• No results found

Modelling and grey-box identification of curl and twist in paperboard manufacturing

N/A
N/A
Protected

Academic year: 2021

Share "Modelling and grey-box identification of curl and twist in paperboard manufacturing"

Copied!
151
0
0

Loading.... (view fulltext now)

Full text

(1)

Curl and Twist in Paperboard Manufa turing

GIANANTONIOBORTOLIN

(2)

ISRNKTH/OPTSYST/DA-05/02-SE

ISBN91-7178-202-8

SE-10044Sto kholm

SWEDEN

AkademiskavhandlingsommedtillståndavKunglTekniskahögskolanframlägges

tilloentliggranskningför avläggandeavteknologiedoktorsexamen fredagenden

2:a de ember 2005 klo kan 10.00 i Sal F3, Lindstedtsvägen 26, Kungl Tekniska

Högskolan,Sto kholm.

(3)

astheyare ertain, theydo notrefer toreality.

(4)
(5)

Abstra t

The ontents ofthis thesis anbe dividedinto two mainparts. Therst oneisthe

development of an identi ation methodology for the modelling of omplex industrial

pro esses. These ond oneis the appli ationof this methodology to the url and twist

problem.

Themainpurposebehindtheproposedmethodologyisto provideas hemati

plan-ning,togetherwithsomesuggestedtools,when onfrontedwiththe hallengeofbuilding

a omplexmodelofanindustrialpro ess. Parti ularattentionhasbeenpla edtooutlier

dete tionanddataanalysiswhenbuildingamodelfromold,orhistori al,pro essdata.

Anotheraspe t arefully handled inthe proposed methodology is the identiability

analysis. Infa t,itisrather ommoninpro essmodellingthatthemodelstru tureturns

outtobe weakly identiable. Consequently, theproblemof variable sele tion istreated

atlengthinthisthesis,andanewalgorithmforvariablesele tionbasedonregularization

hasbeenproposedand ompared withsomeofthe lassi almethods,yieldingpromising

results.

These ondpartofthethesisisaboutthedevelopmentofa urlpredi tor. Curlisthe

tenden yof paperofassuming a urved shapeand is observedmainly duringhumidity

hanges. Curl inpaper and in paperboard is a long-standing problem be ause it may

seriously ae t the pro essing of the paper. Unfortunately, url annot be measured

online,butonlyinthelaboratoryafterthatanentiretambourhasbeenprodu ed. The

maingoalofthisproje tisthentodevelopamodelfor urlandtwist,andeventuallyto

implementitasanon-linepredi tortobeusedbytheoperatorsandpro essengineersas

atoolforde ision/ ontrol.

Theapproa hwe usedto ta kle this problemis basedon grey-box modelling. The

reasonsfor su hanapproa histhatthephysi al pro essisvery omplexandnonlinear.

The inuen e of some inputs is not entirely understood, and besides it depends on a

numberofunknownparametersandunmodelled/unmesurabledisturban es.

Simulationsonrealdatashowagoodagreementwiththemeasurement,parti ularly

for MD and CD url, and hen e webelieve that the modelhas anusable a ura yfor

beingimplementedasanon-linepredi tor.

Keywords: Grey-box modelling,system identi ation, outlierdete tion, variable

(6)
(7)

Afterthis longand hallengingexperien e asaPhD student, thelist ofpeopleto

whomI'm indebted hasgrownimmensely. Inthefollowingfew lines I'llmakean

attempttosummarizesu h alist.

First,Iwishtoexpressmysin eregratitudetomysupervisorAndersLindquist

for giving me the opportunity of joining the Opt&Sys group. His dedi ation to

resear hand hiswidely spreadresear hnetwork greatly ontributedin produ ing

andmaintaininga reativeandstimulatingworkenvironment.

Se ondly, but not less importantly, I would like to thank my supervisor

Per-OlofGutmanforhisguidan e,helpfulnessanden ouragements. I'm ertainlymu h

indebted to himfor guiding me throughthe jungle ofthe modelling pro ess. His

omments and (in)famous jokes have taught me to take a look at things from

dierent, and less obvious perspe tives. His passion for ontrol and resear h has

strongly motivated me to arry on my work, espe ially during the most di ult

moments. Thanksalot.

Ialsowishtoa knowledgeAssiDomänFrövifornan ingtheproje t. In

parti -ular,IamgratefultoBengtNilssonandallthePro essControlgroupforproviding

me with a friendly and helpful environment to work. The paper manufa turing

pro essisanextremely omplexworld,andIwouldliketothankStefanEri sson,

MartinHanimannand JanSjögrenfortheirfriendship and help in timesofneed.

AbighuggoestoLarsJonhedandhisfamilyforhelpingmetoorientateinmany

di ultsituations.

The Optimization and System Theory groupat KTH has also beenan

inter-esting andpleasantenvironmentfor work and dis ussion. I wish to thankall the

olleagues and friends at the division. In parti ular, I annot thank enough my

former o emate Ryozo, and my next-door olleagues Christelle and Vanna for

theirsupport, andsin erefriendship.

Then, I would also like to mention all the Swedish-Italian friends that have

shared with me a lot of pleasant and enjoyable moments during these years in

Sweden. Mar o,theAr ovitos, thevolleyballmates, and alltheothershavebeen

extraordinary friends. My warmest thank you is for Barbara (and Nerone, of

ourse)whohasbe omemoreandmoreanessentialpartofmylife.

TherearealsomanypeopleinItaly,friendsandrelatives,whodon't aremu h

(8)

theyhavebeenonmysideduringallthistime. Thanksalottoallofyou. Among

them,aspe ialmentionisforPaoloLutman.

Clearly,therearealotofpersons(butmanyarenotmentionedhereforsakeof

brevity)that have ontributed in manydierentwaysto mywork. Thisthesis is

dedi atedtoallofthem.

Sto kholm,De ember2005

(9)

A knowledgment vii

Tableof Contents ix

Glossary xi

1 Introdu tion 1

1.1 Thepaperboardmodellingproje t . . . 1

1.2 Curlandtwistmodelling. . . 2

1.3 Overviewofthethesis . . . 3

2 DimensionalStability in Paperboard 7 2.1 Introdu tion. . . 7

2.2 Pro essdes ription . . . 8

2.3 Dimensional stability: someba kground . . . 10

2.4 Modelling . . . 12

2.5 Summaryand on lusions . . . 16

3 OutlierDete tion and ModelDiagnosti 19 3.1 Introdu tion. . . 19

3.2 Outliersandleveragepoints . . . 21

3.3 Robustmodeldiagnosti . . . 23

3.4 ForwardSear h . . . 25

3.5 Proposedmethod . . . 26

3.6 TheHampellter. . . 34

3.7 Summaryand on lusions . . . 39

4 The VariableSele tion Problem 41 4.1 Introdu tion. . . 41

4.2 Subset sele tion. . . 43

4.3 Evaluation riteria . . . 47

4.4 Regularizationmethods . . . 56

(10)

4.6 Estimatingtheoptimal

λ

. . . 77

4.7 Examples . . . 78

4.8 Simulationresults . . . 82

4.9 Extensiontogeneralmodels . . . 88

4.10 Summaryand on lusions . . . 91

5 Identi ationMethodology 93 5.1 Introdu tion. . . 93

5.2 Thestepsofthemethodology . . . 94

5.3 CurlModel . . . 98

5.4 Summaryand on lusions . . . 110

6 Grey-box Modellingof Disturban es 111 6.1 Introdu tion. . . 111

6.2 NonlinearKalmanltering. . . 112

6.3 Modellingofsto hasti disturban es . . . 113

6.4 Simulations . . . 115

6.5 Dis ussion . . . 117

6.6 Summaryand on lusions . . . 122

7 On-line Predi tion 123 7.1 Introdu tion. . . 123

7.2 Predi toralgorithm. . . 123

7.3 A virtualpredi tor . . . 125

7.4 Summaryanddis ussion . . . 126

8 Con lusions 129 8.1 Summary . . . 129

8.2 Con lusions . . . 131

8.3 Dire tions forfuture work . . . 131

(11)

Somenotationsmayhaveadierentmeaninglo ally. Notations Latin letters

e

Noise ve tor

H

Moisture ontent [-℄

K

Curvature( url) [m

−1

I

Identitymatrix

N (·, ·)

Normaldistribution

N

Totalnumberofobservations

n

Totalnumberofinputvariables

R

2

Squared oe ientofmultiple orrelation

s

0

Internalstress [N/m

2

U(·, ·)

Uniformdistribution

X

N

× n

regressormatrix

X

k

k

th inputve tor(

N

-dimensional olumnve tor)

x

k

k

th observation(

n

-dimensionalrowve tor)

X

T

Transpose

Y

Outputve tor

ˆ

Y

Predi ted outputve tor

Z

Dataset

[Y, X]

Z

I

, Z

V

Identi ation andvalidationdatasets

Greek letters

β

Hygroexpansivity oe ient [-℄

ǫ

Strain [-℄

ε

Residualve tor

θ

0

Trueparameterve tor

ˆ

θ

Ordinaryleastsquareestimateof

θ

0

ˆ

θ

R

Ridgeregressionestimateof

θ

0

ˆ

θ

I

ISRRestimateof

θ

(12)

Greek letters

λ

Regularizationparameter

σ

Noise standarddeviation

φ

Fiberorientationangle [rad℄

Subs ripts

i

Layerindex

j

Planedire tion

Operators

arg min

θ

f (θ)

Minimizing argumentof

f (θ)

diag(

L

) Diagonal matrix, with the ve tor

L

in the main diagonal

E[x]

Expe tedvalueofarandomvariable

x

std(

x

) Standarddeviationoftherandomvariable

x

Var(

x

) Varian eoftherandomvariable

x

Abbreviations

AIC Akaikeinformation riterion

ARMAX Autoregressive moving average model

stru turewithexogenousinputs

ARX Autoregressivemodelstru turewith

exoge-nousinputs

BE Ba kwardeliminationmethod

BIC Bayesianinformation riterion

CD Crossma hinedire tion

CDC Closestdistan e to enter

EKF ExtendedKalmanlter

FPE Finalpredi tionerror

GCV GeneralizedCrossValidation riterion

GRR Generalizedridgeregressionmethod

KM5 Paperma hine atFrövi

ISRR Iterativelys aledridgeregression

LTS Leasttrimmedsquares

MAD Medianabsolutedeviation

MCD Minimum ovarian edeterminant

MD Ma hine dire tion

ME Modelerror

OLS Ordinaryleastsquaresmethod

RR Ridgeregression

RSS Residualsumofsquares

(13)

Introdu tion

1.1 The paperboard modelling proje t

Thereisanin reasinguseof omputersimulationsinindustrytooptimizeprodu ts,

toredu eprodu tdevelopments ostsandtimebydesignoptimization,andtotrain

operators. Thepaperindustry,traditionallyquite onservative,hasalsostartedin

thelast 10-15years to use omputersimulation in asigni antlyin reasing way.

Therst omputermodelling and ontrol attempts were initiated already in the

early 1960s, see [108℄ for example. However, only in the last 10 years, with the

newavailablete hnologies,more omplexmodelsand ontrolstrategieshavebeen

onsidered.

Thework onmodelling theboard manufa turingpro ess at AssiDomän Frövi

was startedin 1992. Themain aimof theproje tisto ndmathemati almodels

of the pro ess that an explain the variations of important quality variables of

theboard whi h annotbemeasuredon-line. Hen e,insteadofdire t sensors, we

would like to employ mathemati al models, alled also soft sensors, to estimate

thesequalityvariablesfromotherquantitiesthataremeasuredon-line. Eventually,

we would also like to obtain simulation/predi tion tools that an ontribute to

higherprodu tqualityande ien y in severalways. For instan e, they ouldbe

usedtotestnew ontrolstrategies,togetabetterunderstandingofthepro ess,as

anoperator trainingtool,and also forpro ess optimization and model predi tive

ontrol.

Unfortunately,itiswellknownthatthesystemwearedealingwithisa

ompli- atednon-linearandtimevaryingmulti-inputmulti-outputpro ess. Italso ontains

alargeamountofun ertaintyand isae ted by unknownand immeasurable

dis-turban es. Therefore,itis learthatthetaskofdevelopingsuitablemodelsisvery

di ult.

Atthemomenttwodierentmodellingapproa hesarebeingtriedatAssiDomän

Frövi. The rst one onsists in a Dymola-basedmodel whi h is being developed

(14)

Whereasin thepastitwas onsideredsu ienttosimulatesubsystemsseparately,

the urrenttrendistosimulatein reasingly omplexphysi alsystems omposedof

subsystemsfrommultipledomains. Uptonow,allthewetendpartandthedrying

se tionofthepaperma hineare ompletedwithsatisfa toryresults,see[11℄,[55℄,

[32℄and[57℄.

These ondmodellingapproa histheoneusedin[76℄byPetterssonwhoderived

agrey-boxmodel ofthebending stinesspropertiesoftheboard. Themodelwas

implementedin theFrövimill informationsystemas abending stiness predi tor

andsimulatorforthepro essengineersandoperators. ItwasprogrammedinVisual

Basi and hasbeenrunning formore thanve years givingpredi tionsto within

thelaboratorymeasurementa ura y.

An approa h similarto Pettersson'sbendingstiness predi tor, isused inthis

thesistomodel urlandtwist(i.e. out-of-planehygroinstability)ofthepaperboard.

The proje t started about 5 years ago and the work of the rst three years is

summarizedin my Li entiateThesis, [12℄. Inthelast twoyearsof work,the url

modelhasbeenimprovedandparti ularattentionhasbeengiventotwoimportant

aspe tsofthemodellingpro ess: outlierdete tionandvariablesele tion.

1.2 Curl and twist modelling

Curlisthe tenden y ofpaperof assuminga urvedshapeand isobservedmainly

duringhumidity hanges. Curlinpaperandinpaperboardisalong-standing

prob-lembe ausethedeparturefrom theatmayseriouslyae tthepro essingof the

paper. Ex essive url redu es the quality of papersin e it is the most ommon

auseforsheetfeedingproblems. Forthisreason, ustomersimposestri tlimitson

the urland thereforeit is be oming in reasinglyimportant toprodu ea

arton-boardwithlimited url. Duetothee onomi signi an eofthe urlproblem,mu h

resear hhasbeenperformedtondpulp ompositionsandpro essingstrategiesto

eliminateor redu e url,see[87℄,[68℄. However, urlanddimensionalstability 1

in

generalare ae tedby alargenumberof omplex,inter-relatedfa tors, in luding

dierentdryingratesonthetwosidesof theboard, relativevariationin humidity

withinthesheetandme hani alstresseswithinthebres,andhen etheyarevery

di ultto analyzeandunderstand.

AtAssiDomänFrövi(Sweden),ex essive url ausesthelossofseveralhundreds

oftons ofboard everyyear, and itis one of themost di ultqualityvariable to

handle forthe operators and pro ess engineers. The ontinuously moving web in

the paper ma hine is rolled up on big rolls (tambours) and approximatelyevery

50 minutes the operators start an automati hange of tambours. Samples for

laboratorytest are available from thelast partof ea h roll, andabout20quality

variablesareanalyzedin thelaboratoryat dierentpositionsin the ross-ma hine

dire tion.Paper urlisoneofthequalityvariablesonlymeasuredinthelaboratory.

1

(15)

After onditioningfor at leastveminutes, url measurementsare takenwith an

opti aldevi e, andthen themedian values,for afew CD positions, are presented

to the operators. In hapter 2, however, we present an investigation on the url

measurementsshowingthat theydo notprovideagood hara terization url and

twist.

Be auseofits omplexity,andbe auseofthefa tthat url anonlybemeasured

afteranentire tambourhasbeenprodu ed, its ontrol isverydi ultand ostly.

Althoughout-of-spe i ationboardmaybere-pulpedandre- y led,bad url auses

awasteofplanttime,rawmaterialandenergy.

Inthiss enario,itis learthata urlpredi tor/simulatorwouldbeaparti ularly

usefultoolfortheoperatorsandpro essengineerstohelpthemtode idethebest

settingsand/or ontrola tionto take.

Despitethequitebroadliteratureon urlandtwist,onlyonemodelsuitablefor

industrialpro essandusefulforpro ess ontrolwasfound. ThemodelbyEdwards

etal.,isbasedonarti ialneuralnetworksandisdes ribedin[26℄. Theirmodelis

forone-plypaper,whilein our asewe onsiderfour-plyboardwhi hin generalis

moreae tedby urlandalsomore ompli atedtodealwith. Wedidnot ompare

theirapproa hwithoursbe ausetheirmodelwasnotavailable,anditwastoomu h

timedemandingtobuild aneuralnetworksmodelforthefour-plyboardbasedon

theirpaper.

Thus,itseemedtimelyto ta kletheproblemwith dierentadvan edmethods

of modelling. Theproblem onsists in the fa t that the pro ess is very omplex,

anda detailed modelling of thevarious phenomena involvedwould easily leadto

amodel too ompli atedto beatta kedwith ordinaryidenti ation methods. In

addition,thepoorqualityofthe urlmeasurementsmakesthesituationevenmore

di ult.

Thetaskisthustondareasonabletradeobetweenadetaileddes riptionof

thephenomenathatare onsideredmostimportantfordimensionalstabilityanda

modelthatlumpstogetherotherphenomenaasdisturban es.Ofthemanymethods

available,grey boxmodelling seemed one of themost suitableand promising. In

ontrasttoneural network modelling, thegreyboxmodellingapproa his

hara -terizedbyin ludingthemostimportantphysi sexpli itlyandlumpingtogetherthe

lessimportantandunknownphenomenaintobla kbox omponentsandsto hasti

disturban es. Itwaspreviouslyusedinsimilarproblemsyieldinggoodresults,[76℄,

and[31℄. Theinitialattempttomodel urlandtwistwithagreyboxmodelseemed

promising,see[12℄and[13℄,and hen ewede idedtogoonwithit.

1.3 Overview of the thesis

Theoverallthesis an bedividedinto twoparts. Therstone isthedevelopment

(16)

Themainpurposebehindtheproposed methodologyistoprovideas hemati

planning,together withsomesuggestedtools,when onfrontedwiththe hallenge

ofbuildinga omplexmodelofanindustrialpro ess. Parti ularattentionhasbeen

pla edto outlier dete tionand data analysis when building amodel from old, or

histori al,pro essdata. Theanalysisof thiskindofdata isdangerousbe ausein

generalwemiss the ne essarya priori knowledge. For instan e, there may have

beensomesensorfailures,orsomekindofmalfun tionswhi hweignore,sothatthe

faultyobservations annotbeeasilydistinguishedfromtheregularobservations.

Anotheraspe t arefully handled in theproposed methodologyis the

identi-abilityanalysis. Infa t,it israther ommonin pro essmodellingthat themodel

stru tureturnsouttobeweaklyidentiable. For instan e,whenexperiments

an-notbe arriedoutandonlyhistori aldataareavailableforidenti ation,itisvery

likely that the data set is not informative enough to safely estimate the model.

Thus,theproblemofvariablesele tionistreatedatlengthinthiswork,andanew

algorithmforvariablesele tionbasedonregularizationisproposedand ompared

withsomeofthe lassi almethods, yieldingpromisingresults.

These ond partisthe developmentofasuitablemodelstru ture for url and

twist. Themainpurposeofthispartofthethesisistondoutifgrey-boxmodelling

and estimation of url and twist in multi-ply paperboard is feasible, and in su h

aseto build anon-line predi tor that an be used by theoperators and pro ess

engineersas atool forde ision/support. Eventually, themodelwill beused fora

moregeneral model predi tive ontrol strategy. As ase ondaryobje tive, it will

serveas atool for a better understanding of the pro ess. Most of this part was

arried out during the rst three years of my PhD and are summarized in my

Li entiate Thesis, [12℄ and in the paper[13℄. However,the model presentedhere

diersfrom[12℄be auseithasbeenimprovedandsplitintothreedierentmodels,

oneforea hkindof url,seese tion2.4.

Contribution of the thesis

Themain ontributionsofthisthesisare:

+ Agrey-boxmodelof urlandtwistwasdeveloped. Themodelwasestimated

from pro ess data, and the validation showed ageneral agreement between

predi tionand measurement.

+ A areful study of dierent outlier dete tion methods was arried out. In

parti ular, a new approa h is proposed to deal with nonlinear models and

largedatasets.

+ A new variable sele tion method, the ISRR algorithm, was derived. Some

theoreti alaspe tsofthenewmethodwereinvestigatedandalargesimulation

(17)

+ A new identi ation methodology for the modelling of omplex industrial

pro essesis proposedandapplied tothe urlandtwistproblem.

Themain limitationsoftheresultsofthisthesisare:

- Although thegeneralbehaviorof the url andtwistmodels are satisfa tory

andtheaveragea ura yofthepredi tionsisgood,duringsometimeperiods

thepredi tionerrorsaretoolargetobeusablefromtheoperators. Webelieve

that someimportantinputsare stillmissing,andsomeofthesub-models of

the urlmodelaretoosimpleandshouldbeimproved.

- Themodi ationsproposed fortheforwardsear hmethod foroutlier

dete -tionshouldbeanalyzedwithamoretheoreti alapproa h.

- A moregeneral studyof the ISRRmethod should be arriedout: in whi h

situationsitispreferabletoothermethodsandinwhi honesitisnot

re om-mendable.

The results in this thesis have been reported in the following published and

submittedworks:

BortolinG.(2002). OnModellingandEstimationofCurlandTwistin Multi-Ply Paperboard, Li entiate Thesis, TRITA-MAT-02-OS-14, Department of

Mathemati s,KTHSto kholm, Sweden.

BortolinG.,GutmanP.-O.,NilsonB.(2005)ModellingofCurlinMulti-Play Paperboard. Journalof Pro ess Control (inprint).

Bortolin G., Gutman P.-O. (2005) A new regularization-based method for variablesele tion. Submitted toAutomati a.

Outline of the thesis

Thedisposition ofthisthesisisas follows:

Chapter 2: In this hapter an overviewof thepapermanufa turing pro ess is

givenrst. Then,the urlandtwistmodel stru tureispresented.

Chapter 3: This haptergivesashort overviewof someoutlierdete tion

meth-ods. Then, the method developed in this work is presented together with some

examples.

Chapter 4: First,adetailed overviewof variablesele tionmethodsand ev

alua-tion riteria is given. Then, the new variable sele tionmethod developed in this

workisdis ussed. Theoreti alaspe tsofthenewpro edureareinvestigatedforthe

(18)

Chapter 5: Thenewidenti ation methodologyispresentedandapplied tothe

problemof urlandtwist. As aresult,asatisfa torydeterministi modelfor url

andtwistisa hieved.

Chapter 6: In this hapter, the deterministi model of url and twist is

om-plemented with a sub-model (an extended Kalman lter) that a ounts for the

disturban esand un ertainties. The model isthen simulated, and theresults are

omparedwiththemeasuredvalues.

Chapter7: Somepra ti alaspe tsoftheimplementationaredis ussed,andthen

2weeksofprodu tionaresimulatedandanalyzedindetail.

Chapter8: Ashortsummaryofthethesis, on lusionsanddire tionsforfuture

(19)

Dimensional Stability in Paperboard

2.1 Introdu tion

AssiDomänABCartonBoardinFrövi,Sweden,produ es350.000tonsofboardper

yearon a7meterswide and250meters longpaperma hine. Ashort des ription

of the pulp and paper pro ess an be found in the next se tion and for a more

ompletedes riptionthereadermayreferto[94℄.

Intheplanttherearemorethan700lo al ontrollerswithinanintegrateddigital

ontrol system (DCS). The primary physi al quality variables, su h as moisture,

basisweight,and thi kness, aremeasuredon-line bytraversingsensors lo atedin

thenalpartofthepaperma hine. Allavailablepro essinformationfrom on-line

measurementsand laboratorytests are stored in a database,within anadvan ed

millinformationsystem, alled Info. All thesedataarepresentedto theoperators

throughpro essowdiagrams,proles, andhistori al trends. Whenrequiredthe

operators ontrolthepro essbyadjustingthesetpointsofthelo al ontrollersin

theDCS.

Unfortunately,mostofthequalityvariablesrelevantforthe ustomersof arton

board,su has url,bendingstiness,printabilityfa tors,et .,arenotavailable

on-line, but only from laboratory tests. The ontinuously moving web in the paper

ma hineisrolleduponbigrolls(tambours). Approximatelyevery50minutesthe

operatorsstartanautomati hangeoftambours. Samplesforlaboratorytest are

availablefromthelastpartofea hroll,andsome20qualityvariablesareanalyzed

inthelaboratoryatdierentpositionsinthe ross-ma hinedire tion.

Then, the operators have to ompare the lab values with the re ommended

nominalvaluesandtaketheappropriatede isionsand ontrola tionsa ordingto

theparti ularsettingsat thatmoment.

Paper url is one of the quality variables that are onlymeasured in the

labo-ratory. Ex essive urlis along-standingproblem, itredu es thequalityofpaper,

anditae tsthe ustomersasitisthemost ommon auseforsheetfeeding

(20)

veryimportant to beable to ontrol it. However,be ause of its omplexity, and

be ause of the fa t that url an only be measured after an entire tambour has

beenprodu ed,its ontrolisverydi ultand ostly. Althoughout-of-spe i ation

board may bere-pulped and re- y led, bad url wastesplant time, raw material

andenergy. Thus, ouraim is to develop areliablemodel for url and twistthat

an beimplementedas an on-line predi tor and used forde ision-support by the

operators.

Inse tion 2.2,ashort des riptionof thepapermanufa turingpro essisgiven

and in se tion 2.3, url, twist and their measurement are dis ussed. Se tion 2.4

des ribes the semi-physi al model of url and twist. The model is based on my

Li entiateThesis[12℄. Thismodelhasbeenbuiltafterthat thepro essdatahave

been polished with a nonlinear leaning lter to get rid of as many outliers as

possible. This leaning lter is part of the proposed identi ation methodology

developed to deal with outliers and erroneousdata in amore e ient way. This

newmethodologyisdes ribedin hapter5.

2.2 Pro ess des ription

Thepaperboard manufa turing pro ess isan extremely ompli atedpro ess.

As-siDomänboard is omposed of 4layers,or plies. The twomiddle layersare

om-posedofbulktogetlightweightandbendingstiness,andthetoplayeris omposed

ofblea hed pulp to havegood printability. A s heme of themain se tions of the

millisshowningure2.1. Themainrawmaterialusedinpaperprodu tionispulp,

whi h onsists of extremely ne ellulose bres. There are various typesof pulp

qualitiesusedinthemillandmostofthemareprodu edinthesulphateplantand

storedinintermediatesilos. Fromthesilos,thepulpowsintothebeatingor

ren-ingpart,wherethebresaresubje ttome hani ala tiontodeveloptheiroptimal

papermakingpropertieswithrespe ttotheprodu tbeingmade. Then,thepulpis

sentto themixing tanks,one for ea hlayer. The operatorsde idetheproportion

of ea h pulp quality in ea h layer, and also the basis weight of ea h layer. The

operatorsalso ontrol theowof additives,likee.g. star h. Followingdilutionby

waterto a hievebelow1%ofbre on entration,thesto kissentthroughs reens

and leanerstoremoveforeignmaterials. Theoversizedmaterialsareremovedby

thes reens. Heavymaterials,orparti leswithaspe i gravitygreaterthanthat

ofthe bres, are removed withthe entrifugal leaners. Then the pulpis sentto

thepaperma hine, alled KM5. Therstpartof thepaperboardma hinearethe

headboxes,oneforea hlayer,whi hspreadthepulponthewires. Thepulpsto k

is dis harged to thewire at uniform dilution, thi kness and velo ity through the

headbox. Thewireisa ontinuousbeltof wovenmaterial. Asthe sto k andwire

pro eed, wateris removedrst bygravity,next bylow pressuregeneratedon the

ba ksideoftherollsandfoilsandnallybysu tiondevi eslo atedunderthewire.

(21)

0L[LQJ

7DQNV

3XOS

)UDFWLRQV

+HDGER[HV

DQG:LUHV

3UHVVDQG

'U\LQJ

&DOHQGHULQJ

&RDWLQJ

/LJKW

&DOHQGHULQJ

5HHOLQJ

Figure2.1: S hemati overviewofthe artonboardpro ess

table to the headbox to re eive more sto kand ontinue to form the ontinuous

web of paper. Showers below the forming table lean the wire on its return to

theheadbox. The thi kness of the sto kjet is determined by the opening of the

headbox sli e,while thevelo ityis provided bytheheadboxpressure. These two

parametersdeterminethebasisweightandstronglyinuen etheorientationofthe

bersinthelayer.

Afterthewirese tion,thefourpliesarepressedtogetherinthepressse tionin

orderto form the basi paperboard. Thepresses are hardrollsthat squeeze the

papergentlyto removethewaterandbring theberstogether topromote

bond-ing. Thewebleavesthepressse tionand ispassedaroundaseriesof steam-lled

drums, alleddrying ylinders. Thedryingtakespla esbypassingtheboardover

alargenumber of drying ylinders, whose temperatures arebetween 110-130

C.

Thetemperatureofa ylindersurfa eisfun tion ofthesteampressurewithin the

ylinders. Theyaredividedinto 10groups,andthepressureofea hgroupis

on-trolled independently. After the drying se tion, the board is pressed together by

twohotmetalrolls alled alenders. Thispro essis alled alenderingandisused

inorder toa hievesmoothsurfa es,andto ontrolthi kness. Thetopsideof the

board is then overedwith a white oatingin order to provide it with asuitable

printingsurfa e. Finally,theboardisgivenitsnalnishbylight alenderingand

thenitisreeledontambours.

Manyoftheinputvariablesneededforthemodellingaremeasured ontinuously

on-line, and stored in the Info omputersystem as 1-minuteaverages, 12-minute

averages, hourly and daily averages. Curl and twist measurementsare taken,

in-stead,approximatelyevery50minutes. AllthemeasurementsarestoredintheInfo

systemtogetherwiththe orrespondingtimestamp.

Abiglimitationthatwehadtofa ewasthefa tthatitwasnotpossibletomake

experimentsonthepro essbe auseofthehigh osts. So,wehadtousedatafrom

normaloperation. Inthemillmanydierentboardqualitiesare produ ed,andall

themeasurementsarestored forseveral years. Fortunately,we foundoutthat by

(22)

identied. However, some of the model parameters have a very large standard

deviation,andoneofthepossible ausesmaybethela kofinputex itation.

2.3 Dimensional stability: some ba kground

The on eptofdimensionalstabilityreferstothe hara teristi of papertoretain

itsdimensionsinalldire tionsunderthestressofprodu tionandadverse hanges

inhumidity. Hen e,itindi atesawidevarietyofpropertiesrelatedtotheatness

of paper su h as hygroexpansion, shrinkage, url, wrinkle, et . Parti ularly, we

are interestedin url in paper and paperboard whi h is dened as thedeparture

from the at form. A urved surfa e may be hara terized by three urvature

omponents. Thegeneralexpressionsforthe urvaturesatapointare ompli ated

fun tionsoftheout-of-planedispla ementandtheposition oordinates. However,

fordeformedsurfa eswithsmallandmoderatedee tionswe anapproximatethe

out-of-planedispla ement,

w(x, y)

,ofthesheetas follows,[60℄:

w(x, y) =

1

2

K

x

x

2

1

2

K

y

y

2

1

2

K

xy

xy

[m℄ (2.1)

where

w(x, y)

istheout-of-planedispla ementofthesheet,

x

istheMa hine Dire -tion(MD),and

y

theCrossDire tion (CD).Thethree urvaturesarethendened bythefollowingexpressions:

K

x

=

2

w

∂x

2

,

K

y

=

2

w

∂y

2

,

K

xy

=

−2

2

w

∂x∂y

[

m

−1

]

(2.2)

Seegure2.2foranoverviewofthe onventions.

For a ylindri al surfa e, one an rotate the

xy

- oordinate system so that, in thenew oordinatesystem,thetwist omponent,

K

TW

,iszeroandonlyoneofthe

url omponents,

K

MD

or

K

CD

, is nonzero. The url omponents

K

MD

and

K

CD

orrespondto theinverse ofthe radiusof urvaturein ea hdire tion, andin this

way they an be given physi al meaning. The larger the K-value is in absolute

magnitude,thestrongeristhe url.

Thebasi ausesfor urlandtwistaretheswellingand ontra tionofthebers

resultingfrom moisturevariations. Changes in moisture ontent ofboards whi h

areasymmetri inthethi knessdire tion auseout-of-planevariationsoftheboard

[29℄,[72℄.

The evaluation and analysis of url are further ompli ated bythe di ulties

in hara terizingit. Infa t,thereis notastandardmethodto measure url. The

valuesofthe url omponentsareusuallyspe i totheshapeandsizeofthesample

usedtomeasurethem. Forexample,narrowpaperstripsoftenhave urvaturethat

does not mat h the surfa e of the sheet from whi h the strips were ut. The

samplesownweightmayalso ausebending. Hen e, urlmustbemeasuredinsu h

(23)

measurements an only bemade if the spe imensare large enough. Inaddition,

in smallsamples and narrowstripsone mayend upin observing the o kling 1

of

paperinsteadof url.

At AssiDomän thelaboratory

K

MD

>0

K

CD

>0 K

TW

>0

y=CD

x=MD

w

Figure2.2: Curl onventions

surementsare ondu ted in the

follow-ingway. Anopti alinstrumentthat an

measure5testsamplesatthesametime

is used. 16 sheets of dimension 50x50

m are ut from the last part of ea h

tambour. In general, url is measured

in3ofthesesheets,i.e. intheedgesand

in themiddle. From a50x50sheet ve

square test pie es of dimension 10x10

marerandomly utandkeptina

on-trolled environment(50 % RH, 25

C)

for about 5 minutes. Then, the url

omponents of the ve test pie es are

measuredbytheopti aldevi e,andthe

median valuesarepresentedtothe

op-erators.

Themiddleofthewebisknowntohavelessvariationsinthephysi alproperties,

i.e. thelayersare morehomogeneousinthe middlethanin the edges. Therefore,

rst,weareonly onsideringthe urlinthemiddleoftheweb. Inthenearfuture

wehopethatthisworkwillbeextendedtotheedgesoftheweb,similarlytowhat

it was done with Petterson's bending stiness predi tor. However, even though

we are onsidering a relatively small area, 50x50 m, in the enter of the web,

the url variations areverylarge. In aninvestigation we omputed thestandard

deviations of 1500 measurements from the middle of the web, a ording to the

pro eduredes ribedinthepreviousparagraph,whereonemeasurement omprises

5testpie es. Namely,supposethatea hmeasurement onsistsof5values

x

1

, ..., x

5

forea hkindof url. Then,we omputetheestimatedstandarddeviationforea h

kindof urla ordingto

ˆ

σ =

v

u

u

t

1

n

− 1

n

X

i=1

(x

i

− ¯x)

2

where

n = 5

and

x

¯

isthe arithmeti mean ofthe 5values. Theaveragestandard deviation,

σ

¯

,ofseveralstandarddeviationestimates,

ˆ

σ

1

, ..., ˆ

σ

m

isdened as

¯

σ =

v

u

u

t

1

m

m

X

j=1

ˆ

σ

2

j

About4months ofprodu tionwerein ludedin orderto in ludeseveral board

qualities. Note,however,that ea hstandarddeviationestimateis omputedusing

1

(24)

dry-MD[m

−1

℄ CD [m

−1

℄ Twist[m

−1

Typi alrangevalues [-0.5,0.5℄ [-2,2℄ [-1,1℄

Standarddeviation 0.16 0.34 0.39

Table2.1: Typi alvaluesandaveragestandarddeviationsofthe urlmeasurements.

only5samples,andhen eitisratherun ertain.

Theinvestigationgavethe resultsshownin table 2.1where theaverageof the

standarddeviationsfortheCD url,MD urlandtwist,respe tively,arereported.

Clearly, table 2.1 showsthat the available url measurements are a poor way of

hara terizing url andtwist,andwemayexpe t that themodel will be strongly

ae tedbythelowqualityofthemeasurements. Webelievethatthereasonforso

largeun ertainties in thelab measurementis that the test samplesare relatively

smalland, hen e,ae tedbylo alvariationsofstru turalproperties,su hasber

orientation,density,hygroexpansivity,et .

Curlisaseriousproblemfor paperboardprodu ers,andalot ofinvestigations

were arriedoutto analyzethe auses of url, andto nd outmethodsto redu e

it. Some useful general referen es are [29℄, [34℄, [71℄ and [104℄. Finite elements

modellingof urlwas studiedin[17℄,[72℄,and[60℄.

Theonlyapproa hto urlpredi tionsimilartoourwork,wasfoundin[26℄where

a neural network model was developed for predi tion of paper url. The model

predi tionsare in orporatedinto a probabilisti framework,where the predi tion

isthemean,andthereis anasso iatedvarian e. Theoperatorsarethenprovided

witha predi tedvalue, and the orresponding onden e level. A ording to the

authors the model showed satisfa tory results, even though the predi tions were

notreliablein some ir umstan es,likeforinstan e the asesofhigh urlvalues.

Inour asewehaveamore ompli atedsituation,sin ewewanttopredi t url

formulti-plypaperboardwhi hin generalismu hmoresensitiveto urlproblems

thansingle-plypaper.

2.4 Modelling

As we stated in the introdu tion, the purpose of the model is to have a

de i-sion/supporttoolfortheoperatorsandpro essengineers,andeventuallyformodel

predi tive ontrol. In this work, we use grey-box modelling as des ribed in [10℄,

and[77℄. Thereasonsfor hoosing thisapproa his that betweenthemany

avail-ablemethodsformodelling,greyboxmodellingappearedone ofthemostsuitable

forthissituation. Infa t,thephysi al pro essisvery omplexand nonlinear,the

inuen e of someinputs is notentirelyunderstood, and besides, it depends on a

(25)

ad-estimationof omplex industrial pro esseswhere the priorknowledgeis available

butnot omplete, likein our ase,seee.g. [78℄, [31℄.

Thebasi ideaofgrey-boxmodellingisthefollowing.First,buildasemi-physi al

model by using the pro ess knowledge and by following as mu h as possible the

physi alprin iples. Thismodelshouldprovideagoodtradeobetweenadetailed

des riptionofthepro essandareasonablysimplemodel. Then,inase ondstage,

themodel is omplementedwith an extended Kalmanlter in order to take are

oftheunmeasurabledisturban es,theun-modellednonlinearities,andthepro ess

noisebyusingalltheavailable measurements.

The se ond part, i.e. the introdu tion of the Kalman lter, is dis ussed in

hapter6. Inthis hapter thesemi-physi almodelispresented.

Thesemi-physi almodelwasdevelopeda ordingtotheidenti ation

method-ology presented in hapter 5. The model presented in the next subse tion has

beenobtainedafterapreliminarypolishingofthedatafromoutliersbyanonlinear

leaning lter, alled Hampel lter. The semi-physi al model will be estimated

usingarobustestimationmethod,a ordingtotheidenti ationmethodology,see

se tion5.3. Unfortunately,itturned outthat themodelismarginallyidentiable.

Non-identiability,orweakidentiability,ofmodelparametersmaybe ausednot

onlyby a redundant, or almost redundant subset of parameters,but also by the

way howthe inputs of the system are generated. In our ase, in fa t, the input

variables are strongly orrelated, and theyare not su iently ex ited to identify

alltheparameters. The typi alapproa h forsu haproblem isvariable sele tion,

i.e. the sele tionofanoptimal subset ofinputvariables. This issueis dis ussed

in hapter 4,whereafewmethodsforvariablesele tionarepresented.

Semi-Physi al model

Oursemi-physi al model is theresult of alongtrialand errorpro ess. From the

pro ess knowledge, previoussimilar worksand basi physi al prin iples aninitial

model was built. Then, alarge orrelation analysis was arried out between the

urlandthepro essinputs,andbetweentheresidualsofthemodelandthepro ess

inputs. Several inputs were tested and their ee ts on the predi ted valueswere

arefullystudied. Onthebasisofthisanalysis,newinputvariableswerein ludedin

themodel,andotherswereinsteadex luded. Thispro edurewasthenrepeatedfor

dierenttimeperiods, anddierent board qualitiesuntilamodelwhi hprodu ed

satisfa torypredi tionerrorswasgenerated.

Eventually 3 stru turally identi al nonlinear models were omputed, one for

ea h kind of url, i.e. CD, MD and twist. This is also the main dieren e with

the Li entiate model, [12℄, where an unique Multi-Input-Multi-Output nonlinear

model was instead onsidered. Even though the 3 kinds of url are physi ally

related,webelievethattheirrelationshipistoo omplextobea uratelydes ribed

(26)

Symbol Meaning

B

h,i

Bendingofheadboxlips ofthe

i

th layer,[m℄.

C

h

Chemi alsandadditives,[Kg/Ton℄.

C

o

Total oating,[Kg/m

2

℄.

C

p

Pressuresofthe alenderingse tions,[Pa℄.

D

p

Steampressuresofthedrying ylinders,[Pa℄.

F

Pulpfra tions,aftermixing tanks,[%℄.

J

w,i

Headboxjettowirespeeddieren eofthe

i

thlayer,[m/min℄.

P

l

Se ondpressload,[Pa℄.

R

e

Reningenergies,[KWh/ton℄.

S

p

Speedoftheboardin thema hine,[m/min℄.

S

t

Steamaddedtothetoplayerbefore alendering,[Kg/m

2

℄.

T

s,i

Tensilestiness indexofthe

i

thlayer,[Nm/Kg℄.

T

w

Tensionoftheboardwebindierentpositions,[%℄.

w

b,i

Basisweightofthe

i

thlayer, [Kg/m

2

W

l

WateraddedtothebottomlayerbyLAS,[Kg/m

2

℄.

W

v

WateraddedbyVIB,[Kg/m

2

℄.

z

i

Thi knessofthe

i

thlayer,[m℄.

ρ

i

Densityofthe

i

thlayer,[Kg/m

3

℄.

Table2.2: Final sele tionof inputvariables forthemodel. The subs ript

i

refers tothelayer,e.g. top,middleandbottomlayer.

Theonlyrelevantdynami sinthepro essarethoseofthepulp on entrations

inthe mixingtanks. However,we onsider theestimated on entrationsafter the

tankswhi haretakenfromPetterson,[76℄and[78℄,andhen ethe urlpredi toris

astati model. Thenalsele tionofinputvariablesislistedintable2.2. Notethat

theestimatesofthi knesses,densities,basisweightsandtensilestinessindexesof

thelayersare omputedbythebendingstinesspredi tor,see[76℄,runningonline

inFrövi. TheLASisadevi esituatedafterthe oatingse tionusedto ontrol url.

Itapplies to thebottomply athin layerof water whi h is thendried byinfrared

dryers. TheVIBisadevi efortheCDprolemoisture ontrolsituatedintherst

partofthedryingse tion.

Thenalmodel anbedividedintodierentsub-models,asshowningure2.3.

Thestru ture of thesemi-physi al modelis the sameas in the Li entiate Thesis,

see[12℄foramoredetaileddes ription.

Thesemi-physi almodelis des ribedhereverybriey, see [12℄ for amore

de-taileddes ription.

Themain partis theme hani almodel, whi his des ribedin [12℄. It isbased

onCarlsson,[17℄,where lassi allaminatetheoryisusedtomodel urlandtwistof

multi-plyboard. Despiteitssimpli ity, Carlsson'smodelagreessatisfa torilywith

(27)

2.4. MODELLING 15

Mechanical

Model

K

Strain

Model

Fiber

Orientation

Hygroexp.

Coefficients

Moisture

Model

Thickness

Densities

Elastic Moduli

Figure2.3: Stru tureofthemodel.

homogeneouselasti medium. The me hani al model takes as inputs the strains

of the three layers, their thi kness, the densities and their elasti moduli. The

latter ones are al ulated as part of Petterson's bending stiness predi tor [76℄.

Theoutputsoftheme hani almodelarethe urvatures[m

−1

℄intheMD,CD,and

diagonaldire tions.

Intherest ofthis se tionthesubs ripts

i

and

j

refertothelayer(top,middle, and bottom) and to the dire tion (MD,CD and Twist), respe tively. The

super-s ripts

f

,

β

,

H

,and

s

aresymboli andrefertotheir orrespondingsubmodels,e.g.

f

standsfortheberorientationsubmodel,

β

forthehygroexpansivitysubmodel,

H

forthemoisturesubmodel,and

s

forthestrainsubmodel.

Theberorientationangle,

φ

,isgeneratedbythehydrodynami alfor esinthe wiresduringthelayerformation,see[69℄,andin thisworkitismodelledas:

φ

i

= arctan(U

i

f

θ

i

f

)

[rad℄

,

and

U

f

i

= [J

w,i

, B

h,i

]

(2.1)

where

θ

f

i

areparametersto be identied, and theinput variables

J

w

and

B

h

are denedintable 2.2.

In general, the hygroexpansivity oe ients,

β

, are determined by stru tural and me hani al properties of the bers, and of theber network,see [87℄, [104℄,

[103℄,and[105℄. Adetailedmodellingofsu hpropertieswouldbevery omplex,and

beyondthepurposeofthis work. Wewantinsteadtoemployasimplemodel, and

verify itsreliabilitywith respe t to url predi tions. Hen e, asimplequasi-linear

modelwas used:

β

i

= J

φ

U

i

β

θ

β

i

[

−],

and

U

β

i

= [w

b,i

, R

e

, C

h

]

(2.2)

where

J

φ

isa oordinaterotationmatrixduetotheberorientationangle,

φ

.

θ

β

i

are parameterstobeestimatedand

U

β

aretheinputsthatwerefoundmost orrelated

withthehygroexpansivitydened intable2.2.

(28)

environment after that the paperhas been onditioned in an oven for at least 5

minutes. Alsoin this asealinearmodelwasemployed:

H

i

= U

i

H

θ

i

H

[-℄

,

and

U

H

i

= [F, R

e

, ρ

i

]

(2.3)

where

H

i

is the moisture after onditioning,

θ

H

i

are parameters to be estimated and

U

H

are the inputs orrelated with the nal moisture, see table 2.2 for the

denition. Themoisturemodel was identied independentlyfrom the url model

byusingthetotalmoisturemeasurementattheendofthepaperma hinea ording

tothefollowingmodel:

H

tot

=

X

i

w

b,i

w

b,tot

H

i

where

w

b,tot

=

X

i

w

b,i

(2.4)

where

H

tot

isthemeasuredtotalmoisture,and

w

b,tot

isthetotalbasisweight. Thestrainwasmodeledas alinearfun tionofthemoisture ontent:

ǫ

ij

= β

ij

H

i

[-℄ (2.5)

Internalstressesaregeneratedinsidethe artonboardduringthepaper-making

pro ess. Thedevelopment ofsu hstressesis avery omplexpro ess,notentirely

understood. A ordingtotheliterature,[67℄,[86℄,[101℄,[107℄,itdependsonmany

fa torssu hasdryingspeed,pulp omposition,dryingrestraints,et . Analogously

to the hygroexpansivity oe ients, a simple model was employed and its

a u-ra y was then orroborated by the reliability of url predi tions. So, as a rst

approximation,theinternalstresses

s

ij

,weremodelledas:

s

ij

= J

φ

(s

0

ij

+ a

ij

exp(θ

i

s

U

i

s

))

[N/m

2

℄ (2.6)

where

U

s

= [D

p

/S

p

, P

l

, S

t

, C

p

, C

o

, W

l

, W

v

]

where

J

φ

is a oordinaterotationmatrixdue totheberorientationangle,

φ

.

θ

s

i

,

s

0

ij

and

a

ij

areparametersto beidentied.

U

s

are ontrolinputs that ontribute

tothedryingstressesinlayer

i

2

,see table2.2.

2.5 Summary and on lusions

Curl is an important property for paperboard produ ers, but unfortunately it is

alsooneofthemostdi ultqualityvariablesto ontrolforpro ess engineersand

operators. In this hapter wehavegivenashort des riptionof thepapermaking

pro ess,inse tion2.2,andaformaldenitionof urlandtwist,in se tion2.3.

2

Inamore ompli atedmodel

s

0

(29)

Thepapermakingpro essisanextremely omplex,nonlinearandtimevarying

pro essae tedbymanyunmeasurabledisturban es. Curlandtwistare

phenom-enawhi harestronglyrelatedtothemanufa turing onditionssu hasthepressure

andpressingtime,dryingtemperatureanddryingtime,et . The ausesfor urlare

well do umented in the literature, but there are still many open questions under

investigation. Inaddition,itisverydi ultto hara terizein ane ientwaythe

magnitudeof url and twist. In fa t, there is not even agreement on astandard

method of measurementsin e, forinstan e, dierent sample sizes or shapesmay

giveriseto dierentresults. Themethod used at AssiDomänFrövi onsidersve

10x10 m samples. Their urland twist omponents are measuredby an opti al

devi e, and the median values are presented to the operators. Despite the fa t

that thesamples aretaken from asmall areain the enter ofthe paperweb, the

standarddeviationofthemeasurementsisveryhigh,seetable2.1. Webelievethat

this la k of a suitable hara terization of url is one of the main reasons behind

the di ulties in developing an ee tive ontrol strategy and also in building a

satisfa torymodel.

Then, in se tion 2.4 the semi-physi al model has been presented. After an

initialpolishingofthedata,threesatisfa torymodelswerebuilt,i.e. MD url,CD

urland twist. Themodels were satisfa tory in thesense that the residualswere

a eptablysmall, whiteand statisti ally independent from all theinput variables

tested.

Thethreemodelsarestru turallyidenti al, but learlytheyhavedierent

val-uesof parameterswhi h haveto beestimated from the pro ess data. Theinitial

identi ationwasnot ompletelysu essfulbe ausetheidentiabilityanalysis,see

se tion5.3,showedthatthemodelswereweaklyidentiable. Eitherthedatasetis

notinformativeenoughto provide areliableestimationof the parameters,or the

modelstru tureisredundant. Thetypi alapproa hin su h asituationis variable

sele tion, i.e. the sele tion of asubsets of inputswith the best predi tive

apa -ity. Thisisavery omplexproblem,anddespiteahugeamountofliteraturedeals

with it, there are still many unsolved problems. For instan e, dierent authors

usedierent pro edures whi h often yield dierent results, and thus it is un lear

whi h method is the mostsuitable in a givensituation. In hapter 4a review of

somemethodsand riteriaforvariablesele tionisgiven,andanewmethod alled

IterativelyS aledRidgeRegression,ISRR,isintrodu ed. Variablesele tionispart

ofthe identi ationmethodology presentedin se tion 5.2 andapplied to the url

(30)
(31)

Outlier Dete tion and Model

Diagnosti

3.1 Introdu tion

Regressionanalysisandmoregeneralstatisti almodellingareveryimportanttools

whi hare ommonlyappliedin manydierentelds. Theresultsoftheregression

analysis depend on the statisti al properties of all thedata. However,if some of

theobservationsinthedatasetdiersomehowfromthemajorityofthedata,the

tting pro ess may make unre ognizablethe dieren e by tting all the data in

thesamestraightja ket,[3℄. Inotherwords,leastsquaresmethodstrytomakeall

theresidualssmall,andhen enon-regularobservationsmaybeindistinguishable

fromregularobservations.

The main purpose of this hapter is to des ribe two methods to ope with

outlierswhi hwillbeusedintheproposedidenti ationmethodologypresentedin

hapter5. First,arobustestimation method, alled forwardsear h, isillustrated,

and afew modi ationsto its original algorithm are proposed. Then, an outlier

identiermethod, alledHampellter,isdis ussedandsomemodi ationsarealso

suggested.

Theforwardsear hmethodisusedtodete tandanalyzeobservationsthatdier

fromthebulkofthedata. Thesemaybeindividualobservationswhi haretheresult

ofsensor errors,re ording, or transmission errors,or ex eptionalphenomena. Or

theymay be asubsetof thedata, whi h issystemati allydierentfrom therest.

Itisthenimportanttoidentifysu hasubsetandanalyzeit,alsotoevaluateifthe

modelissuitableforitspurposeorifitshouldbeimproved.

TheHampellterbelongstoadierent lassofoutlierdete tionmethodssin e

itdoesnotusethemodeltoidentify erroneousdata. Thus, thislter an beused

foraninitialpolishingofthedataset.

Weareinterestedin dete tingoutliersbe auseofthedangerposedbythemin

(32)

tototallyosetaLSestimator,[80℄.

Outlierso ur very frequentlyin real data and they go often unnoti ed sin e

most of the data are pro essed by omputers without areful inspe tion. If the

dataset ontainsasingleoutlier,theproblemofidentifyingsu hanobservationis

relativelysimple. However,ifadata set ontainsmorethan one outlier,whi h is

likely to bethe ase in mostreal datasets, then the problem of identifying su h

observationsbe omes mu h moredi ult. Thisis due to masking and swamping

ee ts, see e.g. [80℄. Masking o urs whenan outlier goesundete ted be ause of

thepresen e ofothers, usually adja ent, outlyingobservations. Swamping is said

to o urwhen the non-regularobservations ausenon-outliers to be identied as

outliers.

Oneoftherst approa hesto outliersdete tionwas basedonregression

diag-nosti s, see[7℄ and[19℄. Unfortunatelyit wasproven withseveral examples,[80℄,

thatthesemethodsmayfailinthepresen eofmultipleoutliers. Thus,morerobust

methodshavebeensuggested,andsomeofthemareillustratedin se tion3.3. The

mostbasi onesaretheuseofthemedianandMedianAbsoluteDeviation 1

(MAD)

insteadofthemeanandstandarddeviation.

Adierentapproa hisbasedonrobustregressionmethodssu hastheleast

me-dianofsquares,LMS,ortheleasttrimmedsquares,LTS,introdu edbyRousseeuw,

[80℄. Thebasi ideainthesemethodsisthattode idewhetheragivenobservation

isabadpointweneedameasureofwhetherthedatasetregressionstru tureholds

forthedatapointinquestion. Ifanestimate

θ

ˆ

R

isrelativelyunae tedbyoutliers, thenthe residuals

ε = Y

− X ˆθ

R

should be ausefultoolto ag observationsthat donot follow theregressionstru ture. A similar ideais used also in the forward

sear halgorithmwhi histherobustestimationmethodthat weintendtoanalyze

moreindetail.

Oneofthemainproblemsween ounteredwithrobustregressionmethodsisthe

fa tthattheyare omputationallyexpensive. Theirusagewithnonlinearmodelsis

thus somehowlimitedby thelarge omputationalburden involved. Hen e,inthis

work we present someessentialimprovements to theforwardsear halgorithm to

shorten its omputational time. Themain modi ationregardstheidenti ation

ofanoutlier-freesubsetofobservationsne essaryto startthealgorithm. Inorder

to determineit, we apply therobust methods des ribedin se tion3.3 to identify

the

N/2

most onsistentsamples.

Inaddition,wenoti edthatinsomesituations,likeforthe urlandtwistmodel

forinstan e,itisnotstraightforwardtodeterminethenumberofoutliersinadata

setwhenusingtheforwardsear hmethod. Hen e,asimplepro edureto estimate

thenumberofoutliersinthese situationsisalsoproposed.

Inse tion3.2,ageneraldes riptionofoutliersandleveragepointsisgiven.

Se -tion3.3presentssomemethodsforrobustmodeldiagnosti . Se tion3.4illustrates

theforwardsear h method, and in se tion 3.5 weintrodu e ourmodi ationsto

1

TheMADs aleestimateofasequen e

x

k

isdenedasS=1.4826median

{|x

k

median

{x

(33)

thealgorithm. Inse tion3.6theHampellterisdis ussed,andsomemodi ations

aretested inasimulationstudy.

3.2 Outliers and leverage points

Theliteratureonoutliersisvast,andageneraldenition is,e.g.,giveninBarnett

and Lewis, [5℄: an observation (or subset of observations) whi h appears to be

in onsistentwiththe remainder ofthat setof data.

We andistinguishbetweenseveraltypesofoutliers,andherewewillfollowthe

terminologyinRousseeuwandvanZomeren,[81℄. Anobservation

(x

i

, y

i

)

whose

x

i

isoutlyingwith respe t themajorityof the

X

-pointsis alled aleverage point or high leverage point. Theterm leverage omesfrom theme hani s,be ausesu h

apointpullstheLSsolutiontowardit.

An observation

(x

i

, y

i

)

that deviatesfrom theregressionstru ture followedby themajorityofthedata,i.e. themodel,isinstead alledaregressionoutlier.

Combiningthenotionofleveragepointsandregressionoutlier,weseethatfour

typesofobservationsmayo urinregressiondata:

1. regularobservations withinternal

x

i

andwell-tting

y

i

.

2. verti aloutliers withinternal

x

i

andnon-tting

y

i

.

3. good leverage points withoutlying

x

i

andwell-tting

y

i

.

4. bad leveragepoints withoutlying

x

i

andnon-tting

y

i

.

Abadleveragepointisthen usuallyanerroneousobservation, whileagood

lever-agepointis anobservationwhi h followsthemodelstru ture, butsomehowits

x

i

isoutlyingfromthemajorityoftheotherregressorvalues. Clearly,goodleverage

pointsmaybeveryusefulintheidenti ationofasuitablemodel,whilebad

lever-agepointsare dangerousbe ausethey may giveriseto totally wrongresults. To

distinguishbetweengoodandbadleveragepointswehaveto onsider

y

i

aswellas

x

i

andwealso needtoknowthepatternfollowedbythemajorityofthedata,i.e. themodel.

Letus onsiderthefollowinglinearmodel:

Y = Xθ

0

+ e

(3.1)

where

Y

isa

N

-ve toroftheresponsevariable,

X

isa

N

× n

matrixofregressors,

θ

0

is a

n

-ve torof unknown parameters to be estimated and

e

is a

N

-ve tor of independentrandomvariableswithzeromeanandunknownvarian e

σ

2

(34)

thedatawiththeleastsquaremethodwehavethefollowingresults:

ˆ

θ

=

(X

T

X)

−1

X

T

Y

(3.2) Var

θ) =

σ

ˆ

2

(X

T

X)

−1

(3.3)

ˆ

Y

=

X ˆ

θ = P Y

(3.4)

P

=

X(X

T

X)

−1

X

T

(3.5) Var

( ˆ

Y ) =

σ

ˆ

2

P

(3.6)

ε =

Y

− ˆ

Y

(3.7) Var

(ε) =

σ

ˆ

2

(I

− P )

(3.8)

ˆ

σ

2

=

ε

T

ε

N

− n

(3.9)

where

ε

are theresidualsor predi tionerrorsand

P

isthepredi tion matrix,[19℄. Itis possibleto show thatone outlier is enoughtoprodu e atotally wrongoset

to a least squares estimator, i.e. the quantity

kˆθ − θ

0

k

may be ome arbitrarily largebe ause ofone outlier. On theother hand,it ispossibleto showthat there

existrobustestimatorsthat an handleseveraloutliers. Inorderto formalizethis

aspe t we introdu e the on ept of breakdown point, [80℄. Consider the data set

Z =

{X, Y }

and let

T

be aregression estimator, e.g.

T (Z) = ˆ

θ

. Now, onsider allpossible orruptedsamples

Z

that areobtainedbyrepla ing

m

of theoriginal datapointsbyarbitraryvalues,in luding

. Letusdenotewithbias(

m; T, Z

)the maximumbias ausedbysu h ontamination:

bias

(m; T, Z) =

sup

Z

kT (Z

)

− T (Z)k

(3.10)

Ifbias(

m; T, Z

)isinnitewesaythattheestimatorbreaksdown. Thebreakdown pointis thendened as thesmallestfra tionof ontamination that an ause the

estimator

T

tobreakdown:

ε

N

(T, Z) = min

m

{

m

N

:

bias

(m; T, Z)

isinnite

}

(3.11) Looselyspeakingthebreakdownpointis thesmallestfra tionofgrosserrorsthat

an arry theestimator overall bounds. The breakdown pointof the arithmeti

meanis

1/N

, viz. just one outlier an destroy themean. Themedian, instead, hasabreakdownpointof

1/2

,i.e. it anhandleupto

N/2

− 1

outliersinthedata whi histhemaximumpossible.

Robustness,however,doesnot omeforfree. Robustestimatorshave,ingeneral,

alowerstatisti ale ien y thanleastsquaresestimators 2

.

One of the early methods of dete ting model failures is examining the least

squaresresiduals,

ε

i

,or preferablyas aledversionofthem. However,ithasbeen 2

Supposethat

θ

ˆ

and

θ

˜

aretwodierentestimates.Thee ien yof

θ

ˆ

relativeto

θ

˜

isdenedas beingtheratiooftheirvarian es,i.e. e(

θ, ˜

ˆ

θ

)=Var(

θ

ˆ

)/Var(

θ

˜

). Wesaythatanunbiasedestimate

(35)

noti ed,[19℄,that examination ofresidualsaloneis notsu ientfordete ting

in-uentialobservationsandoutliers,espe ially those orrespondingto high-leverage

points whi h in general tend to have small residuals. The predi tion matrix

P

, denedin(3.5),playsanimportantroleindeterminingthettedvalues,the

mag-nitudeoftheresidualsandtheirvarian estru ture,see(3.4),(3.6)and(3.8).

There-fore,ithasbeensuggestedtoexamineboththeresidualsandthediagonalelement

of

P

. Alternatively, insteadof onsidering thediagonalelementsof

P

,the Maha-lanobisdistan e anbeexamined. Thisdistan emeasureshowfarisanobservation

x

i

fromthe enterofthe

X

-values. TheMahalanobisdistan e orrespondingtothe

i

thobservation

x

i

isdenedas

M D

2

i

= (x

i

− t)(X

T

X)

−1

(x

i

− t)

T

(3.12) where

x

i

isthe

i

throwofthe

X

matrixand

t

isthearithmeti meanofthe

N

rows of

X

. Thepurposeofthe

M D

i

istopointtoobservationswhoseexplanatorypart, i.e.

x

i

,liesfarfromthatofthebulkofthedata.

Themain riti ismagainstthe lassi aldiagnosti methods isthat theysuer

fromthemaskingee t,[80℄, by whi h multipleoutliers donotne essarilyhavea

largediagnosti measure. This isdue to thefa t that thesediagnosti s arebased

onstatisti s,namelymeanand ovarian e,whi harenotrobust: asmall lusterof

outlierswillattra tthemeanand inatethe ovarian ein itsdire tion.

3.3 Robust model diagnosti

Themain reasonfor the failure of the lassi aldiagnosti s, likethe Mahalanobis

distan e for instan e, is the fa t that they are ae ted by the observations that

theyaresupposed toidentify.

In order to avoid the maskingee t, Rousseeuw, [81℄, proposed thefollowing

robustdistan e:

RD

i

2

= (x

i

− T (X))C(X)

−1

(x

i

− T (X))

T

(3.13) where

X

is theset of data,

x

i

is the

i

th rowof

X

,

T (X)

is arobustestimator of lo ation(mean), and C(X) is a robustestimatorof s atter (varian e). Thus, the

authorssuggestedtoexaminethe residuals,

ε

i

,together withtherobustdistan e,

RD

i

,insteadofthe lassi alMahalanobisdistan e,orthediagonalelementsof

P

. In our proposed method for outlier dete tion, see se tion 3.5, we employ the

robustdistan es

RD

i

to sort theobservations. Hen e,some robustestimators of lo ationands atter, ne essaryto ompute

RD

i

a ordingto(3.13), arepresented next.

Several robustestimators oflo ation,

T (X)

, and s atter,

C(X)

, are available. Mostofthemarebasedontheideaofndingthemost onsistent

h

observationand estimate

T (X)

and

C(X)

from them. Often the parameter

h

isset to

N/2

sin e

(36)

ofregularor non-regular observations. Note, however,that these robustmethods

impli itlyassumethatthe

X

variables havean(almost)gaussiandistribution. If, instead, they have a dierent distribution, for instan e they are lustered, then

thesemethodsmaynotbeverye ient.

ApopularmethodsuggestedbyRousseeuwandVanDriessen,[83℄,isthe

mini-mum ovarian edeterminant (MCD) estimator. TheMCDobje tiveistondthe

h

observationswhose lassi al ovarian ematrixhasthesmallestdeterminant,with

N/2

≤ h ≤ N

. Basi ally, themethod tries tond the

h

observations with losest explanatoryparts,

x

i

. Moreformally,wedenetheMCDestimatorasthesolution ofthefollowingproblem. Sele tasubsetofobservations

J

ofdimension

h

soasto minimizethedeterminantof

W

where

W =

X

j∈J

(x

j

− t

J

)

T

(x

j

− t

J

)

where

x

j

isthe

j

throwofX,and

t

J

=

1

h

X

j∈J

x

j

TheMCDestimateoflo ationisthentheaverageofthese

h

points,i.e.

T (X) = t

J

, whereasthe MCD estimateof s ale is their ovarian ematrix,

C = h

−1

W

. It is

possibletoprovethatwhen

h = (N + n+ 1)/2

theMCDestimatorhasabreakdown pointofnearly0.50,i.e. it anhandleupto

N/2

−1

outliers. Inaddition,Rousseeuw andVanDriessenproposedafastalgorithm to omputeanapproximate estimate

oftheMCDwhi h an opewithverylargesamplesize.

In [28℄ two similar approa hes were proposed. The rst is alled Resampling

by Half Means (RHM) whi his aresamplingte hniqueaimedat determining the

distribution of observation ve tor lengths. Clearly, the outliers are expe ted to

dominatethe highestregion of the distribution. The algorithm an bedes ribed

as:

Takearandomhalf sample,i.e. asubsetofN/2measurements.

Computetherobustdistan e

RD

i

,(3.13),forallobservationsusingthe arith-meti mean

t

and ovarian e

C

,estimatedfromthehalf sample.

Markthetop

(1

− c) × 100%

extremerobustdistan esasdubious.

Repeatseveraltimes. Itisre ommendedthatthedataberesampledatleast

2N

times.

Finally ompute

t

and

C

using onlythenon-dubiouspoints.

(37)

Inthesamepaperanotheralgorithm, alledSmallestHalf-Volume(SHV), was

proposedtondthemost onsistent

N/2

samples. InSHVtheregressormatrix

X

isrstautos aled,i.e. ea h olumnof

X

is enteredarounditsmeanandnormalized withrespe titsstandarddeviation. Then,thefollowingstepsaretaken:

Computeallinter-sampledistan esinthe

N

×N

matrix

D

,i.e.

D

i,j

=

kx

i

− x

j

k

where

x

i

and

x

j

arethe

i

thand

j

th rowsofthe

X

matrix. Inother words,

D

i,j

isthedistan ebetweenthe

i

thand

j

thobservations.

Sortea h olumnof

D

inas endingorderandsumthesmallest

N/2

distan es.

The olumnwiththesmallestsumfortherst

N/2

distan esisdetermined. These are the

N/2

observations that are losestto ea h other in the multi-variate

X

-spa e.

Estimate

t

and

C

from thesemeasurements.

InrobustSHV,robusts alingisappliedtothematrix

X

rst,i.e. themedian and MADareusedinsteadofmeanandstandarddeviation.

Finally,analgorithm alledClosestDistan etoCenter (CDC)wasproposedin

[20℄. Thebasi ideais verysimilarto SHV.Namely, SHVidentiesthemost

on-sistentobservationsby al ulatingthedistan ebetweenea hpairofobservations.

CDCidentiesthemost onsistentobservationsby al ulatingthedistan eofea h

observationfromthe enter. InCDCthematrix

X

isrstautos aledandthenthe distan eis omputed forea h observation. TheEu lideandistan e, CDC

2

,or the maximumnormdistan e, CDC

m

, anbeused. Forarobustimplementationofthe algorithm,robusts aling issuggested.

TheCDCalgorithmisthemethodthatwefoundmostrobustinoursimulations,

andthusitistheonethatwere ommendtouseinourproposedpro edureinse tion

3.5.

3.4 Forward Sear h

The forward sear h method, [3℄, is a pro edure to dete t outliers and for model

diagnosti . Themethodwasintrodu edbyHadi,[41℄, forthedete tionofoutliers

from at using approximatelyhalf of the observations. Dierent versions of the

methodaredes ribedin[42℄ and[2℄.

Themain ideabehindthe method isthat if thetrueparametersof themodel

wereknown,thenitwouldbeeasytodete toutlierswhi hwouldhavelarge

resid-uals. Hen e,themethodstartsbyusingrobustmethodstotasmall(supposedly)

outlier freesubset ofobservations. This subsetis then in rementedso that it

re-mains outlier free as long as possible. The onsequen e is that the outliers will

References

Related documents

a) Inom den regionala utvecklingen betonas allt oftare betydelsen av de kvalitativa faktorerna och kunnandet. En kvalitativ faktor är samarbetet mellan de olika

• Utbildningsnivåerna i Sveriges FA-regioner varierar kraftigt. I Stockholm har 46 procent av de sysselsatta eftergymnasial utbildning, medan samma andel i Dorotea endast

I dag uppgår denna del av befolkningen till knappt 4 200 personer och år 2030 beräknas det finnas drygt 4 800 personer i Gällivare kommun som är 65 år eller äldre i

Denna förenkling innebär att den nuvarande statistiken över nystartade företag inom ramen för den internationella rapporteringen till Eurostat även kan bilda underlag för

Den förbättrade tillgängligheten berör framför allt boende i områden med en mycket hög eller hög tillgänglighet till tätorter, men även antalet personer med längre än

Den här utvecklingen, att både Kina och Indien satsar för att öka antalet kliniska pröv- ningar kan potentiellt sett bidra till att minska antalet kliniska prövningar i Sverige.. Men

Av 2012 års danska handlingsplan för Indien framgår att det finns en ambition att även ingå ett samförståndsavtal avseende högre utbildning vilket skulle främja utbildnings-,

Det är detta som Tyskland så effektivt lyckats med genom högnivåmöten där samarbeten inom forskning och innovation leder till förbättrade möjligheter för tyska företag i