• No results found

Strong Interactions

N/A
N/A
Protected

Academic year: 2022

Share "Strong Interactions"

Copied!
29
0
0

Loading.... (view fulltext now)

Full text

(1)

Strong Interactions

Leif Lönnblad

Institutionen för Astronomi och teoretisk fysik Lunds Universitet

2018-12-03

(2)

Quantum Chromo Dynamics

The Potential in QED:

V(r ) = −αEM

r + k1~L · ~S + k2µeµp

In QCD?

V(r ) = −4 3

αS

r + k1~L · ~S + k2µqµ¯q

(4/3 from group theory) No! QCD is different:

V(r ) = −4αS

+ · · · + κr,

(3)

V(r ) = −4 3

αS

r + κr V(r) 0

r Coulomb

linear total

Comes from gluon self interactions

κ ∼ 1 GeV/fm (15 metric tons per meter)

Acts like a spring-like force between a q and a ¯q

A quark can never be free! Confinement

(4)

The Lund Model

The field is compressed into a flux tube, d≈ 0.7 fm

a (mass less relativistic)string

As q and ¯q flies apart more and more energy is stored in the field.

Virtual q ¯q pairs in the string can come on-shell and break

(5)

Jets

The break-ups are causally disconnected.

The average distance between break-ups is independent of the string length.

length and distance defined in terms ofrapidity y ≡ 1

2lnE+ pz

E− pz = lnE+ pz

m ≈ ln|p| + pz p ≡ η

Rapidity differences are invariants under Lorentz transformations along the string.

The mesons formed along the strings will have limited

(6)

Assuming e+e → q¯q with some√

s, the maximum rapidity of a hadron is

ymax∼ ln√ s/m And the number of particles produced is

Ntot∝ ln

√s

hmi + const

(7)

Light hadrons

Hadrons are coloursinglets. That requires the q and ¯q in a meson to have opposite colour, but that’s not enough.

S = 1,

Sz = 1: | ↑↑i

= 0: 1

2(| ↑↓i + | ↓↑i)

= −1 : | ↓↓i or a spin 0 system

S= 0, Sz = 0 : 1

√2(| ↑↓i − | ↓↑i)

(8)

Mesons:

q ¯q= 1

√3(|r¯ri+|g¯gi+|b¯bi) Baryons:

qqq = 1

√6(|rgbi−|rbgi+|brgi−|bgri+|gbri−|grbi) = 1

√6εijk|qiqjqki

(9)

QCD is SU(3). For a general SU(N) we would get baryons with N quarks.

In principle we can in QCD also have tetraquark hadrons (q ¯qq ¯q)

. . . or pentaquarks (q ¯qqqq)

. . . or even glue balls (gg or ggg)

. . . or maybe hermaphrodites (q ¯qg)

The first exotic state to be found was a pentaquark (uudd ¯s) which decayed into n+ K+.

(10)

Classification of hadrons

flavour contents (gives charge, decay patterns etc.)

mass

internal spin S. Mesons S= 0, 1. Baryons S = 12,32.

internal angular momentum L= 0, 1, 2, . . .

total spin J, ¯J = ¯S+ ¯L. (Often also simply called spin.)

Radial excitation n.

Relativistic corrections and mixing (quite messy).

(11)

Hadron masses

The atom analogy gives an approximation m=X

i

mi+ kX

i<j

h¯µiµ¯ji =X

i

mi+ kX

i<j

h¯Siji mimj

k ∝ |Ψ(0)|2≈ m2u· 640 MeV (mesons) ≈ m2u· 200 MeV (baryons).

To account for the binding energy we need to consider constituentquark masses.

(12)

Quark masses

quark current mass constituent mass

(MeV) (MeV)

u 2 330

d 5 330

s 100 500

c 1 250 1 600

b 4 200 5 000

t 173 000 –

(13)

m=X

i

mi+ kX

i<j

h¯µiµ¯ji =X

i

mi+ kX

i<j

h¯Siji mimj

Let’s calculate the mass ofπ+. We have= u ¯d in a spin-0 state:

1·¯S2= 1

2( ¯S2−¯S12−¯S22) = 1

2(S(S+1)−S1(S1+1)−S2(S2+1)) = −3 4 so

mπ = 2 · 330 −3

4 · 640 = 180 MeV The actual mass is mπ± = 140 MeV – close enough?

(14)

Charge and parity symmetries

The lightest mesons are vectors (S = 1, ρ0±,ω, . . . ) and pseudo-scalars (S= 00±,η, . . . )

Flavour-diagonal states may mix:

u¯u, d ¯d, s¯s ⇒ π0, η, η

(15)

The parity of two particles in a specific angular momentum eigen state L:

P|ab; Li = |P(a)P(b); Li(−1)L= PaPb(−1)L|ab; Li with PaPb = −1 for a fermion f¯f pair and +1 for a boson pair.

(16)

For charge conjugation we have for flavour-diagonal mesons C|a¯a; L, Si = |¯aa; L, Si = (−1)(−1)L(−1)S+1|a¯a; L, Si but other mesons are not necessarily eigenstates under C.

C|a¯b; L, Si ∝ |b¯a; L, Si 6= ±|¯ab; L, Si This is due to quark mixing (next week)

(17)

Hadron Decays

Before quarks were invented, there was iso-spin. It was used to explain why some hadrons had much shorter lifetimes that others.

proton: |12,12i, neutron: |12, −12i, π±: |1, ±1i, π0:|1, 0i.

Leptons have iso-spin zero, so n→ peνe breaks iso-spin and is forbidden (i.e. the neutron has a long life-time)

+:|32,12i so ∆+→ pπ0is allowed and it decays immediately.

Today we identify u = |12,12i and d = |12, −12i.

(18)

Strong decays: conserves individual quark numbers.

E.g.∆++→ pπ+(uuu→ uud + ¯d u).

EM Decays: also conserves quark numbers (but not iso-spin).

E.g.π0→ γγ (|1, 0i → |0, 0i|0, 0i).

Weak Decays: does not conserve quark numbers. E.g.

π+→ µ+ν¯µ(u ¯d → W+→ µ+ν¯µ).

(19)

Rules for hadronic decays:

All decays must respect energy conservation.

If a strong decay possible it will dominate: τ ∼ 10−23s (difficult to calculate)

Otherwise, if an EM decay is possible it will dominate:

τ ∼ 10−20− 10−10 s (approximately calculable).

otherwise if weak decay is possible: τ ∼ 10−10− 103s (approximately calculable).

otherwise stable.

(20)

How does a hadron decay

Determine the constituent quarks

Find two or more particles with summed mass below the mass of the decaying hadron.

If decay products have the same net quark contents as the original (e.g.∆+→ nπ+), this can be a strong decay and will dominate.

If there are leptons or photons among the decay products (e.g.∆+→ pe+e) This can be an EM decay.

In weak decays the net quark content may change via q → qW → qf ¯f. (if q and q are from different families

(21)

Heavy quarks – the October revolution

(22)

Heavy quarks

In November 1974 a narrow peak was found in e+e→ µ+µ around√

s= 3 GeV. The J particle.

In another experiment colliding protons also found a peak in the µ+µand called it theΨ particle.

It is now called the J/Ψ particle.

Enter the charm quark.

(23)

Charmed mesons

The lightest charm mesons are D+(c ¯d) and D0(c ¯u).

But mJ/Ψ < 2mDso J/Ψ cannot decay strongly, hence the narrow peak.

If the J/Ψ is a atomically bound state of c and ¯c, there should be excited charmonium states:

3S1(1s) = J/ψ,3S1(2s) = ψ,3S1(3s) = ψ′′,3PJ = χc, . . . As soon as the mass of these becomes larger than 2mD we have strong decays and the peaks broadens.

(24)

They lightest DC-mesons can only decay weakly, so we can calculate the decay width in the same way as for the muon. The weak processes are c → sW+with W+→ µ+ν¯µ, e+ν¯e, u ¯d so

Γc ∼ G2Fmc5

192π3(1 + 1 + 3)

(25)

The Bottom quark

In 1978, history repeated itself when the E288 experiment at Fermilab discovered the Upsilon and the bottom quark.

The lightest B-mesons can only decay weakly through b → Wc and b→ Wu. (b→ Wt is forbidden).

Very long lifetimes; cτ ∼ 0.4 mm.

(26)

The top quark

Predicted since the b-quark was found.

Finally discovered at the Tevatron at Fermilab in 1995.

u¯u→ g → t¯t → bW+bW¯

Very short-lived and decays immediately through t → bW+.

There are no top hadrons.

(27)

e

+

e

physics

e+e→ γ/Z0→ f¯f For low√

s we can ignore Z0exchange and get M = ee(¯eγµe)1

sef(¯fγµf) and

σ = 4π 3

Qf2α2 s .

(28)

Rhad = σ(e+e→ hadrons)

+ + = 3X

Q2q

(29)

The gluon

The PETRA accelerator at DESY 1978

References

Related documents

Skolförlagd yrkesutbildning i förhållande till arbetsmarknaden. • Kort men bred skolförlagd yrkesutbildning komplementärt

Under  den  aktuella  perioden  Maj  2007­Maj  2008  har  institutionen  anställt  två  kvinnliga  medarbetare  (en  forskare  och  en  forskningsingenjör)  och 

Mats säger att urvalet av uppgifter till övningen redan är gjord och Griffiths är så bra att han tycker att det är nödvändigt för att man ska lära sig kursen

Alla som är verksamma inom universitetet har ett ansvar för att missförhållanden eller risker uppmärksammas.. Instruktioner, föreskrifter och rutiner skall följas och brister eller

Institutionen bedriver utbildning inom det naturvetenskapliga kandidatpro- grammet, ing˚ angarna Teoretisk fysik och Astronomi, samt inom master pro- grammen f¨ or astrofysik och

Gör klart för er vilka aktiviteter som är beroende av varandra (gärna innan ni skriver ned dem), för att få dem i rätt ordningsföljd?. Skriv ned de fasta tidpunkter som ni

•  Att utvärdera och reflektera över dagen klinikvis?. • 

Region Skånes strategi för gestaltad livsmiljö används och omsätts i Regional kulturplan för Skåne 2021–2024 och har en central roll i förverkligandet av