• No results found

Sustainability driven product development -some challenges and opportunities for aero industry

N/A
N/A
Protected

Academic year: 2022

Share "Sustainability driven product development -some challenges and opportunities for aero industry"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

Electronic Research Archive of Blekinge Institute of Technology http://www.bth.se/fou/

This is an author produced version of a conference paper. The paper has been peer-reviewed but may not include the final publisher proof-corrections or pagination of the proceedings.

Citation for the published Conference paper:

Title:

Author:

Conference Name:

Conference Year:

Conference Location:

Access to the published version may require subscription.

Published with permission from:

Sustainability driven product development -some challenges and opportunities for aero industry

Sophie Hallstedt, Anthony Thompson

International Society for Airbreathing Engines, ISABE

2011

Gothenburg, Sweden

(2)

                ISABE-­‐2011    

SUSTAINABILITY-­‐DRIVEN  PRODUCT  DEVELOPMENT    

-­‐  SOME  CHALLENGES  AND  OPPORTUNITIES  FOR  THE  AERO  INDUSTRY    

Sophie  I.  Hallstedt   Anthony  W.  Thompson   Blekinge  Institute  of  Technology  

Karlskrona,  Sweden   Abstract

Products   contribute   to   global   sustainability   problems   throughout   their   entire   life   cycles.   The   majority   of   opportunities   to   influence   the   sustainability   performance   of   products   come   when   the   product   is   designed   –   far   before   it   is   created   or   put   into   use.   Within   the   aeronautics   industry,   there   are   specific   targets   set   out   by   the   Advisory   Council   for   Aeronautics   Research   in   Europe  (ACARE)  with  one  of  the  high-­‐level  targets   being   an   “ultra   green   air   transport   system.”   At   Volvo  Aero,  a  leading  manufacturer  of  aero  engine   components,  this  has  turned  into  concrete  design   targets  like  light  weight,  noise/emission  reduction   and  high  reliability.    

 

Volvo   Aero   has   been   used   as   a   case   in   this   research   survey   to   identify   some   challenges   and   opportunities   of   implementing   a   sustainability   perspective   in   the   product   innovation   process   in   the   aero   industry.   The   overall   purpose   of   this   paper  is,  then,  to  discuss  these  challenges  and  the   associated   opportunities   to   include   such   a   sustainability   perspective   to   reach   a   sustainability-­‐driven  product  innovation  process.    

 

Introduction  

  The   results   of   unsustainable   product   development  are  evident  worldwide.  Products  and   their   usage   contribute   to   global   sustainability   problems.   This   has   increased   the   efforts   to   identify   the   potential   environmental   impact   from   products   already   during   the   early   phases   in   the   product  innovation  process,  as  the  manufacturing   processes   and   material   use   during   the   product’s   life  cycle  are  then  decided  upon.    

 

The   strategic   research   plan   that   the   Advisory   Council   for   Aeronautics   Research   in   Europe   (ACARE)   has   developed,   aims   to   develop   and   maintain   a   Strategic   Research   Agenda   (SRA)   for  

aeronautics   in   Europe.   In   the   Strategic   Research   Agenda   (SRA)-­‐report1   it   is   stated   that   there   is   a   need   to   reduce   the   environmental   impact   of   aircraft   and   associating   systems   during   their   lifecycle;   from   operation,   maintaining,   manufacturing   to   the   disposal   phase.   Also   in   the   SRA2-­‐report2   some   targets   have   been   even   more   emphasized   and   the   “Ultra   green   air   transport   system”  is  one  of  the  high  level  targets.  

 

At   Volvo   Aero,   that   develops,   produces   and   maintains   aero   engine   products,   the   efforts   to   reach   the   strategies   of   ACARE   has   turned   into   concrete   targets   on   product   functionality   such   as   light   weight,   noise   reduction,   emission   reduction   and   high   reliability.   New   fuels,   new   design   to   reduce   fuel   burn   and   new   flight   routes   are   also   important  aspects  to  consider  for  reduction  of  the   environmental   impact   from   airplanes   in   operation3.   If   you   also   add   to   this   a   full   life-­‐cycle   responsibility,  not  only  from  an  environmental  but   also   from   a   social   perspective,   and   from   material   extraction,   via   production   and   use,   to   component   scrapping,   the   complexity   increases   even   more.  

There   is   a   challenge   in   being   able   to   optimize   these  aspects  and  at  the  same  time  be  competitive   on   the   market,   possibly   also   in   finding   new   ways   to  be  competitive  using  sustainability  as  a  driver.  

The   competitive   condition   may   be   seen   as   the   third   dimension   in   establishing   sustainable   solutions.  

 

Fuel   saving   or   alternative   fuels   are   the   focus   of   many   research   studies   to   improve   the   sustainability   parameters   for   aviation.   Different   technologies,   for   example   air-­‐to-­‐air   refuelling4,   design   solutions   such   as   open-­‐rotor5,6,   and   environmentally   friendly   propulsion   systems7   as   well  as  flight  routes8  are  proposed.  This  research   study   takes   a   more   generic   approach,   from   an   industry   perspective,   and   proposes   recommendations   for   how   to   reach   a  

(3)

sustainability-­‐driven   product   innovation   process,   using  Volvo  Aero  as  a  case.    

 

Research  approach  and  research  methods    

This   is   mainly   a   descriptive   study   with   a   qualitative   research   approach.   The   data   was   collected   through   studies   of   the   product   development   process   documents   and   in-­‐depth   interviews   of   seven   persons   at   Volvo   Aero   with   different   responsibility   areas,   i.e.   product   planning,     product   development,   project   management,   supplier   development   and   environment,   environmental   management,   ,   advanced   engineering,   environmental   engineering.    

 

A   generic   framework,   referred   to   as   the   Framework  for  Strategic  Sustainable  Development   (FSSD)9,  possible  to  use  when  planning  in  complex   systems,   constitutes   a   background   methodology   for   this   study.   The   FSSD   consists

 

of   five   interdependent   but   distinct   levels   that   are   explored  to  establish  their  respective  contents  and   relationships  for  the  particular  planning  case.  The   framework   encourages   a   thorough   enough   understanding   of   the   system   (1)   to   be   able   to   arrive  at  a  robust  principled  definition  of  the  goals   of   the   planning   exercise   (2),   which   is   a   prerequisite   to   be   able   to   be   strategic   (3)   when   actions  (4)  and  tools  for  monitoring,  coordination   and   decision-­‐making   (5)   are   selected   and   informed.   The   framework   was   developed   from   logical   deduction   and   is   generally   also   perceived   as   intuitive   when   applied   in   organizational   sustainability  planning.    

 

The   interview   questions   (see   appendix   A)   were   built   on   Roozenburg   &   Eekels’   model10   of   the   product   innovation   process.   According   to   their   model,   the   product   innovation   process   is   divided   into  a  product  development  part  and  a  realization   part.  The  product  development  is  also  divided  into   a   product   planning   part   and   so   called   strict   development.   The   main   focus   in   this   article   is   on   the  early  parts  of  the  product  innovation  process   as   sustainability   aspects   need   to   be   integrated   early,  considering   the  fact  that  decisions  taken  in   the   innovation   process   affect   the   impact   from   a   product  life-­‐cycle  later  on.  

 

Results  

1.  Different  perspectives  on  sustainability   During  the  interviews,  two  distinct  perceptions  of   sustainability   emerged.   The   first   perspective,  

coming   from   the   people   working   with   technical   engineering   details   related   to   engines,   focused   largely  on  fuel  burn.  It  seems  that  there  is  a  strong   belief   among   this   group   that   the   single   most   impactful  thing  Volvo  Aero  can  do  to  improve  the   sustainability   of   its   products   is   to   reduce   fuel   burn.   The   second   perspective   comes   from   those   working   in   the   areas   of   environmental   management   and   those   in   charge   of   supplier   assessments.   This   group   tended   to   have   a   much   broader   perspective   on   sustainability   issues   as   including  both  environmental  and  social  concerns.  

There  is,  thus,  a  lack  of  a  common  definition  of  the   term  sustainability  and  what  this  means  to  Volvo   Aero,  even  if  one  of  Volvo’s  core  values;  “care  for   the   environment”,   is   well   known   and   accepted   among  the  employees.      

 

2.  Value  chain  with  safety  and  reliability  in  focus   When   discussing   the   driving   forces   for   sustainability   at   Volvo   Aero,   respondents   stated   that   the   industry   is   driven   by   three   main   engine   producers,   that   the   industry   tends   to   work   as   a   quite   tight   network,   and   that   it   is   a   conservative   industry  partly  due  to  the  network  and  largely  due   to  safety  and  reliability  standards.  After  clarifying   these  characteristics,  there  was  general  consensus   that   the   main   driving   force   within   the   entire   industry  is  safety  and  reliability.    

 

There   was   also   a   tendency   to   think   that   sustainability-­‐related  responsibility  “passes  down   the   chain”;   e.g.   from   airline   manufacturer   to   engine   manufacturer,   from   engine   manufacturer   to   component   supplier,   and   from   component   supplier   to   sub-­‐supplier.   The   correlated   observation  is  that  those  sub-­‐suppliers  have  very   little   influence   over   the   greater   system   and   attempts   at   sustainability   by   the   suppliers   and   sub-­‐suppliers  equate  to  the  idea  of  the  “tail  trying   to  wag  the  dog.”    

 

3.  Drivers  for  innovations  related  to  sustainability     The   three   main   engine   manufacturers   (due   to   pressure   from   airlines,   due   to   fuel   prices)   are   focused   on   reducing   fuel   burn.   Airline   customers   sometimes   put   pressure   on   airlines   regarding   sustainability   in   general,   though   it   is   unclear   the   extent   to   which   this   affects   passenger   behavior.  

Innovations  related  to  sustainability  being  driven   primarily   by   i)   the   Government,   especially   the   European  Union;  goals  with  frequent  reference  to   ACARE,  ii)  Airlines;  in  terms  of  reducing  fuel  burn   in  order  to  reduce  costs,  iii)  AB  Volvo:  Volvo  Aero   is   influenced   by   AB   Volvo’s   emphasis   on  

(4)

environmental   issues   as   one   of   Volvo’s   core   values.   This   sometimes   results   in   decisions   regarding  manufacturing  processes  that  are  ahead   of  legislation  and  customer  requirements.  

 

4.  Sustainability-­‐related  decisions  come  mainly  in   the  concept  phase  

At   Volvo   Aero   methods   for   sustainability-­‐driven   design   in   the   early   phases   are   lacking   and   as   a   consequence   the   ambition   is   higher   than   the   ability.  The  products  that  are  developed  are  often   analyzed  from  sustainable  perspectives  in  phases   where   changes   may   be   quite   costly   to   introduce,   (see   Figure   1   in   Appendix   B).   Tools   like   Environmental  Impact  Assessment  (EIA),  material   lists   and   guidelines   for   suppliers   are   the   most   frequently  used  tools  and  methods  within  the  area   of  sustainability.    

 

Decisions   impacting   sustainability   are   made   mainly   in   the   concept   phase   of   the   product   development   process.   An   EIA   is   intended   to   be   used   to   guide   decisions   in   the   project,   but   practically  the  guidance  from  an  EIA  often  comes   too   late   to   really   provide   significant   guidance   in   the  design  and  choices  in  the  concept  stage  of  the   project.  Thus,  findings  from  EIAs  from  completed   projects   can   often   provide   valuable   input   for   current  and  future  projects.    

 

5.  Sustainability-­‐related  decisions  and  guided  tools   The   primary   responsibility   for   sustainability-­‐

related   decisions   during   a   project   lies   with   the   project  leader,  who  works  closely  with  the  project   steering   committee.   Decisions   are   guided,   in   general,   by   AB   Volvo’s   core   values.   Some   sustainability-­‐related   decisions   are   made   during   the   product   innovation   process   with   regard   to   suppliers.   Volvo   Aero’s   Global   Purchasing   Committee  takes  decisions  on  whether  or  not  new   suppliers  are  acceptable.  AB  Volvo’s  Key  Elements   Procedure   5   and   Key   Elements   Procedure   6   are   used  to  guide  decisions  about  suppliers.  They  are   used   as   guiding   documents   to   help   suppliers   and   potential   suppliers   to   create   action   plans   that   demonstrate   to   Volvo   Aero   that   sustainability   improvements  are  undertaken.  

Further   with   regard   to   suppliers,   and   because   of   the   tight   and   relatively   limited   network   of   potential   suppliers   in   the   aero   engine   industry,   Volvo  Aero  has  their  own  Supplier  Environmental   Assessment   (SEA)   that   they   can   use   when   suppliers  are  not  ISO  14001  certified.    

 

During  the  interviews  there  were  also  suggestions   for  adding  competences  in  the  sustainability  area   in  the  project  groups  from  the  start.  Especially,  it   was   considered   that   the   buyers/purchasers   should   more   actively   be   involved   earlier   in   the   innovation  process  because  they  are  the  ones  with   relationships   with   the   suppliers.   These   relationships   can   provide   key   information   and   knowledge   regarding   sustainability   impacts   from   the   suppliers   (e.g.   social   aspects   like   working   conditions   in   the   factories,   or   environmental   aspects  of  their  production  processes).    

 

6.  Product-­‐Service  System    

Volvo  Aero  has  been  included  in  a  Product-­‐Service   System   (PSS)   approach   via   the   “Power   by   the   Hour”   concept.   One   specific   benefit   of   such   an   approach   might   be   the   chance   to   get   more   information   about   component   performance,   e.g.  

information   that   is   collected   during   maintenance   could   be   shared   back   to   Volvo   Aero   in   order   to   increase   knowledge   about   how   the   component   performs   over   time.   Currently,   access   to   that   information  is  a  challenge,  and  engineers  feel  that   having  additional  access  to  information  could  help   them   to   improve   component   performance.  

Interviewees  suggested  that  a  PSS  approach  might   lead   to   shifting   customer   demands,   e.g.   more   emphasis   on   reduced   life-­‐cycle   costs   instead   of   lower  purchasing  price.  

 

Concluding  discussions

 

  This  paper  addresses  some  main  challenges   and   opportunities   for   implementing   a   sustainability   perspective   in   the   product   development   process   in   the   aero   industry,   and   recommendations  on  how  such  presumptive  gaps   could  be  bridged.  Volvo  Aero  was  used  as  a  case  as   Volvo   Aero   is   perceived   to   be   ahead   of   the   competitors   in   the   field.   Volvo   Aero   participates,   for   example,   in   the   European   programme   Clean   Sky,   which   is   the   major   initiative   engaging   the   aeronautical   community   to   meet   the   ACARE   targets.   Volvo   Aero   is   also   currently   investing   in   developing   and   validating   the   next   generation   of   jet   engine   solutions   to   meet   increasing   sustainability  demands  on  the  market.  

 

1.  Important  to  have  a  strategic  sustainability  plan   To  have  an  overview  and  a  strategic  sustainability   plan   that   is   well   communicated   at   Volvo   Aero   is   important   as   there   is   a   complexity   in   many   dimensions.  Otherwise    there  is  a  risk  to  focus  on   one  issue  at  a  time  if  it  is  not  part  of  an  overview   picture.   The   current   focus   at   Volvo   Aero   is   to  

(5)

reduce   the   emissions   and   fuel   burn;     less   emissions     means   less   weight   means   design   changes.   But   the   next   issue   might   be   scarce   material   –   which   also   might   force   new   design   solutions.   To   do   system   analysis   on   the   full   product   life   and   simulate   sustainability   consequences   can   be   useful   for   understanding   how   to   optimize   and   decide   what   the   natural   stepping  stones  are,  i.e.  flexible  platforms,  to  build   from.    

 

It   is   important   to   have   a   common   view   on   sustainability  in  order  to  be  able  to  efficiently  and   strategically  work  towards  sustainability11,  and    in   order   to   ensure   that   a   complete   sustainability   perspective  is  used  to  drive  innovation  processes   rather  than  only  single  aspects  of  sustainability.  If   the  system  is  explored  enough,  it  may  be  possible   to   define   in   principle   what   sustainability   would   entail.  The  more  rigorous  this  is  done,  the  easier  it   will   be   to   develop   the   subsequent   levels   in   a   robust  framework  for  strategic  planning,  Strategic   Sustainable   Development   (SSD).   The   previously   described   Framework   for   Strategic   Sustainable   Development  (FSSD)  has  been  developed  to  find  a   generally   applicable   principled   definition   of   sustainability12,13.   A   principled   definition   as   opposed   to   a   scenario   allows   open-­‐ended   and   non-­‐prescriptive   co-­‐creation   towards   sustainability   that   does   not   miss   or   give   preference   to   certain   sustainability   aspects.   Basic   success  principles  are  needed  in  all  organizations   for   setting   system   boundaries,   calculation   of   potentials,   step-­‐wise   strategic   approaches,   avoidance  of  un-­‐known  problems,  management  of   trade-­‐offs,  cohesive  use  of  tools  and  effective  team   work  across  disciplines  and  sectors.  The  FSSD  has   previously   been   successfully   used   and   implemented   by   senior   managers   in   different   types   of   businesses11,   14,   15,16,17,18,19,20,   which   indicates  its  value  and  applicability.  

       

2.   Relate   cost   to   sustainability   consequences   for   leap-­‐frog  innovations  

In  order  to  reach  a  sustainable  society  sooner  it  is   necessary   to   make   more   radical   innovations   and   more   leap-­‐frog   solutions21,22.   However,   based   on   the   interviews   at   Volvo   Aero   it   is   clear   that   it   is   hard   to   make   decisions   regarding   sustainability   issues  that  means  more  radical  changes  because  a   whole  network  of  companies  have  to  move  in  the   same   direction   simultaneously.   Many   are   dependent  on  others,  for  example

 

Volvo  Aero  that   develops   components   that   are   only   a   part   of   the  

complete   aircraft   system.   This   makes   a   change   towards   innovations   a   slow   process.   To   collaborate   with   the   stakeholders   (suppliers,   customers,   AB   Volvo,   Air   the   Swedish   Air   Force)   and   the   whole   value   chain   (suppliers,   customers,   end-­‐of-­‐life   stakeholders)   is   essential   and   is   already  natural  for  Volvo  Aero.  One  good  example   is   the   collaboration   in   the   European   programme   Clean  Sky,  in  which  Volvo  Aero  participates.  Clean   Sky   is   the   major   initiative   (1.6   B€)   engaging   the   aeronautical   community   to   meet   the   ACARE   targets6.   A   slow   change   is   also   due   to   decisions   taken   in   the   product   development   process   which   will   have   an   impact   for   maybe   30   years   as   a   product  typically  is  in  operation  for  40-­‐50  years.  It   is  important  to  be  aware  of  this  time  delay,  and  for   this   reason   make   decisions   based   on   backcasting   from   success   principles   for   a   sustainable   product   together   with   predictions   of   the   sustainability   consequences   that   will   present   themselves.  

(Backcasting   means   imagining   success   in   the   future  and  then  looking  back  to  today  to  assess  the   present   situation   through   the   lens   of   this   success   definition   and   to   explore   ways   to   reach   that   success23,  24,  25.  

 

At   Volvo   Aero,   innovations,   related   to   sustainability   are   mainly   driven   by   customers,   ACARE   or   AB   Volvo.   These   types   of   innovations   are  possible  if  they  are  related  to;  i)  reduced  cost,   ii)   improved   image   for   the   customer   and   Volvo,   and/or  iii)  approaching  legislations.  It  is  therefore   recommended   to   explore   the   estimated   costs   for   sustainability   consequences   of   different   solutions   over   time   and   include   this   in   the   early   phases   in   the  product  innovation  process.        

 

3.   Include   identified   sustainability   aspects   in   the   requirement  list  

From   a   competitive   perspective,   a   sustainable   solution   must   be   satisfied   from   not   only   the   sociological   and   ecological   perspectives,   but   also   from  an  economical  perspective.  Once  these  three   conditions  are  met,  the  solutions  can  be  successful   from  a  sustainable  perspective.  A  product’s  socio-­‐

ecological   impacts   -­‐   positive   and   negative   throughout   its   life   cycle   -­‐   are   largely   determined   by   decisions   during   early   phases   of   the   product   innovation   process.   Previous   research   has   shown   that   the   possibility   to   influence   in   the   very   early   phases   in   the   product   innovation   process   is   important26,   but   at   the   same   time   methods   for   sustainability-­‐driven   design   in   these   phases   are   lacking  in  companies27.    

 

(6)

A   process   to   identify   the   sustainability   hot   spots   for  the  different  product  components  is  important   in   order   to   take   these   aspects   into   account   and   consider  these  with  the  same  importance  as  other   aspects   in   the   product   development   process.  

Weight,  emissions,  noise  and  hazardous  materials   have,   for   example,   consequences   for   the   sustainability   impact.   However,   a   thorough   analysis   of   which   the   sustainability   criteria   are   could   ensure   that   no   important   aspect   is   neglected.  Today,  the  aspects  are  identified  in  the   EIA,  but  this  is  quite  late,  even  if  it  takes  place  in   the   concept   stage.   If   the   identification   of   these   aspects   would   come   in   the   product   requirement   list,   it   would   be   easier   to   do   something   about   it.  

Other   studies   have   shown   that   companies   using   environmental  impact  assessments  in  the  product   development  process  to  assess  already  developed   concepts   had   relatively   little   impact   on   the   development   of   the   current   product28.     The   Environmental   Impact   Assessment   is   still   important   if   managed   in   a   systematic   way   to   increase   the   knowledge   about   the   environmental   consequences  from  product  components  and  their   related  processes  in  later  projects.  For  example,  a   database   with   information   regarding   certain   processes   or   materials   already   assessed   from   a   sustainability  perspective  could  guide  decisions  in   future  projects.    

 

4.  Recommended  future  work  

Sustainability-­‐driven  product  development  is  here   defined   as   “strategic   product-­‐service   system   development   towards   a   well   defined   sustainability   goal”.   More   specifically,   this   means   to   have   processes,   methods   and   tools   to   systematically   include   sustainability   aspects   in   the   daily   decisions,   both   for   tactical   short-­‐   and   strategic   long  term  perspectives.  In  order  for  Volvo  Aero  to   efficiently   move   in   this   direction,   the   recommendation   is   to;   i)   identify   the   complementary   guiding   tools   that   are   needed   to   include   a   strategic   sustainability   perspective   in   the  product  innovation  processes,  ii)  decide  where   in  the  process  these  support  tools  are  needed,  and   iii)   delegate   roles   and   responsibilities   for   implementing   a   strategic   sustainability   perspective  in  the  product  innovation  process.    

 

Based   on   the   above   and   in   more   detail,   the   following   generic   measures   are   recommended   to   be   able   to   implement   a   sustainability-­‐driven   product  innovation  process:    

   

• Develop   a   product   strategy,   which   should   be  based  on  a  strategic  sustainability  plan  for   the   company,   which   should   include   both   a   backcasting   and   forecasting   thinking.   The   product   strategy   will   then   guide   decisions   in   the   product   planning   and   advanced   engineering  groups.  

• Define  the  product  sustainability  criteria  in   order  to  include  them  in  the  requirement  lists   and  the  concept  evaluation  methodology.    

• Develop   and   regularly   update   “Templates   for   Sustainable   Product   Development”  

(TSPDs)29.   These   TSPDs   can   be   used   in   the   early   product   innovation   phases   to   guide   different   solutions   of   products   and   services   that  the  company  provides.  The  TSPDs  should   complement   the   Environmental   Impact   Assessments   (EIA)   that   are   conducted   in   the   concept  phase.    

• Introduce   a   systematic   way   to   store   data   from  the  EIA  to  increase  the  knowledge  about   the   environmental   consequences   from   product   components   and   their   related   processes  in  later  projects.    

• Explore   the   risk,   e.g.   as   costs,   for   sustainability   consequences   of   different   solutions  over  time.    

• Identify   who   is   responsible   for   integrating   and   implementing   strategic   sustainability   in   each  product  innovation  project.  

 

The  next  steps  in  future  research  aim  to  i)  identify   some  generic  key  elements  for  how  to  successfully   implement  a  strategic  sustainability  perspective  in   the  product  innovation  process,  and  ii)  clarify  how   sustainability  development  targets  can  be  used  as   drivers  in  the  very  early  phases  of  the  innovation   process.  The  result  will  then  support  the  product   developers   in   their   daily   work   during   development,   evaluation   and   validation   of   concepts,   technologies   and   decisions   for   future   products  and  services.    

 

References

 

1. ACARE   (2002)   Strategic   Research   Agenda-­‐   Executive   summary.   Advisory   Council   for   Aeronautics   Research   in   Europe,   October  2002.  

2. ACARE  (2004)  Strategic  Research  Agenda   2-­‐   Executive   summary.   Advisory   Council   for   Aeronautics   Research   in   Europe,   October   2004.  

(7)

3. Agarwal,   R.K.   (2010)   Sustainable   (Green)   Aviation:   Challenges   and   Opportunities.   SAE   International  Journal  of  Aerospace.  Volume  2,   Issues  1,  pp1-­‐20.  

4. Nangia,   R.K.   (2006)   Operations   and   aircraft   design   towards   greener   civil   aviation   using   air-­‐to-­‐air   refueling.   Aeronautic   Journal,   Volume  110,  Issue  1113,  pp:  705-­‐721.  

5. Warwick   and   Norris   (2011)   Open-­‐rotor   horizon   slips   to   mid-­‐2020s.   Aviation   Week   and   Space   Technology   (New   York).   Volume   174,  Issue  4,  24  January  2011.  

6. Warwick   (2010)   Raft   of   technology   demonstrators  planned  for  2012-­‐15.  Aviation   Week   and   Space   Technology   (New   York).    

Volume  173,  Issue  5,  2  August  2010.  

7. Jouannet,  C.  ,  Lundström,  D.  ,  Amadori,  K.    

,Berry,   P.   (2010)   Design   and   flight   testing   of   an   ECO-­‐sport   aircraft.   Conference   proceeding   IN:   48th   AIAA   Aerospace   Sciences   Meeting   Including   the   New   Horizons   Forum   and   Aerospace   Exposition.   Article   number   2010-­‐

1206.      

8. Nigel  P.S.  Dennis  (2002)  Long-­‐term  route   traffic  forecasts  and  flight  schedule  pattern  for   a   medium-­‐sized   European   airport.   Journal   of   Air   Transport   Management   8(2002)   pp:313-­‐

324.  

9. Robèrt,  K.-­‐H.,  B.  Schmidt-­‐Bleek,  J.  Aloisi  de   Larderel,   G.   Basile,   J.   L.   Jansen,   R.   Kuehr,   P.  

Price   Thomas,   M.   Suzuki,   P.   Hawken,   and   M.  

Wackernagel.   (2002)   Strategic   sustainable   development  -­‐  selection,  design  and  synergies   of  applied  tools.  Journal  of  Cleaner  Production   10(3):  197-­‐214.  

10. Roozenburg,  N.  F.  M.  and  J.  Eekels.  (1995)   Product   Design:   Fundamentals   and   Methods.  

Chichester,  England:  John  Wiley  &  Sons  Ltd.    

11. Broman,   G.,   J.   Holmberg,   and   K.-­‐H.   Robèrt.  

(2000)   Simplicity   Without   Reduction:  

Thinking   Upstream   Towards   the   Sustainable   Society.  Interfaces  30(3):  13-­‐25.  

12. Holmberg,   J.   and   K.-­‐H.   Robèrt.   (2000)   Backcasting   -­‐   a   framework   for   strategic   planning.  International  Journal  of  Sustainable   Development   and   World   Ecology   7(4):   291-­‐

308.  

13. Ny,   H.,   J.   P.   MacDonald,   G.   Broman,   R.  

Yamamoto,   and   K.-­‐H.   Robèrt.   (2006)   Sustainability   constraints   as   system   boundaries:   an   approach   to   making   life-­‐cycle  

management   strategic.   Journal   of   Industrial   Ecology  10(1).  

14. Electrolux,   (1994)   Electrolux   Annual   Report   1994.  Electrolux,  Stockholm,  Sweden.  

15. Robèrt,   K.-­‐H.,   et   al.,   (1997)   A   compass   for   sustainable   development.   International   Journal   of   Sustainable   Development   and   World  Ecology  4,  79–92.  

16. Anderson,  R.C.,  (1998)  Mid  Course  Correction   –   Toward   a   Sustainable   Enterprise:   The   Interface   Model.   The   Peregrinzilla   Press,   Atlanta,  USA.  

17. Nattrass,   B.,(1999)   The   Natural   Step:  

Corporate   Learning   and   Innovation   for   Sustainability.   The   California   Institute   of   Integral   Studies,   San   Francisco,   California,.USA.  

18. Leadbitter,   J.,(2002)   PVC   and   sustainability.  

Progress   in   Polymer   Science   27   (10),   2197–

2226.  

19. Matsushita,   (2002)   Environmental   Sustainability   Report   2002.   Matsushita   Electric  Industrial  Co.,  Ltd.,  Osaka,  Japan.  

20. Nattrass,   B.,   Altomare,   M.,   (2002)   Dancing   with   the   Tiger.   New   Society   Publishers,.  

Gabriola  Island,  British  Columbia,  Canada.  

21. Baumgartner,  R.J.  (2011)  Critical  perspectives   of   sustainable   development   research   and   practice.   Journal   of   Cleaner   Production,   Volume  19,  Issue  8,  Pages  783-­‐786.  

22. Baumgartner,   R.J.   and   Korhonen,   J.   (2010)

 

Strategic   thinking   for   sustainable   development.

 

Sustainable   Development.  

Volume  18,  Issue  2,  pp.71-­‐75.        

23. Robinson,  J.  B.  (1990)  Future  under  glass  —  A   recipe  for  people  who  hate  to  predict.  Futures   22(9):  820-­‐843.  

24. Dreborg,  K.  H.  (1996)  Essence  of  backcasting.  

Futures  28(9):  813-­‐828.  

25. Vergragt   P.J.   and   J.   Quist   (2011)   Backcasting   for   sustainability:   Introduction   to   the   special   issue.   Technol.   Forecast.   Soc.   Change.   (In   Press)  

26. McAloone   T.   (2004)   Sustainable   Product   Development   Through   a   Life-­‐Cycle   Approach   to  Product  and  Service  Creation.  International   Symposium   on   Environmentally-­‐Friendly   Product   Development,   27-­‐28   October   Darmstadt,  Germany.  

(8)

27. Hallstedt,   S.   (2008)   A   Foundation   for   Sustainable   Product   Development,   Doctoral   Dissertation   Series   No.   2008:6,   Blekinge   Institute  of  Technology,  Karlskrona,  Sweden.  

28. Thompson   A.,   Lindahl   P.,   Hallstedt   S.,   Ny   H.,   Broman  G.  (2011).  Decision  Support  Tools  for   Sustainability   in   Product   Innovation   in   a   few   Swedish   Companies.   In:   Proceedings   of   the   International   Conference   on   Research   into   Design,  ICoRD’11.  10-­‐12  January,  2011,  Indian   Institute  of  Science,  Bangalore,  India.  

29. Ny  H.,  Hallstedt  S.,  Robèrt  K.-­‐H.  and  Broman  G.  

(2008).  Introducing  templates  for  sustainable   product   development   through   an   evaluation   case   study   of   televisions   at   the   Matsushita   Electric   Group.   Journal   of   Industrial   Ecology,   vol  12,  issue  4,  600-­‐623.    

   

Appendix  A:  Interview  questions  

 

A.  Overarching  

• What  does  sustainability  mean  for  your   company?    

• Do  you  think  this  will  change  in  the  coming  20   years?  

• What  are  your  driving  forces  regarding   sustainability?    

• What  are  the  key  market  demands?  

• How  do  customers  influence  the  early  stages   of  the  innovation  process  (e.g.  product  policy,   new  ideas,  as  well  as  product  design)?  

(driving  force)  

• What  does  your  product  policy  say?  

• Are  there  any  sustainability  components  in   the  product  policy?  

• Who  is  responsible  for  sustainability   components  in  your  product  policy?  

• Is  there  a  full  life  cycle  perspective  in  the   product  policy?  

 

B.  Processes  

• Do  your  company’s  processes  (both   documented  and  actual)  match  the  

Roozenburg  and  Eekel’s  diagram.  If  not,  how   are  they  different?  

• Where  and  how  are  sustainability  

considerations  currently  taken  into  account  in   those  processes?  

• How  are  design  requirements  lists  set  and   who  is  involved  in  the  process?  

• How  are  sustainability  aspects  included  in  the   requirement  list  and  by  whom?  

• How  do  you  identify  these  sustainability   requirements?  

• How  are  customer  demands  incorporated  in   the  requirement  list?  

• How  are  requirements  in  the  product   requirements  list  verified  and  followed  up?    

• How  are  material-­‐related  questions   considered  during  the  product  innovation   process?  

C.  Decisions  

• What  sustainability-­‐related  decisions  are   taken  during  the  product  innovation  process?  

• Who  takes  sustainability-­‐related  decisions?  

• What  guides  those  decisions?  

• How  do  they  evaluate  different  options?  

D.  Tools  

• What  sustainability-­‐related  tools  are  used   during  product  development?  

• For  what  purpose  do  they  use  them?  

• Who  decided  those  tools  should  be  used?  

• Are  you  using  modeling  or  simulation  tools  to   understand  your  product  life  cycle?    

• If  yes,  what  aspects  of  a  product’s  life  cycle  are   modeled?    

• Where  in  the  innovation  process  are  they   modeled?  

• If  your  business  were  shifted  to  a  stronger   Product-­‐Service  System  focus,  how  would   needs  for  modeling  /  simulation  change?  Are   there  new  things  that  would  be  helpful  to   have  modeled,  e.g.  user  interaction  with  the   product?  

• How  are  sustainability  criteria  considered  in   procurement?  

E.  Suggestions  for  improvement  

• What  are  the  main  challenges  for  taking   sustainability  aspects  into  account  in  your   product  development?  

(9)

• Do  you  have  suggestions  for  how  to  better   implement  sustainability  perspectives  in  your   product  development?  

• Where  is  there  currently  a  need  for  tools?  

Where  –  if  these  additional  sustainability  

considerations  are  added  –  would  tools  be   needed?    

Appendix B

Formulating goals and strategies

Generating and selecting ideas

(Advanced Engineering)

Production development

Product designing industrialization

Marketing planning

Production Distribution and

sale Use

Product Policy

New Biz Ideas

new concepts

Production Plan

(final) Product

Design

Marketing Plan

Policy

Formation Idea Finding

Product Planning Strict Development

Product Development Innovation

Realization

Modified from Roozenburg and Eekels 1995

Production Planning

”Make it Light”

Reduce fuel burn

Consideration of suppliers via KEP5, KEP6

Environmental Impact Assessment Material

guidance lists

Black/grey lists (production

materials)

Figure 1. Roozenburg and Eekels’ diagram of the product innovation process, with Volvo Aero’s focus area in the sustainability area highlighted and including “Generating and selecting ideas” to “Production”.

References

Related documents

Recently, researchers in the area of Value Driven Design (VDD) and Sustainable Product Development (SPD) have recognised the need to include models for value and

These insights identify what areas to target first and are focused on reducing systemic decline, on drawing resources into the process (e.g. money, time, people, and assets), and

Thesis finds strong support for cross functional teams and information integration to improve product quality and to reduce product development cost however knowledge flexibility

Temperature zones are the standard feature to control a unit with several temperatures. Wine refrigerators can either be single, dual, or multiple. Single zones aim to

The pre-study was based on four cases (two companies in each of the steel and paper industries) and the main data collection was conducted from project members actively involved in

The process described in Figure 1 refers to how team learning can be achieved in guiding the team in inno- vating towards a more sustainable product, eventually also resulting in

The purpose of this thesis is to investigate challenges with development and qualification of AM parts for space applications, and their impact on the product development

Thus, FPD is chosen to represent an engineering development point of view, thus the focus for such modern product development is to bring in service aspects in