofaniterativemethod,wemultiplyave torbythesystem

matrixandoptionallysolvethesystemwithapre onditionerwhi h anbealsoregardedasthe

subproblemssolvedrepeatedlyintheiterationloop. E.g.,thematrix-ve tormultipli ation an

involvethesolutionofaninnersystemasintheS hur omplementredu tionmethodwhi hwe

willdis usslater.

(16)

1. The state of the art

Fromnowonwerestri tourselvestoiterativemethods.Inpra ti e,the omputationsarea e ted

byerrors. Theyareneverperformedexa tlyduetoroundingerrorsandsomeofthemaredone

inexa tly with a pres ribedlevel of a ura y, espe ially when omputations with the working

a ura y ould bea waste of time and resour es. E.g., matrix-ve torprodu ts may involvea

solutionofinnersystems, whi h (beinglargeandsparse) anbesolved inexa tlywith another

iterativemethod. Pre onditioning anbealsoappliedthroughsomeiterativepro ess. Usually,

a method is alled inexa t if some involved subproblems are solved only approximately even

thoughwe assumeexa tarithmeti . Roundingerrors analso onsiderablya e tthe behavior

of iterativemethods. Sin e thebehaviorof inexa t iterativemethods and \exa t"methods in

nitepre isionarithmeti issimilar,wewillnotstri tlydistinguishbetweenthesour esoferrors

andwewilltreatthem ommonlyinauni edapproa hinthefollowingdis ussion.

Whenaninexa tnessistakenintoa ount,thereareseveralimportantquestionswhi hneedtobe

answered. Inthefollowingwegiveabriefoverviewofthestateofartinthis eld(in ludingresults

in nite pre isionarithmeti ). Generallytheinexa tnessintrodu edinaniterativemethodhas

twomaine e ts:

 The errors aused by inexa t omputations are propagatedthroughout the iterative

pro ess. Ideallytheerrorpropagationshouldberestrainedsothatthelo alerrorsare

not magni ed. Thereis a limit in the a ura y whi h annot be ex eeded and it is

usually alledthemaximumattainable(orlimiting)a ura y.

 The onvergen eofaninexa titerativemethod anbedelayedwithrespe ttothe on-

vergen eofthesamemethod,whereall omputationsareperformedexa tly. Wemay

askhowmanyadditionaliterationsshouldbeperformedsu hthatthesamea ura y

isattainedasintheideal(exa t) ase.

In this thesis we fo us on the limiting a ura y of inexa t iterative methods. The e e ts of

inexa tmatrix-ve tormultipli ationsiniterativemethods(alsoreferredasrelaxedmethods)on

themaximumattainablea ura ywere studiedsimultaneouslybyvan denEshofand Sleijpen

[

97

℄, and by Simon ini and Szyld [

90

℄. Their analysis explains the experimental results of BourassandFraysse[

18

(thereportwithanextensiveexperimentalbasiswaspublishedin2000) who proposeda relaxation strategy for the a ura y of the omputed matrix-ve torprodu t.

They have shown that to a hieve the pres ribed a ura y of the omputed solution we need

to ompute the matrix-ve tor produ t with the a ura y (measured by the ba kward error)

inverselyproportionalto thea tualresidualnorm. Thepapers[

97, 90

providethetheoreti al support forthis strategy furtherdevelopedin[

98

℄. Thistopi is losely relatedto the exible

pre onditioning,see,e.g.,[

11, 43, 76, 90, 39

℄. Herewetrytoadopttheba kwarderroranalysis,

widelyusedinthestudyofroundingerrors,andweanalyzethee e tsofinexa t omputations

onthe limitinga ura y of ertain iterativemethods. The omputationsareperformed inthe

presen eof roundingerrorswhilesolutionsto ertainsubproblemsaredonewith morerelaxed

a ura y. Wewanttoknowhowtheinexa tnessoftheseinnersystemstogetherwith theerrors

aused by roundo a e t the behavior of the onsidered algorithms. It appears that some

measuresof the a ura y are ultimatelyon the level proportionalto the unit roundo , while

othermeasuresdependonthea ura yofinnersystems.

Theproblemofnumeri alstabilityof lassi aliterativemethodswasaddressedinseveralpapers.

The rstanalyzes arriedoutbyGolub[

40

andLynn[

69

providestatisti alandnon-statisti al

(17)

results for the se ond order Ri hardson and SOR method. The statisti al error analysis of

lassi aliterativemethods was alsoperformedbyArioliand Romani[

5

larifyingtherelation

between the onditioningof thepre onditionedsystem matrixandthe onvergen erateofthe

iterativemethod. In[

56

HighamandKnightgivetheforwardandba kwarderroranalysisofa

generalone-stepstationarymethod. Theiranalysisamongotherthingsshowsthatthea ura y

of the omputed solution strongly depends on the os illationsof norms of the iterates whi h

is a ommon observation not only in the ase of lassi al iterativemethods. Moreover, even

though the onvergen e is driven by the spe tral radius of the iteration matrix, the limiting

a ura y dependsrather on thenormof its powerswhi h anbearbitrarilylargein theearly

stage of the iterative pro ess. This was observed by Hammarling and Wilkinson [

53

℄. The

stability of lassi al iterative methods was also analyzed by Wozniakovski in[

107, 108

℄. He

provedtheforwardstabilityof lassi almethodslikeJa obi,Ri hardson,Gauss-SeidelandSOR

(for symmetri systemswith the PropertyA) and Chebyshevmethod (forsymmetri positive

de nite systems). However, the Chebyshev method appeared to be not normwise ba kward

stable. In[

41

GolubandOvertondis ussthe onvergen erateofthese ondorderRi hardson and Chebyshev method. They onsider the inexa t solution of inner systems with uniformly

bounded relativeresiduals. The a ura yof the omputedsolution inthe Chebyshev method

is further analyzed by Giladi, Goluband Keller [

37

who show the optimality of the uniform

toleran eusedin[

41

℄. Whenthesystemissolvedbythe lassi aliterativemethodinea hstep

wemustsolvea simplersystemindu ed bythesplittingof thesystemmatrix. However,these

systems anbe alsosolved iteratively. Thesemethods,referredto as two-stagemethods, were

addressed,e.g.,in[

73, 64, 36

℄.

One of the most important result in the study of Krylov subspa e methods is due to Paige

[

77

℄. He provides the analysis of the behavior of the symmetri Lan zos algorithm [

65

in

the presen e of rounding errors. This algorithm is losely related to the onjugate gradient

method by Hestenes and Stiefel [

54

℄. It was rst studied by Wozniakowski [

109

and Bollen

[

17

℄. Wozniakowski shows that this method onverges in nite pre ision arithmeti at least

linearlywiththe onvergen eratesimilartothesteepestdes entmethod. However,hisanalysis

does not re e t the realityverywell, sin e the onvergen eof the onjugate gradient method

annotbe hara terizedlo allybutitsa tualbehaviordependsonthewholeiterationpro ess;

see, e.g., [

99, 68

and the referen estherein. The new insightinto this problemwas brought

by Greenbaum[

45

andfurtherdeveloped togetherwith Strakos[

95, 49

℄. It appearsthat the

nitepre isionLan zospro essaswellasthe nitepre ision onjugategradientmethodbehave

as theirexa t ounterpartsappliedtothematrixof (possiblymu h) largerdimensionwiththe

eigenvalues lusteredneartheeigenvaluesoftheoriginalmatrix. Thisissuewasfurtherdis ussed

byNotayin[

75

℄.

Theanalysisoflimitinga ura yofsome lassesofiterativemethods anbeperformedinrather

generalsettingwithoutreferringtoanyparti ularmethod. Themethodsbasedonthe oupled

two-term re urren eswere analyzed by Greenbaum in [

46, 47

℄. The papers fo us mainly on

the onjugategradientmethod buttheanalysisholdsforalargersetofmethods.Inparti ular,

theresultsofGreenbaumshowthatthehighlyirregular onvergen ebehavior(expressedbythe

os illationsofnormsofiterates)observedinthe aseofnon-optimaliterativemethods(su has

BiCG[

35

orCGS[

93

℄) anhaveanunfavorablee e tonthelimitinga ura yofthe omputed solution. A similar phenomenon is mentioned also by van der Vorst in [

100

℄, wherethe loss

of a ura yis explainedbyos illationsof residual norms. On theother hand,su h os ilations

(18)

do not o ur (or an be a prioribounded) in the ase of optimal methods su h as onjugate

gradientsand onjugateresiduals[

94

appliedtosymmetri positivede niteproblems,orinthe

aseof residual minimizingmethods (Orthodir [

110

℄, Orthomin [

102

℄, GCR [

29

℄) for general

nonsymmetri systems. The numeri al stability of various (equivalent) methods using short

re urren eswasfurtherstudiedbyGutkne htandStrakosin[

52

andbySleijpen,vanderVorst

andModersitzkiin[

92

℄. In[

51

Gutkne htandRozloznkdis ussthee e tofresidualsmoothing

onthelimitinga ura y.

Finallywesurveytheresultsforthe nitepre isionbehaviorofnonsymmetri Krylovsubspa e

methods with the full-termre urren es su h as GMRES [

88

℄. The Householder implementa- tionofthe underlyingArnoldipro ess[

6

isquitestraightforwardto analyze,seethe paperby Drkosova,Greenbaum,RozloznkandStrakos[

27

℄,andbyArioliandFassino[

4

℄. Thisisdueto

thealmostexa torthogonalityof the omputedKrylovsubspa ebasis. However,whenweuse

the heapermodi edGram-S hmidtimplementation,theorthogonalityis graduallylostduring

theiteration pro ess. The lossof orthogonalityhowevergoes handinhand with the de rease

of the ba kward error of the a tual omputedsolution as observed by Greenbaum, Rozloznk

andStrakosin[

48

andfurtheranalyzedbyPaige,RozloznkandStrakosin[

80, 78

℄. Formore

detailssee[

67

andthereferen estherein.

2. Organization of the thesis

Thisthesisisdividedintotwomainpartsandisorganizedasfollows. Chapter3,whi hisbased

onthe papers[

61, 60

℄, is devoted to theanalysis of inexa tmethods forsolving saddlepoint

problemsoftheform



A B

B T

0



x

y



=



f

0



:

AbriefoverviewonsaddlepointproblemsispresentedinChapter2. Weanalyzetwosegregated

methodsbasedonthetransformationofthewholeinde niteproblemtoaredu edsystemwith

morepreferableproperties(smallerdimension,positive(semi)de niteness). Theredu edsystem

issolvedbyasuitableiterativemethodgivingtheapproximationstooneoftheblo k omponents

ofthesolutionve tor(xory). Theremaining omponentis omputedviasomeba k-substitution

formula. We onsiderthreedi erentbutmathemati allyequivalentformulas. Inea hiteration

wehaveto solveeitheranonsingularsystemwith A,orafullrankleastsquares problemwith

B. Sin e su h systems are not usually solved exa tly, we assume here that they are solved

witha pres ribedba kwarderrorand studythee e t onthemaximumattainablea ura yof

the solution method together with the e e ts of rounding errors. Su h inexa t methods have

beenalso onsideredin manypapersbutmostof them analyzed thedelayof onvergen e; see

thereferen esinChapter3. Here weprovideaqualitativeanalysisofthemaximumattainable

a ura yofthe omputedsolutionmeasuredbytrueresidualsinthesaddlepointsystem,bytrue

residualsinredu edsystemsand byforwarderrorsofthe omputedsolutions. Inaddition,we

showwhi h residuals(andhow) anbea e ted bythepossiblyirregular onvergen ebehavior

inthe aseof the nonsymmetri blo k A. Thetheoreti al results areillustrated on numeri al

experiments.

Chapter 4, based on the paper [

62

℄, is devoted to the analysisof several residual minimizing

Krylov subspa e methods, whi h are mathemati ally equivalentto the GMRES method [

88

℄.

In ontrast to GMRES, they, in the nth iteration, build an orthonormalbasis of AK

n (A;r

0 )

insteadofK (A;r ): K (A;r )denotesthenthKrylovsubspa egeneratedbythematrixAand

(19)

the ve torr

0

. Twoapproa hesare ompared: theapproa h,whi h omputesthe approximate

solution fromanuppertriangularsystem, and theapproa h,wheretheapproximatesolutions

areupdatedstepbystepwith a simplere ursionformula. We onsidera generalbasisto gen-

erate the orthonormal basis of AK

n (A;r

0

), and it appears that, while Simpler GMRES and

ORTHODIR are less stabledue to ill- onditioningof the hosen basis, the residual basis an

bewell- onditioned,when wehavea reasonableresidual normde rease. Theseresults leadto

a new implementation, whi h is onditionallyba kward stable, and to the well known GCR

(ORTHOMIN)method,andinasenseexplainanexperimentallyobservedfa t thatGCR(OR-

THOMIN) deliversverya urateapproximateapproximatesolutionsin pra ti alappli ations.

Thetheoreti alresultsareillustratedonnumeri alexperiments.

InChapter5wegive on lusionsanddire tionsofthefuturework.

3. List of related publications and conference talks Journal papers.

 P.Jiranek,M.Rozloznk. Maximumattainablea ura yofinexa tsaddlepointsolvers.

A epted for publi ationin SIAM Journal on Matrix Analysis and Appli ations,

2007.

 P. Jiranek,M.Rozloznk. Limitinga ura yof segregatedsolutionmethodsfor non-

symmetri saddlepointproblems. A eptedfor publi ationinJournal of Computa-

tional andApplied Mathemati s,2007.

 P.Jiranek,M.Rozloznk,M.H.Gutkne ht. Howto makeSimplerGMRESandGCR

more stable. Submitted to SIAM Journal on Matrix Analysis and Appli ations,

2007.

Proceedings contributions.

 P.Jiranek.Onamaximumattainablea ura yofsomesegregatedte hniquesforsaddle

pointproblems. Pro eedings of the XI. PhD. Conferen e,pages26{34,Institute of

ComputerS ien e,CAS,Matfyzpress,Prague,2006.

 P. Jiranek,M.Rozloznk. Ona limitinga ura yof segregatedte hniques forsaddle

point problems, Pro eedings of the 3rd International Workshop on Simulation,

ModellingandNumeri alAnalysisSIMONA2006,pages62{69,Libere ,September

2006.

Conference talks.

 P. Jiranek,M. Rozloznk. Numeri al behaviorof iterativemethods for saddle point

problems. GAMMAnnualMeeting2006,Berlin,Mar h27{31,2006.

 P. Jiranek. On a maximum attainable a ura y of some segregated te hniques for

saddlepointsolvers. XI.PhD.Conferen e,InstituteofComputerS ien e,A ademyof

S ien esof theCze hRepubli ,Monne {Sedle -Pr i e,September18{20,2006.

 P. Jiranek,M.Rozloznk. Ona limitinga ura yof segregatedte hniques forsaddle

pointsolvers. Simulation,ModellingandNumeri alAnalysis SIMONA2006,Libere ,

September18{20,2006.

 P.Jiranek,M.Rozloznk. Numeri alsolutionofsaddlepointproblems. SNA'07,Sem-

(20)

 P. Jiranek,M.Rozloznk. Onthelimitinga ura yofsegregatedsaddlepointsolvers.

MAT-TRIAD2007{threedaysfullofmatri es,B

,

edlewo,Poland,Mar h22{24,2007.

 P. Jiranek,M.Rozloznk. Onthelimitinga ura yofsegregatedsaddlepointsolvers.

VIII. vede ka konferen ias medzinarodnou u ast '

ou, Te hni al University of Kosi e,

Slovakia,May28{30,2007.

 P. Jiranek, M. Rozloznk. Limiting a ura y of inexa t saddle point solvers. 22nd

BiennialConferen eonNumeri alAnalysis,UniversityofDundee,S otland,UK,June

26{29,2007.

 P. Jiranek, M. Rozloznk, M. H. Gutkne ht. On the stability of Simpler GMRES.

CEMRACS'07,Lumini,Fran e,Juny22{August31,2007.

 P. Jiranek,M.Rozloznk,M.H.Gutkne ht. HowtomakeSimplerGMRESandGCR

morestable. IMAConferen eonNumeri alLinearAlgebraandOptimisation,Univer-

sityofBirmingham,UK,September13{15,2007.

3.1. Posters.

 P.Jiranek,M.Rozloznk. Numeri alstabilityofinexa tsaddlepointsolvers.ICIAM'07,

6thInternationalCongress on Industrial and Applied Mathemati s, Zuri h,Switzer-

land,July16{20,2007.

(21)

Saddle point problems

Thesolutionoflarge-s alesystemsinthesaddlepointformattra tedalotofattentioninre ent

years. Theyappearinalargevarietyofappli ationsandmanysolutionmethodsweredeveloped

sofar. Thenext hapterisdevotedtothenumeri alstabilityanalysisof ertainiterativemethods

for saddlepointsystemsand, before we start,wegive ashortintrodu tionintothis eld. For

anexhaustiveoverview werefertothepaperbyBenzi,GolubandLiesen[

14

℄.

We onsiderthelargesparsesystemoflinearalgebrai equationsintheblo kform

A



x

y







A B

B T

C



x

y



=



f

g



; (2.1)

where A 2

R

nn, B 2

R

nm and C 2

R

mm. The solution and right-handside ve torsare

partitioned onsistentlywithrespe ttothepartitioningofthesystemmatrix. LetAandBare

nonzeromatri es andfurthermoreweassumethat theright-handsideis always hosenso that

thesystemis onsistent.

Thepropertiesof blo ksA,B andC mayvary dependingontheappli ation. Inthe following

se tion wementionseveral importantexamples of problemsleading to a saddle pointsystem.

Notethat thesystem(2.1)hasasymmetri blo kstru turewhi h anberelaxedwhen solving

so alledgeneralizedsaddlepointproblems. However,wedonot onsiderthis asehere.

1. Applications leading to saddle point problems

Saddlepointproblemsariseina widesele tionof problemsof omputationals ien eand engi-

neering. WhenA issymmetri positivede nite,B hasa full olumnrankand C=0,wehave

themost ommonversionofthesaddlepointsystem



A B

B T

0



x

y



=



f

g



; (2.2)

whi happears,e.g.,whensolvingellipti se ondorderpartialdi erentialequationsbythemixed

nite element method [

24

or quadrati programming problems with linear onstraints [

38, 74

℄. The omponentx of the solution ve tor(x;y)of (2.2) is the solution of the onstrained minimizationproblem

min

u2

R

n

J(u)= 1

2 u

T

Au f T

u s.t. B T

u=g: (2.3)

The orrespondingLagrangianisde nedas

L(u;v)=J(u)+(B T

u g) T

v 8u2

R

n; 8v2

R

m;

(22)

wherevistheve torofLagrangemultipliers.Theve tor(x;y)isthesaddlepointofL,

L(x;v)L(x;y)L(u;y):

The nonsymmetri blo k A appears, e.g., when solving linearized Navier-Stokesequation via

thesequen eofStokesandOseenproblems. If,inthemixed nite elements,theapproximation

spa esdonotful lltheLBB ondition,thestabilizationshouldbeappliedleadingtothenonzero

symetri positivesemide nitematrixC [

24, 32

℄.

Another important appli ation of saddle point systems is the solution of linear least squares

problems. LetB beannmmatrixofafull olumnrankand onsider

nd y s.t. kf Byk= min

v2

R

m

kf Bvk:

Itiswell-known[

16, 42

thatthesolutionofthisproblemisuniqueanditis hara terizedbythe orthogonality onditionx=f By?R (B)=N(B

T

)

?

forthe residualve torx(where R (B)

andN(B T

)denotes therangeandnull-spa eofthe matrixB and B T

,respe tively). Hen e we

havex+By=f,B T

x=0leadingtothesystem



I B

B T

0



x

y



=



f

0



:

Ingeneral,thesystemofthe form(2.2)(withg =0) orrespondstotheweightedleastsquares

problem, where A 1

-norm is minimized instead of the Eu lidean one (when A is symmetri

positivede nite).

2. Properties of saddle point matrices

Here we brie y re all the basi properties of saddle point matri es and relate their spe tral

and nonsingularityproperties with respe t to the properties of parti ularblo ks. We restri t

ourselvestothesymmetri asebutsomeresults anbeextendedtoamoregeneralsetting. For

amore ompletedis ussion,see [

14

℄.

Theorem2.1. LetAbe a symmetri positivede nitematrixwith eigenvalues ontained in

theinterval[ ;℄andletB be ofafull olumn rankwithsingularvalues ontained in[;℄

with >0and >0andC is symmetri positive semide nite. Then

 Ahas n positiveandm negativeeigenvalues;

 ifC=0, the eigenvalues of Aare lo alized asfollows:

(A)I [I +

;

where

I 



1

2



 q

 2

+4

2



; 1

2



 q

 2

+4

2



;

I +





 ; 1

2



+ q

 2

+4

2

 

:

Proof. ThesaddlepointmatrixA anbefa torizedasfollows

A=



I 0

T 1



A 0

T 1



I A 1

B



:

(23)

The rststatementimmediatelyfollowsfromtheSylvester'slawofinertia[

57

℄,sin etheS hur

omplement B T

A 1

B Cissymmetri negativede nite. Fortheproofofthese ondstatement,

see[

85

℄.



Thematrix Ais inde nite,sin eit hasbothpositiveandnegativeeigenvalues. Solving highly

inde nitematri es(withnm) anleadtotheslow onvergen ewhen usingKrylovsubspa e

methodslikeMINRES[

79

℄,see[

34

℄. Asimplemodi ationofthesystemmatrixintheform

^

A



A B

B T

C



;

asobserved,e.g.,in[

13, 34

℄, leadstoanonsingularsystemwithaspe trummovedtotheright half-planeofthe omplexplanebut,however,forthepri eoflosingthesymmetry.

Thenonsingularity onditionsaresummarizedinthefollowingtheorem(see[

13

℄).

Theorem 2.2. Let A be symmetri nonnegative real (that is, 1

2 (A+A

T

) is positive semi-

de nite), B has a full olumn rankandlet C be symmetri positive semide nite. Then

 if Ais nonsingular,then N(A)\N(B T

)=0;

 if N(

1

2 (A+A

T

))\N(B T

)=0, then Ais nonsingular.

Here 0 represents the null subspa e of

R

n. In parti ular,if A is symmetri positivesemi- de nite, then Ais nonsingularif andonly ifN(A)\N(B

T

)=0.

3. Solution methods

Solutionmethodsforsystemsoftheform(2.1) anbedividedintotwo ategories alled oupled

and segregated methods. Coupled methods solve the system (2.1) as a whole and therefore

ompute both omponentsx and y of the solution ve tor at on e. They an be bothdire t,

e.g., usingLDL T

fa torizationwith 11and 22pivots, and iterative,e.g.,usingMINRES

[

79

in the symmetri ase. On the other hand, segregated methods transform the system

(2.1) of the dimension n+m to a redu ed system of a smaller dimensionsolving either for

the omponentx ory. Theremaining omponent isthen found by theba k-substitution into

(2.1). The redu edsystems an bealso solvedeitherdire tly oriteratively. They anbehard

to ompute expli itly, so the iterative approa h is more preferable in many ases. Moreover,

besidesthesmallerdimension,theredu edsystems anbeeasiertosolvethanthewholesaddle

pointsystem (e.g., the redu edsystem anbe positive(semi)de nite). Sometimes the border

between oupledandsegregatedapproa hesisnotsharp,sin e oupledmethods anbetreated

assegregatedandvi eversa. Herewereviewtwomainrepresentativesofsegregatedapproa hes

whi h willbe analyzedin thenext hapter: theS hur omplementredu tionmethod and the

null-spa eproje tionmethod. Wewillnotdis ussotherissuesrelatedtothetopi andsolution

methods,espe iallypre onditioningofsaddlepointproblems;see[

14

formoreinformation.

3.1. The Schur complement reduction method.

AssumeAissymmetri positivedef-

inite, B hasa full olumn rankand C is symmetri positivesemide nite. Then Theorem2.2

impliesthat the system (2.1) hasa unique solution. It anbe regarded as twomatrix-ve tor

equationsintheform

T

(24)

Sin eAisnonsingular,we antoeliminatexfromthe rstequation,i.e.,x anbeexpressedas

x=A 1

(f By); (2.5)

andsubstitutedintothese ondequation. Thenweobtainthesystem

Sy=B T

A 1

f g; S B T

A 1

B+C (2.6)

withtheS hur omplementmatrixS (whi his,morepre isely,thenegativeS hur omplement

ofAinA). Thesolutionofan(n+m)-dimensionalinde niteproblem(2.1)isthustransformed

to the solution of two systems of orders m and n with symmetri positive de nite matri es.

First,thesystem(2.6)is solvedfor y. It isnotalwayspreferableto omputeS dire tly, sin e,

eventhoughAissparse,Sneednottobe. Sometimestheeliminationpro ess anbeperformed

su hthatthesparsityispreserved[

71

℄. When(2.6)issolvediteratively,weneedto omputethe produ twithSwhi hinvolvesthesolutionofasystemwiththematrixA. Theiterativemethod

produ esthesequen eofapproximationsy

k

(k=0;1;2;:::) onvergingideallyto y. Whenthe

ve toryoraniteratey

k

isavailable,the orrespondingapproximationtox anbe omputedby

thesubstitutioninto(2.5).

One of the most popular methods for solving saddle point systems based on the S hur om-

plementredu tion is the Uzawa method [

7

℄. The algorithmis as follows: hoose y0

, then for

k=0;1;2;:::do

(

solve Ax

k +1

=f By

k

;

y

k +1

=y

k

(g B T

x

k +1 +Cy

k ):

Here >0isa relaxationparameter. Hen ewe anwritetheiterationintheform



A 0

B T

1

I



x

k +1

y

k +1



=



0 B

0

1

I C



x

k

y

k



+



f

g



:

Thedire t omputationshowsthat theiterationmatrixoftheasso iatedstationarymethod is



A 0

B T

1

I



1



0 B

0

1

I C



=



0 A

1

B

0 I S



:

Thus the Uzawa method onvergesif and only if the spe tralradiusof I S is stri tlyless

thanone. Itiseasy tosee that theUzawamethod isbasedonthe S hur omplementmethod,

sin eitisnothingbuttheRi hardsoniterationappliedto theS hur omplementsystem(2.6).

Ontheotherhand,theUzawamethod anberegardedasablo kGauss-Seidelmethod(witha

regularizationintheblo k(2;2))appliedtothesaddlepointsystem(2.1).

3.2. The null-space projection method.

TheS hur omplementredu tionreliesonthe

e e tive solutionof systems with the matrix A. Sometimesthe appli ation of A 1

is hard to

omputeinwhi h asethenull-spa eproje tionmethod anbethemethod of hoi e. Assume

herethatAissymmetri positivede niteonN(B T

),B hasafull olumnrankandC=0. The

system(2.2)isthusbyTheorem2.2uniquelysolvableand anbeexpressedastwomatrix-ve tor

equations

Ax+By=f; B T

x=g: (2.7)

Letx

0

beaparti ularsolutionofthese ondequationandZ2

R

n(n m) beamatrix ontaining

a basis of the null-spa e of B T

. Everysu h solution lies in the aÆne spa e x

0

+N(B T

) and

hen e has the form x = x

0 +Zx

Z

, where x

Z

2

R

n m are the oordinates of x x 0

in the

(25)

null-spa ebasisZ. Substitutionintothe rstequationof(2.4)andpremultiplyingbyZ T

gives

thesymmetri positivede nitesystem

Z T

AZx

Z

=Z T

(f Ax

0

) (2.8)

that is, the redu ed system of the ordern mfor the omponents of x x

0

in the basis of

N(B T

). The system Z T

AZ an be solved dire tly oriteratively. Whenwe haveZ expli itly

available(e.g., bythesparseQRfa torization)bothapproa hes anbeapplied. However,when

usinganiterativemethod, it anbeimplementedso that thematrix Z is keptonly impli itly

[

44

℄. We anviewthesolutionof(2.8)as thesolutionofa proje tedsystem

(I )A(I )x

1

=(I )f; (2.9)

wherex

1

=Zx

Z

and isthe orthogonalproje toronto R (B). Thesolution omponenty an

bethenfoundviathesolutionoftheleastsquaresproblem

kf Ax Byk= min

v2

R

m

kf Ax Bvk: (2.10)

When (2.8) or (2.9) is solved iteratively produ ing the sequen e of approximations x

k (k =

0;1;2;:::),solving(2.10)givesanapproximationy

k

toywith xrepla edbyx

k .

(26)
(27)

Limiting accuracy of segregated saddle point solvers

Wewant to solvea saddle pointsystemwhi h is infa t the symmetri inde nitesystem with

22blo kstru ture



A B

B T

0



x

y



=



f

0



; (3.1)

wherethediagonalnnblo kAissymmetri positivede niteandthenmo -diagonalblo k

B hasfull olumnrank. Saddlepointproblemshave re entlyattra ted a lotof attention and

appearto bea time- riti al omponentinthesolutionoflarge-s aleproblemsinmanyappli a-

tionsof omputationals ien eandengineering. Alargeamountofwork hasbeendevotedto a

widesele tionofsolutionte hniquesvaryingfromthefullydire tapproa h,throughtheuseof

iterativestationaryorKrylovsubspa emethods,upto the ombinationof dire tanditerative

te hniquesin ludingpre onditionediteratives hemes. Foranex ellentsurveyonappli ations,

methods, andresults onnumeri al solutionof saddle point problems,we referto [

14

and nu-

merousreferen estherein (relevantreferen eswillbegivenlater inthetext). Signi antlyless

attention, however, has been paidso far to the numeri al stability aspe ts. Here we on en-

trate onthe numeri al behaviorof s hemes whi h omputeseparately the unknown ve tors x

and y: oneof them is rstobtained froma redu ed systemof a smaller dimension,and, on e

it has been omputed, the other unknown is obtained by ba k-substitution solvingexa tly or

inexa tly another redu ed problem. The main representativesof su h a segregated approa h

aretheS hur omplementredu tionmethodandthenull-spa eproje tionmethod. Weanalyze

su halgorithmswhi h an beinterpretedas iterationsfortheredu edsystembut omputethe

approximatesolutionsx

k andy

k

tobothunknownve torsxandysimultaneously.

TheS hur omplementredu tionmethodusestheblo kfa torizationintheform



A B

B T

0



=



I 0

B T

A 1

I



A B

0 B

T

A 1

B



;

wherethematrix B T

A 1

B istheS hur omplementof Ain(3.1). Su hde ompositionleads

tosolvingtheresultingblo ktriangularsystem



A B

0 B

T

A 1

B



x

y



=



f

B T

A 1

f



; (3.2)

whi h is nothing buta blo k Gaussian eliminationapplied to the original system (3.1). The

blo ktriangularsystem(3.2)issolvedby omputingtheunknownyfromthesymmetri positive

de niteS hur omplementsystem

B T

A 1

By=B T

A 1

f (3.3)

ofordermandthenby omputingtheunknownxfromasystemofordernwiththesymmetri

positivede nitematrixA. Thisapproa hleadsto theexpli itformulafortheunknownve tor

(28)

x = A 1

(f By). The null-spa e proje tion method is based on the proje tion of the rst

blo kequationin(3.1) onto the null-spa eN(B T

) andonto itsorthogonal omplementR (B),

respe tively. A ordingtothese ondblo kequationof(3.1)theunknownxbelongsto N(B T

)

andthereforewegettheblo ktriangularsystem



(I )A(I ) 0

B T

A B

T

B



x

y



=



(I )f

B T

f



; (3.4)

whereB(B T

B) 1

B T

denotes theorthogonalproje toronto R (B). Thistriangularsystem

is solvedby forward substitution, where we rst ompute the unknown x fromthe proje ted

system

(I )A(I )x=(I )f (3.5)

ofordernwith thesymmetri positivesemi-de nitematrix(I )A(I ). On e ithasbeen

omputed,theunknowny isobtainedasy=B y

(f Ax)bysolvingtheleastsquaresproblem

kf Ax Byk= min

v2

R

m

kf Ax Bvk; (3.6)

whereB y

denotestheMoore{PenrosepseudoinverseofB. Thesu essofalgorithmsforsolving

theblo k triangularsystems(3.2) or(3.4)dependsonthe availabilityof good approximations

to the inverse of the blo k A orto the pseudoinverse of B, respe tively. More pre isely, one

looks for a heap approximatesolution to the innersystems with the matrixA and/or to the

asso iatedleastsquaresproblemswiththematrixB. Numerousinexa ts hemeshavebeenused

andanalyzed,see,e.g.,theanalysisofinexa tUzawaalgorithms[

31, 22, 23, 12, 112

℄,inexa t

null-spa e methods [

89, 105, 111

℄, multilevel or multigrid methods [

21, 20, 111

℄, domain

de omposition methods [

19

℄, two-stage iterative pro esses [

73, 36

or inner-outer iterations [

43

℄. Thesepapers ontainmainly the analysis of a onvergen e delay aused by the inexa t solutionofinnersystemsorleastsquaresproblems.

We on entrateonthe questionof what isthe best a ura ywe anget frominexa ts hemes

solving either (3.2) or (3.4) when implemented in nite pre ision arithmeti . The fa t that

the inner solution toleran e strongly in uen es the a ura y of omputed iterates is known

andwas studiedinseveral ontexts. The generalframework forunderstanding inexa tKrylov

subspa emethods hasbeendevelopedin[

90

and [

97

℄. Assumingexa t arithmeti ,Simon ini andSzyld[

90

and vandenEshofandSleijpen[

97

investigatedthe e e tofanapproximately omputedmatrix-ve torprodu tineveryiterationontheultimatea ura yofseveralsolversand

explainedthesu essofrelaxationstrategiesfortheinnera ura ytoleran efrom[

18, 19, 39

℄.

The developed theory strongly exploits the parti ularproperties of an iterativemethod used

forsolvingtheasso iatedsystem. Inthe ontextofsaddlepointproblems,this requiresa deep

analysisof the outer iteration s heme for solvingthe redu ed S hur omplementor proje ted

system(inparti ular,wereferto[

90

,Se tion8℄).

The e e ts of roundingerrors in the S hur omplement redu tion method and the null-spa e

proje tionmethod have beenstudied, e.g., in[

2, 3, 26, 70

℄, wherethe maximumattainable

a ura yof omputedapproximatesolutions bymeans ofresiduals anderrorsis estimatedde-

pendingonthe usertoleran espe i ed intheouter iteration. We analyzethein uen eof the

inexa tsolutionofinnersystems/leastsquaresproblemsonthesamequantities. Ourapproa h

isbasedonastandardba kwardanalysiswhi hallowsustotakeintoa ountboththeinexa t-

nessoftheinneriterationloopsaswellasthea ompanyingroundingerrorsthato urin nite

(29)

The theory developed for the outer iteration pro ess is similar to the analysisof Greenbaum

in [

47, 46

who estimated the gap between the true and re ursively updated residual for a general lassofiterativemethodsusing oupledtwo-termre ursions. Thedi eren ehereisthat

every omputedapproximatesolutionof innerproblemisinterpretedas anexa t solutionof a

perturbedproblemindu edbythea tualstopping riterion,whilethetheoryof[

47

onsidered

onlytheroundingerrorsasso iatedwitha xedmatrix-ve tormultipli ation. In ontrasttothe

theoryofinexa tKrylovmethods[

90, 97

℄,theboundsforthetrueresidualintheouteriteration

loop are obtainedwithout spe ifying the solverused forsolving the S hur omplementorthe

proje tedHessiansystem. It appearsthat themaximumattainablea ura ylevelintheouter

pro ess is mainly given by the inexa tness of solvingthe inner problemsand it is not further

magni edby theasso iatedroundingerrors. Theseresults arethus similarto oneswhi h an

beobtainedinexa tarithmeti .

Thesituationisdi erentwhenlookingatthenumeri albehaviorofresidualsasso iatedwiththe

originalsaddlepointsystem,whi h des ribehowa uratelytheblo kequations (3.1)aresatis-

ed. It isshown thattheattainablea ura yof omputedapproximatesolutionsthendepends

signi antlyontheba k-substitutionformulausedfor omputingtheremainingunknowns. Our

results show that, independent of the fa t that the inner systems are solved inexa tly, some

ba k-substitution s hemes leadultimately to residuals on the roundo unit level. Indeed,our

results on rmthat dependingwhi h ba k-substitutionformulais usedthe omputediterates

maysatisfyeitherthe rstorthese ondblo kequationtotheworkinga ura y. Webelievethat

su hresults annotbeobtainedusingtheexa tarithmeti onsiderationsandareofimportan e

inappli ationsrequiringa urateapproximations(seee.g. [

44, 38, 24

℄). Ontheotherhand,we

agreethat inmanyappli ationsthesaddlepointsystem omesfroma dis retizationof ertain

partialdi erentialequationsandmu hlowera ura yissuÆ ient. Inany ase,wegiveatheo-

reti alexplanationforthebehaviorwhi hwasprobablyobservedorisalreadyimpli itlyknown.

However,wehavenotfound anyexpli itreferen esto thisissue. Theimplementationsthatwe

pointoutasoptimalarea tuallythosewhi harewidelyusedandsuggestedinappli ations.

The hapterisorganizedasfollows. Se tions1and2aredevotedtotheroundingerroranalysis

oftheS hur omplementredu tionmethodandthenull-spa eproje tionmethod,respe tively.

Ea hse tionisdividedinto vesubse tions. Insubse tions1.1and2.1weanalyzethein uen e

of inexa t solution of inner systems or least squares on the maximum attainable a ura y in

theouteriterationpro essforsolving(3.2)or(3.4),andweestimatetheultimatenormsofthe

trueresiduals B T

A 1

f+B T

A 1

By

k

and (I )f (I )A(I )x

k

. Inthe onsequent

threesubse tionsofSe tions1and2,wegiveboundsfortheultimatenormofthetrueresiduals

f Ax

k By

k

and B T

 x

k

. As we will see in subse tions 1.2{1.4 and 2.2{2.4, the limiting

a ura y of these residuals may signi antly di er for various ba k-substitution formulas for

omputing x

k or y

k

, respe tively. Subse tions 1.5 and 2.5 ontain forward analysis with the

bounds forthe errors x x

k

and y y

k

. Throughoutthis hapterour theoreti al resultsare

illustratedonthemodelexampletakenfrom[

83

℄: weputn=100; m=20,and

A=tridiag(1;4;1)2

R

nn; B=rand(n;m); f =rand(n;1):

The spe trum ofA and singularvaluesof B liein theinterval[2:001;5:999℄and [2:173;7:170℄,

respe tively. Therefore the onditioning of A or B does not play an important role in our

(30)

Fordistin tion,wedenotequantities omputedin nitepre isionarithmeti bybars.Weassume

that theusualrules ofa well-designed oating-pointarithmeti hold, anduse o asionallythe

notation () for a omputed result of an expression. The roundo unit is denoted by u. In

parti ular,fora matrix-ve tormultipli ationthe boundk (Ax) Axk O(u)kAkkxk is used

andkxkdenotesthe2-normoftheve torx;forageneralmatrixAwemakeuseofthespe tral

normkAk and the orresponding ondition number (A) = kAk=

min

(A), where

min (A) is

theminimalsingularvalueofA. Forasymmetri positivede nitematrixA,kxk

A

denotesthe

A-normoftheve torx. Finally,weapplytheO-notationwhensuitable.

1. Schur complement reduction method

Inthisse tionwewilldis ussalgorithmswhi h omputesimultaneouslyapproximationsx

k and

y

k

totheunknownsxandy andideallyful llthe rstblo kequationof(3.1)

Ax

k +By

k

=f: (3.7)

Ourgoalhereisnottosurveyallexistings hemesbasedon (3.7)buttoanalyzethenumeri al

behaviorofthreeimplementationswhi husedi erentba k-substitutionformulasfor omputing

the approximate solution x

k

. More pre isely, without spe ifying any parti ular method, we

assume that we have omputed the approximate solution y

k +1

and the residual ve tor r (y)

k +1

usingthere ursions

y

k +1

=y

k +

k p

(y)

k

; (3.8)

r (y)

k +1

=r (y)

k +

k B

T

A 1

Bp (y)

k

(3.9)

withr (y)

0

= B

T

A 1

(f By

0

). Wewilldistinguishbetweenthefollowingthreemathemati ally

equivalentformulas:

x

k +1

=x

k +

k ( A

1

Bp (y)

k

); (3.10)

x

k +1

=A 1

(f By

k +1

); (3.11)

x

k +1

=x

k +A

1

(f Ax

k By

k +1

): (3.12)

Theresultings hemesaresummarizedinFigure3.1. Theses hemeshavebeenusedandstudied

in the ontext of many appli ations, in luding various lassi al Uzawa algorithms, two-level

pressure orre tion approa h, or inner-outer iteration method for solving (3.1); see, e.g., the

s hemes with (3.10) in [

82, 10

℄, (3.11) in [

31

℄, or (3.12) in [

22, 23, 12, 112

℄, respe tively.

Be ausethesolveswith matrixAinformulas(3.10){(3.12)areexpensive,these systemsarein

pra ti esolvedonlyapproximately. Ouranalysisisbasedontheassumptionthateverysolution

ofasymmetri positivede nitesystemwiththematrixAisrepla edbyanapproximatesolution

produ edbyanarbitrarymethod. Theresultingve toristhen interpretedasanexa tsolution

ofthesystem with thesameright-handside ve torbutwith a perturbedmatrixA+A. We

alwaysrequirethat the relativenormof theperturbationis bounded as kAkkAk, where

 represents a ba kwarderror asso iated with the omputedsolution ve tor. We will always

assumethattheperturbationAdoesnotex eed thelimitationgivenbythedistan eofA to

thenearestsingularmatrixandputrestri tionintheform(A)1. Itfollowsthenfromthe

standardperturbationanalysis(see,e.g.,[

55, 16

℄)that

k(A+A) 1

A 1

k

(A)

kA 1

k:

(31)

outer iteration

y

0

; solveAx

0

=f By

0

; r (y)

0

= B

T

x

0

for

k=0;1;2;::: y

k +1

=y

k +

k p

(y)

k

inner iteration / back-substitution

solveAp (x)

k

= Bp (y)

k

A

) xk +1=xk+ kp(x)k

B

) solveAxk +1=f Byk +1

C

) solveAuk

=f Ax

k By

k +1

; x

k +1

=x

k +u

k

r (y)

k +1

=r (y)

k

k B

T

p (x)

k

Figure3.1. S hur omplementredu tion: Threedi erents hemesfor omput-

ingtheapproximatesolutionx

k +1

( alledinthetexttheupdatedapproximate

solution(A), theapproximatesolution omputedbya dire tsubstitution(B),

andtheapproximatesolution omputedbya orre teddire tsubstitution(C),

respe tively).

Notethat if=O(u),thenwehaveaba kwardstablemethodforsolvingthepositivede nite

system with A. In our numeri al experiments, we solve the systems with A inexa tly using

the onjugategradientmethodorwiththe Choleskyfa torizationas indi atedbythenotation

 =O(u).

1.1. The attainable accuracy in the Schur complement system.

Inthissubse tion

we look at the ultimate a ura y in the outer iteration pro ess by means of the true resid-

ual B T

A 1

f +B T

A 1

By

k

. It is lear that if we perturb the S hur omplement system

B T

A 1

By = B T

A 1

f to B T

(A+A) 1

By^ = B T

A 1

f, where kAk  kAk, then

theresidualasso iatedwithy^ anbeboundedas

k B

T

A 1

f+B T

A 1

Byk^ 

(A)

1 (A) kA

1

kkBk 2

k^yk: (3.13)

We see from(3.13) that there is a limitationto the a ura y of theresidual obtaineddire tly

fromy^anditsboundisproportionalto . Notethatthese onsiderationsweremadeassuming

exa t arithmeti . The e e ts of rounding errors on the same quantity have been studied by

Greenbaum[

47

℄,who onsideredageneral lassofmethodsforsolvingthe xedsystemoflinear

equations usingtwo-termre ursionsgivenby(3.8)and (3.9). Using asimilarapproa hwe an

(32)

Theorem3.1. The gapbetween the true residual B T

A 1

f+B T

A 1

By

k

andthe updated

residualr (y)

k

an be bounded as

k B

T

A 1

f+B T

A 1

By

k

 r

(y)

k k



[(2k+1)+O(u)℄(A)

1 (A)

kA 1

kkBk(kfk+kBk



Y

k );

where



Y

k

is de ned as a maximum norm over all omputed approximate solutions



Y

k



max

i=0;:::;k ky

i k.

Proof. The initialresidual r (y)

0

is omputedas r (y)

0

= (B T

 x

0

),where(A+A

0 )x

0

=

(f By

0 ),kA

0

kkAk. Itiseasytoseethatthestatementholdsfork=0. The omputed

approximatesolutiony

k +1

andtheresidualr (y)

k +1 satisfy

 y

k +1

=y

k + 

k

 p

(y)

k +y

k +1

;

ky

k +1

kuky

k

k+(2u+u 2

)k 

k

 p

(y)

k k;

(3.14)

 r

(y)

k +1

=r (y)

k



k B

T

 p

(x)

k +r

(y)

k +1

;

kr (y)

k +1

kukr (y)

k

k+O(u)kBkk

k

 p

(x)

k k;

(3.15)

wherep (x)

k

is theexa t solutionoftheperturbedsystem

(A+A

k )p

(x)

k

= (Bp (y)

k

); kA

k

kkAk: (3.16)

Multiplying(3.14)by B T

A 1

B,substituting(3.16) intothe re urren e(3.15), and subtra ting

thesetwoequationswegetthere urren e

B T

A 1

f+B T

A 1

By

k +1

 r

(y)

k +1

= B

T

A 1

f +B T

A 1

By

k

 r

(y)

k



k (B

T

 p

(x)

k +B

T

A 1

Bp (y)

k )+B

T

A 1

By

k

r (y)

k :

Thenormoftheve tor 

k

 p

(y)

k

anbeboundedas k

k

 p

(y)

k

kky

k +1 k+ky

k

k+ky

k +1

k. This

boundin ombinationwith(3.14)givesky

k +1

kO(u)



Y

k +1

andk 

k

 p

(y)

k k3



Y

k +1

whi halso

implies

k 

k

 p

(x)

k k

3kA 1

k

1 (A) kBk



Y

k +1

: (3.17)

Using(3.16), the boundonk

k

 p

(y)

k

k,and someelementarymanipulation,we anestimatethe

term 

k (B

T

 p

(x)

k +B

T

A 1

Bp (y)

k )

k

k (B

T

 p

(x)

k +B

T

A 1

Bp (y)

k

)kk

k B

T

[(A+A

k )

1

A 1

℄ (Bp (y)

k )k

+k 

k B

T

A 1

[ (Bp (y)

k

) Bp (y)

k

℄k

[+O(u)℄(A)

1 (A) kA

1

kkBk 2



Y

k +1 :

Considering (3.15), (3.17), and the indu tion assumption on the gap between B T

A 1

f +

B T

A 1

By

k andr

(y)

k

(similarto theoneusedin[

47

℄),weobtaintheboundfortheerrorve tor

r (y)

k +1

intheform

kr (y)

k +1 k

O(u)(A)

kA 1

kkBk(kfk+kBk



Y

k +1 )

References

Related documents

- Aktualitetsstandard : Visst preciserat kartinnehåll inom planområdet är kontrollerat och Skalan för primärkartan är 1:2 000 (byar). Kartstandard

Västerbottencreme, lollorosso, bifftomat, picklad rödlök, serevars med pommes och tryffe

I nuläget tar inte alla individer till sig informationen på Verksamhetsinfo, vilket kan ha sin grund i att de anser att det är för svårt att ta till sig siffrorna samt att det

This report describes President Biden’s Made in America tax plan, the goal of which is to make American companies and workers more competitive by eliminating incentives to

[r]

[r]

[r]

Klimatkrisen växer mer för varje dag och den får allt större konsekvenser. Som svar på det har vi de senaste åren har sett en förändring där allt fler aktörer på marknaden