Observation of quantum bounds in spin diffusivity
Joseph H Thywissen University of Toronto
based on:
A. B. Bardon et al., Transverse Demagnetization Dynamics of a Unitary Fermi Gas Science 344, 6185 (2014) S. Trotzky et al., Observation of the Leggett-Rice effect in a unitary Fermi gas PRL 114, 015301 (2015)
C. Luciuk et al., Observation of quantum-limited spin transport in 2D Fermi gases, PRL 118, 130405 (2017) T. Enss & JT, Universal Spin Transport and Quantum Bounds for Unitary Fermions, arXiv:1805.05354
Nordita program on
Bounding Transport and Chaos
29 August 2018
Strongly coupled matter
[adapted from Y. Cao… P. Jarillo-Herrero, Nature 556, 43 (2018)]
critical temperatur e T c (K)
Fermi temperature T F (K)
6Li (x108)
Ultracold Fermi gases
40K (x108)
1. Separation of length scales 2. Control of interactions
3. Optical imaging of individual atoms
4. Slow time scales: dynamics easily accessible 5. Ab initio theory
OPPORTUNITIES AT LOW DENSITY
1. Separation of length scales 2. Control of interactions
✦ Round-trip phase of collision depends on E-E c
✦ Relative energy is tuned using a magnetic field
R
“Feshbach Resonance”
OPPORTUNITIES AT LOW DENSITY
1. Separation of length scales
change magnetic field
[Following work by: Verhaar, Stwalley, Ketterle, Jin, Wieman, …]
1. Separation of length scales
OPPORTUNITIES AT LOW DENSITY
2. Control of interactions
2. Control of interactions
OPPORTUNITIES AT LOW DENSITY 1. Separation of length scales
change magnetic field
[Following work by: Verhaar, Stwalley, Ketterle, Jin, Wieman, …]
50 µm =
0.5 pm =
1/k F
a (i n Bohr) ⇥ =4 a 2 !
Extreme tuneability of interactions
or
1. Separation of length scales 2. Control of interactions
3. Optical imaging of individual atoms
4. Slow time scales: dynamics easily accessible 5. Ab initio theory
OPPORTUNITIES AT LOW DENSITY
A wonderful playground for many-body physics,
and especially for quantum dynamics
[Reviews: Schäfer 2009; Enss,Haussman, Zwerger 2011; More recent work: Elliot et al PRL (2014); arXiv:1410.4835]
Universality in transport of unitary gases (10 -6 K to 10 14 K)
⌘/s 0.5 ~/k
BUltracold atoms:
[J. E. Thomas group]
Relativistic ions:
[STAR collaboration]
⌘ s
1 4⇡
~ k B
KSS conjecture:
(2005)
Longitudinal spin diffusivity
MIT (2011):
3D longitudinal spin diffusion
D || & 6 ~ m
A. Sommer…M. Zwierlein, Nature 472, 201 (2011)
Review: T. Enss & JT, arXiv:1805.05354, to appear in Ann Rev CMP.
Conjectured bounds on transport coefficients
for systems with intrinsic limits due to scattering.
D & ~/m
Simple argument #1, for Fermi gas
` & n 1/3 ⇠ 1/k F
giving bound to O(m/m*)
idea: mfp is at least the inter-particle spacing
[see work by Bruun, Pethick, Enss, Huse, Roche, Heiselberg, Duine, Zaanen, Kovtun, Sachdev, Hartnoll, Maldecena …]
D = v F ` & ~ k F m ⇤
1
k F = ~
m ⇤
for systems with intrinsic limits due to scattering.
[see work by Bruun, Pethick, Enss, Huse, Roche, Heiselberg, Duine, Zaanen, Kovtun, Sachdev, Hartnoll, Maldecena …]
D & ~/m
Simple argument #2
“Planckian” conjecture
Idea: transport time reveals
(bounded) local relaxation time
⌧ r & ~/k B T
D ⇠ ⌧ r hv 2 i & ~ k B T
k B T
m ⇠ ~ m
Conjectured bounds on transport coefficients
for systems with intrinsic limits due to scattering.
[see work by Bruun, Pethick, Enss, Huse, Roche, Heiselberg, Duine, Zaanen, Kovtun, Sachdev, Hartnoll, Maldecena …]
D & ~/m
Simple argument #2, for Fermi liquid
“Planckian” conjecture
Idea: transport time reveals
(bounded) local relaxation time
Conjectured bounds on transport coefficients
⌧ r & ~/E F
D ⇠ ⌧ r v F 2 & ~
m ⇤ v F 2 v F 2 = ~
m ⇤
Transverse spin diffusion
Scattering no longer restricted to Fermi surfaces
• An exception to usual FL 1/T 2 behaviour
• Finite damping coefficient at zero temperature!
x
Particles can move without scattering E>>E F +k B T
• Low T: reduced scattering, so longer mfp: D larger
• In 3D, gives the typical 1/T 2 Fermi Liquid signature
x
Longitudinal diffusion (no spin coherence)
Transverse diffusion (w/ spin coherence)
“anisotropy temperature”
D ||
D 0 ?
Result: “Anisotropy”
at low temperature
due to Pauli blocking
[Mullin,1992]
Spin-echo measurement of magnetisation
irreversible loss of magnetization due to spin diffusion spiral in M due to
external B-field gradient
π /2
|+z〉
|-z〉 |+y〉 |+z〉
|-z〉
|p〉
RF amplitude
0 t
πt
Timeπ
}
δ
b a
1
0 0.5
0 10 20
10 6 Γ( δ)
ħδ/E F
s δ 3/2 Γ( δ)
2 4 6 8
0
1
1.5 2
0 0.5
2.5
Holdtime (ms)
20 10
0
ħδ/E F
x10
π /2
|+z〉
|-z〉 |+y〉 |+z〉
|-z〉
|p〉
RF amplitude
0 t
πt
Timeπ
}
δ
b a
1
0 0.5
0 10 20
10 6 Γ( δ)
ħδ/E F
s δ 3/2 Γ( δ)
2 4 6 8
0
1
1.5 2
0 0.5
2.5
Holdtime (ms)
20 10
0
ħδ/E F
x10
π /2
|+z〉
|-z〉 |+y〉
|+z〉
|-z〉
|p〉
RF amplitude
0 t
πt
Timeπ
}
δ
b
a
1 0 0.5
0 10 20
10 6 Γ (δ )
ħδ/E F
s δ 3/2 Γ (δ )
2 4 6 8 0
1
1.5 2 0 0.5
2.5
Holdtime (ms)
20 10
0
ħδ/E F
x10
with phase lag:
initial state is full transverse
polarization
At ,
“...photograph indicates
approximately an exp(-kt 3 /3) decay law for the primary
echo envelope in H 2 0.”
[Purcell, Hahn, Torrey, Slichter, Abragam…]
spin spiral
cubic exponential decay
R M ⌘ (D 0 ? ↵ 2 ) 1/3 M x + iM y = M 0 e i↵zt exp [ 1
3 D 0 ? ↵ 2 t 3 ]
define demagnetization rate
fit to
Demagnetisation at unitarity
B A
τ M (ms)
0 2 4
1 3
10 15 20 25 30
5 0
B-field gradient B’ (G/cm)
0 1 2 3 4
0 0.2 0.4 0.6 0.8 1
|M ⊥ |
Hold time t (ms)
5
Initial temperature (T/T F ) i
10
0 2 4 6 8
0 0.2 0.4 0.6 0.8 1
D s ⊥ (ħ /m )
t (ms)
0 1 2 3
|M
⊥|
1 0.5 0
t (ms)
0 1 2
|M
⊥|
1 0.5 0
Ramsey fringe visibility vs time
(each point is ~20 phases)
exp [ (R
Mt)
3/12]
-Observe correct B’ scaling: B
A
τ
M(ms)
0 2 4
1 3
10 15 20 25 30
5 0
B-field gradient B’ (G/cm)
0 1 2 3 4
0 0.2 0.4 0.6 0.8 1
|M ⊥|
Hold time t (ms)
5
Initial temperature (T/T
F)
i10
0 2 4 6 8
0 0.2 0.4 0.6 0.8 1
D s
⊥(ħ /m )
t (ms)
0 1 2 3
|M⊥|
1 0.5 0
t (ms)
0 1 2
|M⊥|
1 0.5 0
1 /R M (m s)
1/R M ⇠ (B 0 ) 2/3
-Vary gradient:
Time scale is a measure of diffusivity!
D = R 3 M /↵ 2
-Single-parameter fit to find diffusivity:
D = 1.1(2) ~
m
“Birth of a strongly correlated system”
| zi
|+yi
π/2 pulse
initial state final state
ideal Fermi gas unitary Fermi gas
Bloch sphere
full polarized mixture
growth of correlations
Correlations/interactions: “Contact” dynamics
π
/2|+z〉
|-z〉|+y〉 |+z〉
|-z〉
|p〉
RF amplitude
0 tπ t Time
π
}δ
b a
1
0 0.5
0 10 20
10
6Γ( δ)
ħδ/E
Fs δ 3/2 Γ( δ)
2 4 6 8
0
1
1.5 2 0 0.5
2.5
Holdtime (ms)
20 10
0
ħδ/E F
x10
π
/2|+z〉
|-z〉|+y〉 |+z〉
|-z〉
|p〉
RF amplitude
0 tπ t Time
π
}δ
b a
1
0 0.5
0 10 20
10
6Γ( δ)
ħδ/E
Fs δ 3/2 Γ( δ)
2 4 6 8
0
1
1.5 2 0 0.5
2.5
Holdtime (ms)
20 10
0
ħδ/E F
x10
t/2
1
2
D C A
0 B
0.5 1 1.5
0 1 2 3 4 5 10 15 20 0 1 2 3 4 5
π-pulse echo time
2.5
0.5 1 1.5 2 3.5 3
2.5 4
1.5 3.5
1 2 3
τ C (ms)
τ M (ms)
Hold time t (ms) Hold time t (ms)
B’ (G/cm)
0 10 20 30
0 0.2 0.4 0.6 0.8 1
0 0.2 0.4 0.6 0.8 1
C/C max C /Nk F
|M ⊥ |
2 1
[contact theory: Tan, Braaten & Platter, S Zhang & Leggett, Werner, Tarruell, & Castin, Barth, Zwerger, Combescot, Yu, Bruun, Baym, Drummond, Randeria, E Taylor, Son, H Hu, Romera-Rochin, Mølmer, Q Zhou, …]
[contact reviews by Braaten (2012); by Werner & Castin (2012)]
D C A
0
B
0.5 1 1.5
0 1 2 3 4 5 10 15 20 0 1 2 3 4 5
π-pulse echo time
2.5
0.5 1 1.5 2 3.5 3
2.5 4
1.5 3.5
1 2 3
τ
C(ms)
τ
M(ms)
Hold time t (ms) Hold time t (ms)
B’ (G/cm)
0 10 20 30
0 0.2 0.4 0.6 0.8 1
0 0.2 0.4 0.6 0.8 1
C/C
maxC /Nk
F|M
⊥| with echo
no echo
1/R M (ms)
1 /R C (m s)
Compare rate of contact
growth to rate of M decay:
2D Spin transport
π /2
|+z〉
|-z〉 |+y〉 |+z〉
|-z〉
|p〉
RF amplitude
0 t
πt
Timeπ
}
δ
b a
1
0 0.5
0 10 20
10 6 Γ( δ)
ħδ/E F
s δ 3/2 Γ( δ)
2 4 6 8
0
1
1.5 2
0 0.5
2.5
Holdtime (ms)
20 10
0
ħδ/E F
x10
|+zi
| zi
|pi
Initiate dynamics
Time Image
Jump B to 209 G, open trap
Set B, B’
ramp to V
0Probe
10 ms SG TOF
2 3 1
B B’
Laser
quasi-2D
“crêpes”
otherwise the same procedure:
2D is different
scattering amplitude:
2D:
always bound state!
"
B= ~
2ma
22D3D: f (k) = 1
1/a
3Dik f (k) = 4⇡
ln(1/k
2a
22D) + i⇡
Adhikari 1986
• typical scale k=k
F: expansion parameter g=-1/ln(k
Fa
2D)
• coupling always energy-dependent
• never scale invariant (quantum anomaly breaks classical scale invariance
Holstein 1993; Pitaevskii & Rosch 1997
thermodynamics:
-2 0 2 4 6
-3 -2 -1 0 1
ln(k
Fa
2 D)
E / E
FGE
P
contact quantifies breaking of scale invariance
E = P + C 2D 4⇡m
[review of 2D by Levinsen & Parish (2015)]
[contact in 2D: Werner, Castin, Combescot, Leyronas, Mølmer, Hofmann, Kohl, Giamarchi, Enss, Gazerlis, …]
2D Demagnetization dynamics
Quantum-limited diffusion in 2D
Contact dynamics in 2D
c
b
D ? 0 < ~/m
C. Luciuk et al., PRL (2017)
0.2 0.4 0.6 0.8 1 0
2 4 6 8 10
d=3
d=2 D 0 ? & 2 ~
m
D || & 6 ~
m T/T
F[Trotzky et al. PRL 2015]
D 0 ? & ~/m
[Luciuk et al. PRL 2017]
[Sommers et al. Nature 2011]
Review: T. Enss & JT, arXiv:1805.05354