• No results found

A systematic review of resting-state functional-MRI studies in anorexia nervosa: Evidence for functional connectivity impairment in cognitive control and visuospatial and body-signal integration

N/A
N/A
Protected

Academic year: 2022

Share "A systematic review of resting-state functional-MRI studies in anorexia nervosa: Evidence for functional connectivity impairment in cognitive control and visuospatial and body-signal integration"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Neuroscience and Biobehavioral Reviews

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / n e u b i o r e v

Review article

A systematic review of resting-state functional-MRI studies in

anorexia nervosa: Evidence for functional connectivity impairment in cognitive control and visuospatial and body-signal integration

Santino Gaudio (MD)

a,b,∗

, Lyle Wiemerslage (PhD)

a

, Samantha J. Brooks (PhD)

a,c

, Helgi B. Schiöth (PhD)

a

aDepartmentofNeuroscience,FunctionalPharmacology,UppsalaUniversity,BMC,Box593,Husargatan3,75124,Uppsala,Sweden

bCentreforIntegratedResearch(CIR),AreaofDiagnosticImaging,Universita“CampusBio-MedicodiRoma”,viaAlvarodelPortillo,200-00133-Rome, Italy

cPsychiatryNeuroimagingGroup(PNG),UniversityofCapeTown,DepartmentofPsychiatryandMentalHealth,OldGrooteSchuurHospital,AnzioRoad, Observatory,CapeTown,7925,SouthAfrica

a r t i c l e i n f o

Articlehistory:

Received14April2016

Receivedinrevisedform11August2016 Accepted30September2016

Availableonline8October2016

Keywords:

Eatingdisorders Anorexianervosa Neuroimaging Resting-state Defaultmodenetwork Insula

Cognitivecontrol Bodyimagedisturbances

a b s t r a c t

Thispapersystematicallyreviewstheliteraturepertainingtotheuseofresting-statefunctionalmag- neticresonanceimaging(rsfMRI)inanorexianervosa(AN),classifyingstudiesonthebasisofdifferent analysisapproaches.WefollowedPRISMAguidelines.Fifteenpaperswereincluded,investigatingatotal of294participantswithcurrentorpastANand285controls.Thestudiesusedseed-based,whole-brain independentcomponentanalysis(ICA),network-of-interestICAbasedandgraphanalysisapproaches.

Thestudiesshowedrelativelyconsistentoverlapinresults,yetlittleoverlapintheiranalyticalapproach and/ora-prioriassumptions.Functionalconnectivityalterationsweremainlyfoundinthecorticolim- biccircuitry,involvedincognitivecontrolandvisualandhomeostaticintegration.Someoverlapping findingswerefoundinbrainareasputativelyimportantinAN,suchastheinsula.Theseresultssuggest alteredfunctionalconnectivityinnetworks/areaslinkedtothemainsymptomdomainsofAN,suchas impairedcognitivecontrolandbodyimagedisturbances.Thesepreliminaryevidencessuggestthatmore targetedtreatmentsneedtobedevelopedthatfocusonthesetwosymptomdomains.Furtherstudies withmulti-approachanalysesandlongitudinaldesignsareneededtobetterunderstandthecomplexity ofAN.

©2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction...579

2. Methods...580

2.1. Searchstrategyandinclusioncriteria...580

2.2. Qualityassessmentanddataabstraction...580

3. Results...580

3.1. Seed-basedapproachstudies(n=4)...580

3.2. WholebrainICAbasedstudies(n=2)...583

3.3. NetworkofinterestICAbasedapproachstudies(n=5)...584

3.4. Graphanalysisstudies(n=4)...584

4. Discussion...585

4.1. Mainfindings...585

4.2. ANsymptomdomainsandetiologicalandclinicalinsight:overlapinresultsbetweenthersfMRIstudies...586

5. Conclusions...587

AppendixB. PRISMAflowdiagram...587

References...588

∗ Correspondingauthorat:ViaPietroTacchini,2400197,Rome,Italy.

E-mailaddresses:santino.gaudio@gmail.com,santino.gaudio@libero.it(S.Gaudio).

http://dx.doi.org/10.1016/j.neubiorev.2016.09.032

0149-7634/©2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

1. Introduction

Anorexia nervosa(AN)is a severe mental disorderwiththe highestrateofmortalityinallpsychiatricdisorders(Arcelusetal., 2011)andittypicallyaffectsadolescentgirlsandyoungwomen.

ANischaracterizedbyself-inducedstarvationandsevereweight loss,anintensefearofweightgain orbecomingfat,adistorted bodyimageandfoodaversion(AmericanPsychiatricAssociation, 2013).Todate,theaetiologyofANisnotfullyunderstood.How- ever,agrowingconsensussuggestsamultifactorialorigin,inwhich neurobiologicalfactorscancontributetothevulnerability,onset, maintenanceandrelapseofAN(Kayeetal.,2013;Treasureetal., 2015;Zipfeletal.,2015).

Modern neuroimaging techniques have provided important insightforANpathophysiologyanditsneurobiologicalsubstrate.

Bothstructuralandfunctionalneuroimagingtechniqueswereused toexplorebrainabnormalitiesinANpatientsandtotrytoencode theneuralcircuitsinvolvedinAN.Structuralneuroimagingstud- ies,viavoxelbasedmorphometry(VBM),showedthatANpatients havedecreasesinglobalgrayandwhitematterandincreasesin cerebrospinalfluid(VandenEyndeetal.,2012;Titovaetal.,2013).

Furthermore,arecentmeta-analysisofVBMstudiesinANpatients (Titova etal., 2013)highlightedregionalgray matter decreases overlappingbetweenstudiesinspecificareas:lefthypothalamus, leftinferiorparietallobe, rightlentiformnucleusand rightcau- date−areas relatedtoappetiteand somatosensoryperception.

Ontheotherside,functional neuroimagingstudieshavemainly usedfunctionalmagneticresonance(fMRI)utilizingspecificstimuli relatedtomainANsymptoms,suchasfood-related,body-related andreward-relatedtasks,aswellasexecutivecontrol-relatedtasks (Kayeet al.,2013;GaudioandQuattrocchi,2012).Inparticular, alteredfunctionalactivationswerefoundincognitivecontrolareas in response to foodimages (Brooks et al., 2011, 2012), in the ventral anterior cingulate-striato-thalamic areas in response to cognitive-behaviouralflexibilitytasks(Zastrowetal.,2009),andin theposteriorparietalareasandprefrontalcortex-insulanetwork inresponse totasks relatedtotheperceptiveand theaffective componentsof body image distortion respectively (Gaudio and Quattrocchi,2012).Onthebasisofneuroimagingfindingsaswellas psychologicaldescriptions,acurrentneurobiologicalmodelofAN suggeststhatchildhoodtemperamentandpersonalitytraits(e.g.

anxiety,cognitiveinflexibility,obsessionalityandperfectionism) mightbeasignofneurobiologicalriskfactorsforthedevelopment ofAN,andthatalteredeatingpatternsinthosewithANcouldbe ameansofdecreasingnegativemoodbroughtaboutbyaltered interactions betweentheserotoninergic system(i.e.aversive or inhibitory)andthedopaminergic(i.e.reward)system(Kayeetal., 2013;Zipfeletal.,2015;Treasureetal.,2015).Particularlyconsid- eringneuroimagingfindings,thisneurobiologicalmodelsuggests thatANpatientsmayhaveanimbalanceininformationprocessing, linkedtoalterationsoftheventrallimbiccircuits(whichcomprises amygdala,anteriorinsula,anteriorventralstriatum,anteriorcin- gulatecortex,andtheorbito-frontalcortex),aswellasthedorsal executivecircuits(whichparticularlyincludesdorsalregionsofthe caudate,dorso-lateralprefrontalcortex,andparietalcortex).These twobraincircuitsareprimarilyimplicatedininhibitorydecision makingprocessesandreward-relatedbehavioursandtheiralter- ationmightsustainANsymptomatology(Kayeetal.,2013).Other neurobiologicallyinformedmodelsofANhavepointedouttherole ofanxiety,stress,andfear,thegratifyingnatureofANsymptoms, andtheconsequentshifttohabitualorcompulsivebehavioursas possiblekeyfactorsinthepersistenceofAN(Zipfeletal.,2015;

Treasureetal.,2015).

During the last decade, several research groups have used a stimulus-free fMRI approach, defined as resting-state fMRI (rsfMRI)(e.g.FoxandGreicius,2010).In thesestudies,thepar-

ticipantsarepositionedinthescannerinanawake-statewithout performing anyparticulartask. This methodallows for making temporal correlations between brain areas, based on sponta- neous task-independent fluctuations of the blood-oxygenation leveldependent(BOLD)signalinthebrain(Biswaletal.,2010;

Greiciusetal.,2009).RsfMRIconsidersthefunctionalconnectivity ofbrainareas,whereastraditional,task-dependentfMRIconcerns activityofparticularbrainareasinresponsetoastimulus.RsfMRI isasimpleprocedure,hasashortscantime−ontheorderofmin- utes,andthereproducibilityofresultsisrobustwithinthesame participant(Zuoetal.,2010).However,whilersfMRIisthoughtto reflectfundamentaltraitsinpersonalityorpsychologicalfunction (HarmelechandMalach,2013),somehavecriticizedtheultimate usefulnessofrsfMRIresults(MorcomandFletcher,2007).More- over,thedebateontheroleofunwantedthoughtsinrestingstate functional connectivity is still open (Kühn et al., 2014) and it couldbeamethodologicalconcerninpsychiatricdisorders,due tothefactthatseveralpsychiatricdisordershaveintenseforms ofunwantedthoughts(e.g.obsessivecompulsivedisorder(Julien etal.,2007)andruminationonweightandbodyshapeispresentin AN(AmericanPsychiatricAssociation,2013).Whilegeneralitiesof thebasicmethodologyinrsfMRIwouldbenefitfromfurtherstan- dardizationandoptimization(e.g.scanwhileeyesclosed/open,or awake/asleep),rsfMRIhasregardlessemergedasastapletoolin neuroimagingstudies−perhapsequalinutilitytotask-basedfMRI (FoxandGreicius,2010).

AnumberofstudieshaveusedrsfMRItoinvestigatefunctional connectivityin patientswitheating disorders.Several different approachescanbeusedinrsfMRIanalysis.Inparticular,themost commonarenetwork-basedandseed-basedapproaches(Foxand Raichle,2007;VanDenHeuvelandHulshoffPol,2010).Regarding thefirstapproach,independentcomponentanalysis(ICA)isthe mostcommonanalysistoinvestigateintrinsicneuralnetworks,and itdoesnotnecessarilyrequireanapriorihypothesis.ICAanalyses theentireBOLDsignalandisolatesdifferentindependentcompo- nentsputativelyreflectingseparateresting-statenetworks(RSNs) (FoxandRaichle,2007;VanDenHeuvelandHulshoffPol,2010).

RSNsaredefinedasthesetsofbrainareasthatshowstrongtempo- ralcoherenceintherestingbrain,andarethoughttorepresent specificframeworksofbrain function(Damoiseauxetal.,2006;

Smithetal.,2009).Anumber ofRSNshavebeenidentifiedand investigated,andamongthese,themoststudiednetwork isthe default-modenetwork(DMN)(eg.Raichleetal.,2001;Smithetal., 2009).TheDMNinvolvesareassuchasthemedialprefrontalcortex, theposteriorcingulate/precuneus,hippocampusandtheinferior parietal cortex (Raichleet al., 2001). It is alsoknownby alter- nativenomenclature, suchasthetask-negativenetwork (TNN), orthehippocampal-cortexmemorysystem(Vincentetal.,2008).

TheDMNis recruitedduring non-goalorientedcognitiveactiv- ity,introspectiverumination,low-levelarousal,homeostatic-and self-regulation, suchas during “day-dreaming,” and supporting autobiographical,internallyfocused,declarative,episodicmemory retrieval(Smithetal.,2009).TheDMNisdeactivatedantagonisti- callyandanti-correlatedwiththeexecutivecontrolnetwork,which is a medial-frontal systemincluding theanterior cingulateand para-cingulate cortex (Smith et al., 2009;Barkhof etal., 2014).

Theexecutivecontrolnetwork,ortask-positivenetwork,under- liesexecutivefunctioning,suchasworkingmemory,goal-oriented cognition,impulse-control,andemotionalprocessing(Smithetal., 2009;Barkhofet al.,2014).In additiontotheDMNand execu- tivecontrolnetwork,therearemanyothermajorcanonicalresting statenetworksthatarefrequentlyidentifiedintheliterature(for detailsseeSmithetal.,2009;Barkhofetal.,2014).Inparticular, thesenetworksincludethesensorimotornetwork(i.e.striataland parietalcortex),visualnetwork(i.e.occipitalcortex),cerebellum network (i.e. cerebellum),salience network (SN:frontalcortex,

(3)

anteriorcingulateandanteriorinsularcortexcircuitry),anddor- salattentionnetwork(DAN:insularcortexandposteriorparietal).

Theseed-basedapproachisbasedonanapriorihypothesisandit assessesfunctionalconnectivitybetweenapreselectedseedregion andotherbrainregions(VanDenHeuvelandHulshoffPol,2010).

Inbrief,afunctionalconnectivitymapisextractedfromthetempo- ralcorrelationsbetweentheregionofinterestandallotherbrain regions(e.g.Leeetal.,2014).

OtherrsfMRIapproachesincludegraphanalysisandeffective connectivity.Ingraphanalysis,thebrainisconsideredacomplex networkconsistingnodes(i.e.designatedbrainareasdistributed acrossthewholebrain)connectedbyedges(i.e.thefunctionalrela- tionshipbetweennodes),whichtheunderlyingactivityovertime dividingandorganizingbrainnetworkswithinthefieldofnodes (eg.RubinovandSporns,2010;Geisleretal.,2015).Graphanal- ysisassessestheglobalandlocalpropertiesofbrainregionsand analysesanumberofglobalandnodalmetrics,suchastheaverage pathlengthbetweenallpairsofnodes,andthesumoftheedges’

weightsthatconnectstoagivennode,calleddegreecentrality(DC).

Twoothercommontechniquesincludedynamiccausalmodelling (DCM)andGrangercausality,whichbothcalculateeffectivecon- nectivity(Friston,2011).Inbrief,theeffectiveconnectivityassesses thecausalanddynamicinfluenceofoneregiononanother,aswell asthedirectionalityofinformationflowbetweenbrainregions(e.g.

Kullmannetal.,2014).

Currently,theliteratureonrsfMRIstudiesinANseemstopoint toa lack ofconsistency in theanalytic approaches and, subse- quently,alsothefindings.Theaimofthispaper,therefore,isto systematicallyreview studiesusingrsfMRI inpatientssuffering fromANandexplorewhetherrsfMRIaddsusefulinsightinunder- standingof ANpathophysiology. Inpursuitof thisaim,wealso comparetheresultsandsubsequentinterpretationsfromthedif- ferentrsfMRIapproachestodetermineifthereisconsensusinthe brainareas/networksaffected.Lastly,weshalldiscusstherelevant themesandfutureconsiderationsregardingtheultimateuseful- nessofrsfMRIinANresearchandtreatment.

2. Methods

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines (Moher et al., 2009).Thestatementconsistsofachecklistofrecommendeditems tobereported(AppendixA:PRISMAchecklist)andafour-stepflow diagram(AppendixB:PRISMAflowdiagram).

2.1. Searchstrategyandinclusioncriteria

Databasesusedforthesearchwere:PubMed(frominceptionto May2016)andScopus(frominceptiontoMay2016).Wesearched usingthe terms: “anorexianervosa” or “eating disorders” AND

“fMRI”,“restingstate”,or“functionalconnectivity”.Thereference listsofexaminedfull-textpaperswerescrutinisedforadditional relevantpublications. Inaddition, expertcolleaguesin thefield werecontactedforsuggestiononfurtherstudiesnotconsidered inoursearch.

Tobeincludedinthereview,studieswererequiredto:1)be writtenin English,2)investigate a sampleof participantswith currentorrecoveredfromANincross-sectionalcase-controlorlon- gitudinaldesign,3)investigatebrainfunctionalityatrest.Studies usingtasksorstimuli(e.g.hungerstate)duringtheMRscanning sessions were excluded. Due to the limited number of peer- reviewedrsfMRIstudiesonAN,wedidnotconsiderconfounding factorssuchassampleinhomogeneity(e.g.ANsubtypes),presence ofpsychiatriccomorbidityorpharmacologicalhistory,whichmay limitsomeofthestudiesincluded.TheheterogeneityofrsfMRI

approachesandlackofsufficientnumberofpapersusingsimilar approachesorsimilarseedornetworksofinterestdonotallowus toperformameta-analysis.

2.2. Qualityassessmentanddataabstraction

Toreduceariskofbias,PRISMArecommendationsforsystem- aticliteratureanalysishave beenstrictly followed.Twoauthors (S.G.andL.W.)independentlyselectedpaperabstractsandtitles, andanalysedthefullpapersthatmettheinclusioncriteria,resolv- ingdisagreementsthroughconsensus.

Dataextractedfromeachstudywere:sampletype,studydesign, samplesize,resting-statefMRIapproaches,andselectedfindings.

3. Results

Fifteenresting-statefMRIstudiesofparticipantswithcurrentor pastANwereincludedinthereview(AppendixB:PRISMAflowdia- gram).Overall,thestudiesincludedatotalof294participantswith currentorpastANand285controlparticipants.Table1reports thesamplecharacteristicsofeachANstudy.Ofthefifteenstudies includedinthisreview,fourstudiesusedaseed-basedapproach andelevenadata-drivenapproach(Table2).Oftheelevendata- drivenapproachstudies,twostudiesadoptedawholebrainICA basedapproach,fivestudiesusedanetworkofinterestICAbased approach,andfourstudiesadoptedgraphanalysis(Table2).Inthe following,studiesthatappliedseed-based,wholebrainICAbased, networkofinterest ICAbased,andgraph analyseswillbesum- marized.Fig.1reportsthemainfindingsofthersfMRIstudiesin AN.

3.1. Seed-basedapproachstudies(n=4)

Theseed-basedapproachisthemostcommonmethodtoexam- inefunctionalconnectionsofanaprioriselectedbrainregionwith allotherregions(VanDen Heuveland HulshoffPol,2010).The regionofinterestcanbeselectedfromprevious,task-dependent fMRIresultsoritcanbeanaprioridefinedregion.FourrsfMRIstud- iesadoptedaseed-basedapproach(Leeetal.,2014;Favaroetal., 2013;Biezonskietal.,2015;Collantonietal.,2016)eachselect- ingdifferentseeds(Table2).Leeetal.(2014)enrolledasampleof adultANoutpatients(18AN,20BNand20controls)utilizingaclus- terwithinthedorsalanteriorcingulatecortex(dACC)astheseed region.ThisareawasselectedbasedontheirpreviousfMRIstudy ofANpatientsshowingalteredfunctionalactivationinresponse tohigh-calorie foodimages(Kim et al.,2012).The seedanaly- sisshowedthatANpatientshadastrongersynchronousactivity betweenthedACCandretrosplenialcortexandbetweenthedACC andprecuneuscomparedtocontrols.Furthermore,bothgroupsof eatingdisorderedpatients(AN+BN)demonstratedstrongersyn- chronousactivitybetweenthedACCandprecuneuscomparedto controls.Inasecondstudy,Favaroetal.(2013)scannedanadult subsampleoftheirparticipants,whichcomprised33ANpatients and30controls.Threebilateralseedswereselected:dorsolateral prefrontalcortex(DLPFC),ventromedialPFC(vmPFC),andventro- lateralPFC(vlPFC).Nosignificantdifferenceswerefoundbetween AN patientsand controls.However,when analyzingdifferences withintheANgrouponthebasisofgenotypesforfunctionalpoly- morphismsofthecatechol-O-methyltransferase(COMT)protein, functionalconnectivitydifferenceswerefoundintheprefrontal seedsbetweentheMet-andVal-carriersubsamples. Thethird study byBiezonski et al. (2015) examineda clinical sample of 16lateadolescentandadultANinpatientsand15 controls,and testedsevenbilateralthalamicseeds.Eachseedcorrespondedtoa regionofthethalamuswithpreferentialconnectionstoaspecific lobeorcorticalregion(Johansen-Bergetal.,2005)andfunctional

(4)

Table1

Samplecharacteristicsofresting-state-fMRIstudies.

Study Participants Age(years) BMI EDduration(years)

Mean (SD) Mean (SD) Mean (SD)

Amiantoetal.(2012) AN:n=12 20.00 (4.00) 16.27 (0.99) 0.91 (0.41)

BN:n=12 23.00 (5.00) 21.57 (2.38)

HC:n=10 24.00 (3.00) 21.35 (3.16)

Biezonskietal.(2015) AN:n=15 19.00 (0.50) 17.37 (0.29) 4.73 (0.83)

HC:n=16 20.31 (0.77) 21.57 (0.45)

Boehmetal.(2014)* AN:n=35 16.10 (2.56) 14.78 (1.26) 1.57 (2.25)

HC:n=35 16.16 (2.64) 20.81 (2.72)

Boehmetal.(2016) rec-AN:n=31 22.27 (3.08) 20.69 (1.62) 3.72 (2.66)

HC:n=31 21.73 (2.99) 21.37 (2.10)

Collantonietal.(2016) AN:n=35 25.40 (6.90) 15.80 (1.80) 6.70 (6.90)

HC:n=34 25.00 (6.20)

Cowdreyetal.(2014) rec-AN:n=16 23.06 (3.55) 21.33 (2.17) 3.50 (2.38)

HC:n=14 24.11 (2.85) 21.01 (1.56)

Ehrlichetal.(2015)* Geisleretal.(2015)* Lordetal.(2016)*

AN:n=35 16.10 (2.56) 14.78 (1.26)

HC:n=35 16.16 (2.64) 20.81 (2.72)

Favaroetal.(2012) AN:n=29 25.80 (6.90) 14.50 (2.30) 6.20 (6.90)

rec-AN:n=16 23.80 (4.80) 19.20 (1.00) 2.30 (1.70)

HC:n=26 26.70 (6.70) 21.80 (3.20)

Favaroetal.(2013) AN:n=33 26.90 (7.30) 15.80 (1.90)

HC:n=30 25.80 (6.70)

Gaudioetal.(2015) AN:n=16 15.80 (1.70) 16.20 (1.20) 0.33 (0.15)

HC:n=16 16.30 (1.40) 21.10 (1.90)

Kullmannetal.(2014) AN:n=12 23.30 (4.70) 15.50 (1.50)

HC:n=14 24.60 (2.90) 21.40 (1.50)

HCA:n=12 24.10 (3.20) 22.00 (1.90)

Leeetal.(2014) AN:n=18 25.20 (4.20) 16.00 (1.70) 3.80 (2.60)

BN:n=20 22.90 (3.90) 21.60 (2.30) 3.80 (4.70)

HC:n=20 23.30 (1.80) 19.90 (1.90)

Phillipouetal.,(2016) AN:n=26 22.81 (6.67) 16.63 (1.19) 6.42 (7.43)

HC:n=27 22.46 (3.16) 22.60 (3.53)

Note:BMI=Bodymassindex.ED=eatingdisorder.AN=anorexianervosa.BN=BulimiaNervosa.HC=healthycontrol.rec-AN=recoveredAN.HCA=healthycontrolathletes.

*thesefoursamplesarecomposedbythesameparticipants.

Fig1. Mainbrainareasimplicatedinresting-statefunctionalMRI.Diagramofthemainfindingsfromeachresting-statefMRIstudyofANpatientsclassifiedonthebasis ofthedifferentrestingstateapproaches.EachcirclerepresenttheregionswhereANpatientsexhibitedfunctionalconnectivityalterations:yellowreferstotheseedbased approachstudies(seedsarereported);greenreferstowhole-brainICA-basedstudies(alteredareaswithinthenetworksarereported);redreferstonetwork-of-interest ICA-basedstudies(alteredareaswithinthenetworksarereported);bluereferstographanalysisstudies(alteredareasarereported).LabelsarereportedinTable2.See Table2forspecificdetailsoftheareasimplicatedbyeachmethod.

connectivityanalyseswerefocusedonthalamicconnectivitywith thefrontallobes.AN patientshad greaterconnectivitybetween the centralmedial thalamus and thebilateral DLPFC and lower functional connectivitybetween theanterior thalamus and the leftanteriorPFCcompared tocontrols.Whilethealterations in thalamo-frontalconnectivitywerenotassociatedwithattention and visuospatialprocessing, theywere associated withimpair- mentsin performance ontasks assessing cognitivecontrol and

workingmemory.Mostrecently,Collantonietal.(2016)examined anadultsubsamplethatcomprised35ANpatientsand34controls.

Theyselectedthreedifferentseeds:superiorparietallobule,right inferiorfrontalgyrusandpre-supplementarymotorarea,consid- eringthemaspartofthedorsalattention,ventralattention,and pre-supplementarymotorareanetworksrespectively.Theauthors foundthatANpatientsshowedalteredfunctionalconnectivityin therightinferiorfrontalgyruscomparedtocontrols.

(5)

Table2

Descriptionofresting-statefMRIstudiesinAN.

Label Study Brainregionsand/ornetworks analysed

Mainfindings Mainclinicalinterpretation

Seed-basedstudies

A Leeetal.(2014) Seed:dorsalanteriorcingulatecortex (dACC)

ANpatientsshowedstronger synchronousactivitybetweenthe dACCandretrosplenialcortexand betweenthedACCandprecuneus.ED groupdemonstratedstronger synchronousactivitybetweenthe dACCandprecuneus.

ThealtereddACC-precuneussynchrony mightbeassociatedwiththe disorder-specificruminationoneating, weightandbodyshapeinpatientswith eatingdisorders.

B Favaroetal.(2013) Seed:dorsolateral,ventrolateraland ventromedialprefrontalcortex

Analysesdidnotrevealanysignificant differencesbetweenANpatientsand healthywomen.WithinANsample,FC differencesweredetectedbetween patientswithdifferentvariantsforthe COMTprotein.

ANpatientswithaparticularvariantfor theCOMTproteinhadincreasedprefrontal cortexFCcomparedtocarriersofa differentvariant.

C Biezonskietal.(2015) Seed:sevenbilateralthalamicseeds.

Onlyconnectivitywiththefrontal lobeswasinvestigated

ANpatientsshowedgreater connectivitybetweenthecentral medialthalamusandthebilateral dorsolateralprefrontalcortexand lowerFCbetweentheanterior thalamusandtheleftanterior prefrontalcortex.

Alterationsinthalamo-frontalcircuitsmay havearoleinmediatingaspectsof cognitivedysfunctioninANpatients.

D Collantonietal.(2016) Seed:superiorparietallobule,right inferiorfrontalgyrusand pre-supplementarymotorarea

ANpatientsshowedalteredFC(inboth thepositiveandnegativeconnectivity) oftherightinferiorfrontalgyrus, consideredaspartoftheventral attentionnetwork

Impairedventralattentionnetwork connectivity(i.e.therightinferiorfrontal gyrusalteration)mayaffectcognitive controlprocessesandexogenousstimuli filtering.

WholebrainICAbasedStudies

E Cowdreyetal.(2014) Twelveresting-statenetworks identifiedandinvestigated

Increasedtemporalcoherence betweentheDMNandtheprecuneus andthedorsolateralprefrontal cortex/inferiorfrontalgyrusinsubjects recoveredfromAN.

Thefindingsarecompatiblewiththecore symptomsofANincludingruminative preoccupationoneating,weightand shape,excessiveplanningandimpaired cognitiveflexibility.

F Gaudioetal.(2015) Eightresting-statenetworksidentified andinvestigated

Decreasedtemporalcorrelation betweentheexecutivecontrol networkFCmapsandtheanterior cingulatecortex(ACC)inANpatients.

ThedecreasedFCbetweenexecutive controlnetworkandtheACCcouldexplain theimpairedcognitiveflexibilityin relationtobodyimageandappetiteinAN patients.

NetworkofinterestICAbasedstudies

G Favaroetal.(2012) Networksofinterest:medial,lateral, andventralvisualnetworksand somatosensory

DecreasedFCintheleft occipitotemporal

junctionwithintheventralvisual networkandincreasedFCintheleft superiorparietalcortexFCwithinthe somatosensorynetworkinANpatients.

DecreasedFCintherightmiddle frontalgyruswithintheventralvisual networkinrecoveredANsubjects.

Thefindingsmayexplainthefailureofthe integrationprocessbetweenvisualand somatosensoryperceptualinformation thatsustainsbodyimagedisturbance.

H Amiantoetal.(2013) Networksofinterest:cerebellar Alterationswithinthecerebellar networkbetweenEDpatients comparedtocontrols(e.g.,increased connectivitywithinsulaeandvermis decreasedconnectivitywithparietal lobe).Increasedconnectivitywiththe insulaeinANcomparedtoBN, increasedconnectivitywithanterior cingulatecortexinBNcomparedtoAN

Thefindingssupporttheroleofthe cerebellumasakeyareaofintegrationof differentfunctionsimportantinED psychopathology.

I Boehmetal.(2014) Networksofinterest:fronto-parietal, defaultmode,salience,visualand sensory-motor

IncreasedFCbetweentheangular gyrusandthefronto-parietalnetwork andbetweentheanteriorinsulaand thedefaultmodenetworkinpatients withAN.

IncreasedFCwithinthefronto-parietal networkmayberelatedtoexcessive cognitivecontrolinANpatients.The anteriorinsula/DMNalterationsmaybe relatedtoruminationsaboutfoodand bodilyappearance.

J Boehmetal.(2016) Networksofinterest:fronto-parietal, defaultmode,salience

RecoveredANsubjectsshowed reducedFCbetweenthedorsolateral prefrontalcortexandthe

fronto-parietalnetwork.Additionala priorianalysisfoundincreasedFC betweenangulargyrusandFPNin recoveredsubjects.Nodifferences werefoundintheDMN.

SomealteredFCpatternsfoundinAN patientsarestillpresentafterlong-term ANrecovery.Inparticular,DMNalterations seemtonormalize,whilefronto-parietal networkalterations,alsorelatedto cognitivecontrolfunctions,seemto persist.Theauthorssuggestedthis interpretationsonthebasisoftheir previousstudy[i.e.Boehmetal.(2014) (labelI)].

(6)

Table2(Continued)

Label Study Brainregionsand/ornetworks analysed

Mainfindings Mainclinicalinterpretation

K Phillipouetal.(2016) Networksofinterest:ROIsofdefault mode,sensory-motorandvisual networks.aROItoROIapproachwas used.(seethepaperfordetails)

DecreasedFCwerefoundbetweenthe sensory-motorandvisualnetworksin ANpatientscomparedtocontrols.In particular,ANpatientsshowed reducedFCbetweenprimary somatosensory,andsecondaryvisual andassociativevisualareas;and betweenprimarymotor,and secondaryvisualandassociativevisual areas.

NodifferenceswerefoundintheDMN.

ReducedFCbetweensensorimotorand visualnetworksmaysuggestanaltered visuospatialprocessinginANpatients, relatedtobodyimagedisturbances.

Graphanalysisstudies

L Kullmannetal.(2014) degreecentralityandeffective connectivity

ReducedFCoftheinferiorfrontalgyrus (IFG)bilaterallyandalteredeffective connectivity(i.e.fromtherightIFGto themiddlecingulatecortex,fromthe bilateralorbitofrontalgyrustothe rightIFGandfromthebilateralinsula totheleftIFG)inANpatients

Reducedconnectivitywithinthecognitive controlsystemofthebrainandincreased connectivitywithinregionsimportantfor salienceprocessing.

M Ehrlichetal.(2015) Network-basedstatisticapproachand regionalhomogeneity

Asubnetworkofconnectionshad decreasedconnectivityinANpatients, areasincludedtheamygdala, thalamus,fusiformgyrus,putamenand theposteriorinsula.

Thefindingsmightreflectchangesinthe propagationofalteringsensationsto urgenthomeostaticimbalancesand pain-processes,whichareknowntobe severelydisturbedinANandmightexplain thestrikingdiscrepancybetweenpatients’

actualandperceivedinternalbodystate.

N Geisleretal.(2015) 7globaland7nodalgraphmetrics(see thepaperfordetails)

Decreasedconnectivitystrengthand increasedpathlengthintheposterior insulaandthalamusinANpatients.

Reducedlocalnetworkefficiencyinthe thalamusandposteriorinsulamayreflecta mechanismexplainingtheimpaired integrationofvisuospatialand homeostaticsignalsinANpatients.

O Lordetal.(2016) Globalandlocalnetworkproperties, includingnetwork-basedstatistics, comparingtwocommonparcellation approaches(i.e.anatomicaland literaturebasedanalyses)(seethe paperfordetails)

FCalterationswerefoundinAN patientscomparedtocontrols includingtheinsulaandthalamus.

Thesedifferenceswereconsistent acrosstheparcellationapproaches.

ReducedFCinasubnetworkincludingthe insulaand

thalamus(asfoundinthisstudy independentoftypeofatlas)couldbe relatedtoanalteredprocessingofsignals suchasbodysize,hungerandpain.

Note:Dorsalanteriorcingulatecortex=dACC.Anorexianervosa=AN.Eatingdisorder=ED.Functionalconnectivity=FC.Defaultmodenetwork=DMN.Anteriorcingulate cortex=ACC.Bulimianervosa=BN.Inferiorfrontalgyrus=IFG.

Insum,giventhattheseed-basedrsfMRIstudiesusedifferent brain region seeds, comparisons between the studies are lim- ited.Nevertheless,functionalconnectivityalterationswerefound betweendACCandtheprecuneus,inthalamus-frontalcircuits,and intherightinferiorfrontalgyrus−regionsassociatedwithcogni- tivecontrolprocessesandruminationonweightandbodyshape.

3.2. WholebrainICAbasedstudies(n=2)

Theapproachmostutilisedtoexaminewhole-brainconnectiv- itypatternsisICA(Foxand Raichle,2007;Van DenHeuveland HulshoffPol, 2010).This approach doesnot requireana priori seedregion,hence,isdata-driven,andallowsgeneralpatternsof connectivitybetweenseveralbrainregionstoemergebased on temporalsynchronicity(VanDenHeuvelandHulshoffPol,2010).

ICAthencomparesthesepatternsbetweengroups.Sinceitsdevel- opment,rsfMRIstudies viaICAhave robustlydescribed several differentandwidelyacceptedresting-statenetworks(Damoiseaux etal.,2006andSmithetal.,2009),whichhaveledtothenetwork- of-interestbasedapproach(seeSectionbelow).

TworsfMRIstudiesinvestigatedwholebrainfunctionalconnec- tivityviaICA,focusingonthemostwidelyacceptedresting-state networks(Cowdreyetal.,2014;Gaudioetal.,2015)(Table2).The firststudywasconductedonadultparticipantsrecoveredfromAN (16pastAN,15controls)(Cowdreyetal.,2014).TheANpatientshad recoveredbyatleastoneyear.Twelveresting-statenetworkswere identified, corresponding to previously-described RSNs (Smith etal.,2009).Alteredfunctionalconnectivitywasfoundwithinthe

default modenetwork (DMN). In particular, AN recoveredpar- ticipantsshowedincreasedresting-statefunctional connectivity betweentheDMNandtheprecuneusandtheDLPFC/inferiorfrontal gyruscomparedtocontrols.Thesecondstudywasconductedon asampleofmedication-naïveadolescentoutpatientsattheearli- eststagesofAN(lessthan6monthsofANduration)andwithno psychiatriccomorbidity(Gaudioetal.,2015).Eightresting-state networkswereindentifiedandallofthemcorrespondedtoprevi- ouslyreportedsignificantRSNs(Smithetal.,2009).Thefunctional connectivitymapsshowedalterationswithintheexecutivecontrol network.Specifically,decreasedfunctionalconnectivitywasfound inANpatientscomparedtocontrolsbetweentheexecutivecon- trolnetworkandinaregionoftheACCclosetotheborderofhe paracingulategyri.

Tosumup,thesetwostudies,whileusingthesameapproach (whole-brainICA),investigatedsamplesthatdifferedinage(i.e.

adults vsadolescents)and stageof AN(recovery statevs earli- eststagesofAN).Thefindingsofthetwostudiesimplicatedtwo differentnetworks:theexecutivecontrolnetwork andDMN.In particular,decreasedfunctionalconnectivitybetweentheexecu- tivecontrolnetworkandtheACCwasseenintheearlieststage ofAN,brainregionsassociatedwithcognitivecontrolandemo- tionalprocessingwhichareperhapsalteredneuralcircuitsinearly stages ofthedisorder.Conversely,increasedfunctional connec- tivitybetweentheDMNandtheprecuneusandtheDMNtothe DLPFC/inferiorfrontalgyruswasseeninadultswhomhadrecov- eredfromAN,apossibleresidualneuralpatternassociatedwith alteredattentionalandcognitivecontrolresources.

(7)

3.3. NetworkofinterestICAbasedapproachstudies(n=5)

Asmentionedabove,anumberofrobustandwidelyaccepted RSNshave been identified using ICA(Damoiseauxet al., 2006;

Smithetal.,2009).Buildingonthis,anotherrsfMRIapproachuses establishedRSNsasapriorinetworks-of-interestsimilarly asin theseed-based approach (e.g. Favaro et al., 2012). Five rsfMRI studiesadoptedthisapproachinvestigatingoneormoreresting- statenetworksofinterestandfocusingonANpatients(Amianto etal.,2013;Boehmetal.,2014;Phillipouetal.,2016),participants withcurrentorpastAN(Favaroetal.,2012),oronlyparticipants recoveredform AN (Boehm et al.,2016)(Table2).Thefirst by Favaroetal.(2012),focusedonfournetwork ofinterest:visual networks(i.e.medial,lateral,andventral)andonesomatosensory network,hypothesizinganimpairmentofmultisensoryintegration processinginAN.TheyscannedasamplethatwascomposedofAN patients(N=29),ANrecoveredparticipants(diseasefreeforatleast 6months.n=16)andcontrols(n=26).TheauthorsfoundthatAN patientsshowedalteredfunctionalconnectivitywithintheven- tralvisualnetworkandthesomatosensorynetworkandthatAN recoveredparticipantsonlyshowedfunctionalalterationswithin theventralvisualnetwork.Specifically,therewasdecreasedfunc- tionalconnectivitybetweentheventralvisualnetworkandtheleft occipitotemporaljunctionand increasedfunctionalconnectivity betweenthesomatosensorynetworkandtheleftsuperiorparietal cortexinANpatientscomparedtocontrols.Decreasedfunctional connectivitybetween the ventralvisual network and theright middlefrontalgyruswasalsofoundinANrecoveredparticipants comparedtocontrols.Inthesecondstudy,Amiantoetal.(2013) scannedasamplecomposedof12adultANoutpatients,12adultBN patientsand10controls,investigatingthecerebellarnetwork.The authorsfoundanumberofdifferencesbetweenthegroups.Inpar- ticular,ANoutpatientsshowedincreasedfunctionalconnectivity betweenthecerebellarnetworkandthevermis,leftinsula,bilat- eraltemporalpole,andposteriorcingulatecortexanddecreased functionalconnectivitybetweenthecerebellarnetworkandpari- etallobecomparedtocontrols.BNpatientsandthemixedgroup ofpatients(AN+BN)showedpartiallysimilarresultscomparedto controls.Inaddition,BNpatientsshowedincreasedfunctionalcon- nectivitybetweenthecerebellarnetworkandlateralhemispheric areasofthecerebellum,ACC,andprecuneusaswellasdecreased functionalconnectivitybetweenthecerebellarnetworkandthe rightinferiorfrontalgyrus.AcomparisonbetweentheANandBN groupsrevealedANpatientshadincreasedfunctionalconnectivity betweenthecerebellarnetworkandthebilateralanteriorinsula, precuneus,andrightinferiorfrontalgyrus,aswellasdecreased functionalconnectivityinthecerebellarhemispheresandACC.The thirdstudybyBoehmetal.(2014),focusedonfiverestingstatenet- works:theDMN,thesaliencenetwork,thefronto-parietalnetwork, thevisualnetwork, and somatosensory network, toinvestigate someimportantdomainsthatmaybeofrelevancetoANclinical symptoms(e.g. self-referentialprocessing, rewarding and emo- tionalstimuliprocessing,visualandsomatosensoryinformation processing).Theauthorsstudiedasampleofadolescentandyoung- adultpatientswithAN(n=35)andacontrolsample(N=35).Differ- enceswerefoundwithintheDMNandthefrontal-parietalnetwork.

Specifically,ANpatientsshowedincreasedfunctionalconnectivity betweentheDMNandtheleftanteriorinsula/frontaloperculum andincreasedfunctionalconnectivitybetweenthefrontal-parietal networkandtheleftangulargyruscomparedtocontrols.Alater studybyBoehm etal.,2016; tested 31women recoveredfrom ANagainst31age/sex-matchedcontrols.Threenetworks(i.e.the defaultmode,frontal-parietal,andsaliencenetwroks)weretested, investigatingwithinandbetweenrestingstatefunctionalconnec- tivityand functionalnetwork connectivity.No differenceswere foundintheDMN,butthefrontal-parietalnetworkhadreduced

connectivitywiththedorsolateralprefrontalcortexintherecov- eredANparticipantscomparedtocontrol.Aswasalsoreportedin patientswithactiveAN(Boehmetal.,2014),afurtherhypothesis- drivenanalysisagainfoundincreasedconnectivitybetweenthe frontal-parietalnetworkandtheleftangulargyrusinthepartic- ipantsrecoveredfromAN.Finally,nodifferenceswerefoundin functionalnetworkconnectivity.ThefifthstudybyPhillipouetal.

(2016)investigatedtheDMN,sensorimotor network,and visual networkin26femaleswithANand27age/sex-matchedcontrols.

Whilethis studytechnicallywasnot ICA-based(butROI-to-ROI seed-basedtype),wehaveincludedithere,asitlimiteditsanalysis tofunctionalnetworks.NodifferenceswerefoundintheDMN,but reducedfunctionalconnectivitywasfoundbetweenthesensory- motorandvisualnetworksinANpatientscomparedtocontrols.

Insum,andsimilarlyasintheseed-basedapproachmentioned above,thenetwork-of-interestICAbasedstudiesdidnotalways usethesameapriorinetworksofinterest,limitinganaggregation offindings, andalsocomparison betweenstudies.Inparticular, alteredfunctionalconnectivitywasfoundinANpatientswithin andbetweenthesomatosensoryandvisualnetworksandwithin thedefaultmode,fronto-parietalandcerebellarnetworks.Onthe otherhand,altered functionalconnectivitywasfoundinpartic- ipants recovered from AN in the default mode, fronto-parietal and visualnetworks.However,theseresultswerepartiallydis- cordant between both the rsfMRI studies on AN patients and participantsrecoveredfromAN.Inaddition,differencesbetween ANandbulimianervosapatientswerefoundinthecerebellarnet- workfunctionalconnectivityintheonlystudywhichalsorecruited bulimianervosapatients.Combined,thissuggeststhatnetworks implicatedincognitivecontrolandvisualandsomatosensoryinte- gration maybeaffectedin AN and thatthese alterations could partiallypersistinparticipantsrecoveredfromAN.Furthermore, itcanbepreliminarysuggestedthatrsfMRImaybeusefulfordif- ferentialEDtypes.

3.4. Graphanalysisstudies(n=4)

Graphanalysisissimilartowhole-brainICAanalysisinthatboth areemergent,data-drivenmethods,whichdonotrelyonapriori information.Graphanalysisbuildsanetworkofnodes(i.e.desig- natedbrainareasdistributedacrossthewholebrain),suchasagrid ofarrangednodes,andcreatesweightededgesbetweennodesto describefunctionalconnectivitybetweenbrainregions.Here,we examinefourstudiesutilizing suchtechniques(Kullmannetal., 2014;Ehrlichetal.,2015;Geisleretal.,2015;Lordetal.,2016) (Table2).ThemethodemployedbyKullmannetal.(2014)built anetworkbasedonnodeswiththemostnumerous,statistically- significantedges(i.e.,degreecentrality).Thesehighly-connected regionswerethencomparedbetweenthreedifferentgroups(all youngadultfemales): 12 ANpatients, 14 controls, and 12ath- letes.Reducedconnectivitywasfoundwithintheinferiorfrontal gyrus(IFG)bilaterallyforANpatientscomparedtocontrols.There werenodifferencesbetweencontrolsandathletes.Theauthors alsoperformedaseed-basedanalysisusingtheIFGastheapri- oriregion.Theyfurtherfounddecreasedconnectivitybetweenthe rightIFGandbilateralorbitalfrontalgyrus,andincreasedconnec- tivitybetweentheleftIFGtothebilateralinsulainAN patients comparedtocontrols.Again,nodifferenceswerefoundbetween controlsandathletes.ThenextstudybyEhrlichetal.(2015)tested 35ANpatientsand35age-matchedcontrols(allfemale,ranging fromearlyteenagertoyoungadult).Networkswerebuiltbypick- ingtheclusterwiththemostnumerous,statistically-significant nodes/ROIbasedonresamplingstatistics.Comparedtocontrols, theyfounddecreasedconnectivityintheANgroupforanetwork ofsevennodeswithregionsincludingtheleftamygdala,leftthala- mus,rightfusiformgyrus,bilateralputamen,andbilateralposterior

(8)

insula.Geisleret al.(2015)testedthesamecohort usinganini- tialgraph of 160nodes (arranged by meta-analysis from fMRI (Dosenbachetal.,2010),andsearchedfornetworksineachpartic- ipantbyrecursivelyremovingedgesuntilalledgesmetstatistical thresholds.Quantitative measurementsofthenetworks,aswell asofindividualnodes,werethencomparedbetweengroups.In termsofthenetwork,theANgrouphadincreasedaveragepath length(sumofedges)comparedtothecontrols,indicatinganinef- ficientnetwork.Morespecifically,atthenodallevel,ANpatients hadincreasedpathlengthintheleftmiddleinsula,rightposterior insula,andbilateralthalamus.ANpatientsalsohadlowlocaleffi- ciencyinarightposterioroccipitalnode,andincreasedefficiencyin anodewithintherightanteriorprefrontalcortex,however,these differencesinlocalefficiencyseemedunstable.Afinalgraph-based rsfMRIstudyagainexaminedthesamecohortfromEhrlichetal., 2015andGeisleretal.(2015),comparingmethodologicalstrategies forgraphanalysis(Lordetal.,2016).Inthismostrecentwork,Lord etal.comparedgraphanalysisbetweentheANpatientsandcon- trolswithtwodifferentbasesforanalysis:1)ananatomical-based analysiswhereactivityinregionswasassessedbasedontraditional, anatomically-definedregions(e.g.,insula,cingulate,etc.),and2) acalculation-basedanalysiswhereactivitywasmeasuredinthe same160sphericalROInodesassignedasmentionedabove(and establishedbyDosenbachetal.,2010).Thetwoschemesconverged ononly5outof20regionswhendetectingdifferencesbetweenAN patientsandhealthycontrols,withtheanatomicalanalysisfinding differencesinparietalandcingulateregionsandthenode-analysis findingdifferencesintheinsulaandthalamus.Theauthorscon- cludethatthemostprominentdifferencesinactivitybetweenAN patientsandcontrolsarerobust−regardlessoftheschemeusedfor analysis.However,theauthorsrecommendthatanaprioriselec- tionofregions,specificforadisease,arelikelymoreusefulthan arbitraryorrandomassignments.

In summary, partially consistentresults were foundfor the graphanalysisstudies.Functionalconnectivityalterationsmainly involvedtheinsula andthalamus aswellastheinferiorfrontal gyrus,amygdala,fusiformgyrus,orputamen.Inparticular,thelast studybyLordetal.,whichcomparedtwo typesofgraphanaly- sesbasedoneitherananatomicaloracalculatedbasis,generally echoesthedifferencesfoundin ourcomparisons oftheapriori andemergent,data-drivenanalyses:whileeach typeofanalysis indeeddetectsdifferencesbetweenANandcontrolsatthemost basiclevel,thedetailscanbevariable.Fromallthis,morestan- dardizationofresting-statemethods,particularlygraphanalysis, isrequired.Regardless,theareasfoundtoberelatedtoANinthe abovestudiescanallreasonablybelinkedtothesymptomology ofANregardingsomatosensory/visualintegrationprocessesand cognitivecontrol.

4. Discussion 4.1. Mainfindings

Thepresentpaperisthefirst,toourknowledge,tosystemati- callyreviewresting-statefunctionalmagneticresonanceimaging (rsfMRI)studiesconductedwithanorexianervosa(AN)patients.

AlthoughtheuseofrsfMRIinANresearchisrathernew,thenum- berof publishedstudiesindicatesanincreasinginterest in this neuroimagingtechniqueamonggroupsofresearch.Thegrowing interestamongresearchersisrelatedtothefactthatrsfMRIisa simpleprocedurethatcanimprovetheunderstandingofpsychi- atricdisorders(Barkhofetal.,2014).Inthissystematicreview,we included15papersusing differentresting-stateapproaches(i.e.

seed-based,wholebrainICA-bases,networkofinterestICA-based, andgraphanalysisstudies),withatotalof294participantswith

current or past AN and 285control participants.Overall, stud- iesshowed relativelyconsistent overlapin results(see Table2 andFig.1),specificallyinvolvingthecorticolimbiccircuitry,which helpstoformaclinicalperspectiveontheunderlyingneurobiolog- icallinkstoANsymptoms.Ontheotherhand,thestudieshadlittle overlapintheiranalyticalapproachand/ora-prioriassumptions.

Theseed-basedstudiesfocusedondifferentseeds(see Table2) andshowedfunctionalconnectivitydifferencesbetweenANand HCinthedACC(Leeetal.,2014),theThalamus(Biezonskietal., 2015),andtherightinferiorfrontalgyrus(Collantonietal.,2016).

Moreover,thenetwork-of-interestICA-basedstudiesfocusedon differentnetworks(e.g.,visual,somatosensory,cerebellar,fronto- parietal,defaultmode,andsaliencenetworks)inbothANpatients (Favaroetal.,2012;Amiantoetal.,2013;Boehmetal.,2014)and participantsrecoveredfromAN(Favaroetal.,2012;Boehmetal., 2016);allofwhichfoundalteredfunctionalconnectivitywithindif- ferentnetworks(seeTable2).Inparticular,arecentstudy,viaaROI toROIapproach,focusedondefaultmode,visual,somatosensory networksandfounddecreasedfunctionalconnectivitybetweenthe sensory-motorandvisualnetworksin ANpatientscompared to controls(Phillipouetal.,2016).However,resultswereinconsistent betweenstudiesinvestigatingthesamenetworks(i.e.DMNand visualnetworks)(Favaroetal.,2012;Boehmetal.,2014;Phillipou etal., 2016).Regardingthevisualnetworks,while Favaroetal.

(2012)founddecreasedfunctionalconnectivitywithintheventral visualnetworkinbothANpatientsandrecoveredANparticipants, Boehmetal.(2014)didnotfinddifferencesinthisnetworkand Pilippouandcolleaguesonlyfoundalterationsbetweenthevisual andsomatosensorynetworksinANpatients.RegardingtheDMN, increasedfunctionalconnectivitywasfoundinANpatients(Boehm etal.,2014),butnodifferenceswerefoundinparticipantsrecov- eredfromAN(Boehmetal.,2016)orwhenadoptingaROItoROI approachinANpatients(Phillipouetal.,2016)).Furthermore,the twodata-drivenapproaches,whichdonothaveapriorihypotheses (whole-brain,ICA-basedandgraphanalysis),alsoshoweddiffer- entresults. Thetwo studiesthat useda whole-brainICA-based approachshowedfunctionalconnectivityalterationsintheDMN inparticipantsrecoveredformAN(Cowdreyetal.,2014)andexec- utivecontrolnetworkinadolescentpatientswithAN(Gaudioetal., 2015),respectively.Andthefourstudiesthatadoptedgraphanal- ysisfoundalterationsinvolvingeithertheinferiorfrontalgyrus (Kullmannetal.,2014),insula(Ehrlichetal.,2015;Lordetal.,2016), orthalamus(Geisleretal.,2015;Lordetal.,2016).

Thediscordantresultsbetweenstudiesmaypartlybedueto practicallimitationssuchasdifferencesbetweencohorts:e.g.age, eatingdisorderduration,current orpastpharmacologicaltreat- ment,psychiatriccomorbidity,prandialstate.Inparticular,severity anddurationofANarewell-knownconfoundingfactorsinANneu- roimagingstudies due totheimpact of malnutritionon neural processing(Kayeetal.,2013).Thus,sampleheterogeneitycould explainsomedifferencesinthisanalysis.Forexample,thesam- plesintwowhole-brainICA-basedstudieswerecomposedofeither adultparticipantsrecovered fromAN(Cowdrey etal., 2014)or adolescentpatientsintheearlystagesofAN(Gaudioetal.,2015), whilethesamplesofthefourgraph-basedstudiesincludedadults andamixedsampleofadultsandadolescentpatientswithunre- porteddurationsofAN(Kullmannetal.,2014;Ehrlichetal.,2015;

Geisleretal.,2015;Lordetal.,2016).Thedifferenceinresting- stateapproachisanotherconfoundingfactor,asevenstudiesusing thesamecohort founddifferentresultsusingdifferentmethods (Boehmetal.,2014;Ehrlichetal.,2015;Geisleretal.,2015).Thisis expectedtosomeextent,assomersfMRIstudies(suchasnetwork- of-interest,ICA-based)arelimitedtospecificareas/networksand haveveryspecifictestinghypotheses(e.g.Amiantoetal.,2013).

Resultsofseed-basedstudies,aswell,arelimitedtotheapriori regionschosenforanalysis,anddifferentseedregionsmayproduce

References

Related documents

Närmare 90 procent av de statliga medlen (intäkter och utgifter) för näringslivets klimatomställning går till generella styrmedel, det vill säga styrmedel som påverkar

• Utbildningsnivåerna i Sveriges FA-regioner varierar kraftigt. I Stockholm har 46 procent av de sysselsatta eftergymnasial utbildning, medan samma andel i Dorotea endast

Den förbättrade tillgängligheten berör framför allt boende i områden med en mycket hög eller hög tillgänglighet till tätorter, men även antalet personer med längre än

På många små orter i gles- och landsbygder, där varken några nya apotek eller försälj- ningsställen för receptfria läkemedel har tillkommit, är nätet av

Figur 11 återger komponenternas medelvärden för de fem senaste åren, och vi ser att Sveriges bidrag från TFP är lägre än både Tysklands och Schweiz men högre än i de

Det har inte varit möjligt att skapa en tydlig överblick över hur FoI-verksamheten på Energimyndigheten bidrar till målet, det vill säga hur målen påverkar resursprioriteringar

Detta projekt utvecklar policymixen för strategin Smart industri (Näringsdepartementet, 2016a). En av anledningarna till en stark avgränsning är att analysen bygger på djupa

 Påbörjad testverksamhet med externa användare/kunder Anmärkning: Ur utlysningstexterna 2015, 2016 och 2017. Tillväxtanalys noterar, baserat på de utlysningstexter och