• No results found

Bachelor Degree Project

N/A
N/A
Protected

Academic year: 2021

Share "Bachelor Degree Project"

Copied!
53
0
0

Loading.... (view fulltext now)

Full text

(1)

   

                                       

S EATING  COMFORT  ANALYSIS  FOR   VIRTUAL  DRIVER  RESEARCH  

 

                     

Ba che lor D egre e P roj ec t

Bachelor  degree  project  in  Product  Design   Engineering  

Level  G2E  22.5  ECTS   Spring  term  2015    

Pamela  Ruiz  Castro    

Supervisor:  Lars  Hanson  

Co-­‐supervisor:  Chrisitian  Bergman   Examiner:  Peter  Thorvald  

 

(2)

Assurance  of  own  work

 

This  project  report  has,  on  23/07/2015,  been  submitted  by  Pamela  Ruiz  Castro  to  the   University  of  Skövde  as  a  part  in  obtaining  credits  on  basic  level  G2E  within  Product   Design  Engineering.    

I  hereby  confirm  that  for  all  the  material  included  in  this  report  which  is  not  my  own,  I   have   reported   a   source   and   that   I   have   not   –   for   obtaining   credits   –   included   any   material  that  I  have  earlier  obtained  credits  within  my  academic  studies.  

 

   

             

Pamela  Ruiz  Castro              

(3)

  iii    

 

Abstract

 

 

There  has  been  a  rapid  growth  in  the  vehicle  industry  market,  companies  are  expected   to  provide  comfortable  and  safer  products,  improving  with  every  new  model.  Hence,  the   interest  on  developing  Digital  Human  Modelling  (DHM)  tools  that  are  focused  on  their   needs.    

The  aim  of  this  project  is  to  suggest  a  standard  seating  posture  that  could  be  used  with   ergonomic  software  like  IMMA,  to  address  the  research  an  initial  literature  study  was   performed   to   understand   existing   methods   used   in   the   industry   and   previous   posture   studies.    

In  order  to  visualize  the  extent  of  the  topic,  it  was  required  to  acquire  information  from   the  vehicle  industries  and  make  an  investigation  on  preferred  postures  by  real  drivers.    

Comparisons   are   made   between   the   different   categories   of   observed   vehicles,   and   literature  found  for  ideal  postures.  The  results  were  also  used  to  implement  suggestions   for  the  ergonomic  IMMA  software  development.    

(4)

   

Table  of  Contents

 

1   INTRODUCTION ... 1  

1.1   BACKGROUND...1  

1.2   AIMS  AND  OBJECTIVES...2  

1.3   LIMITATIONS...3  

1.4   PROJECT  OVERVIEW...3  

2   DESIGN  STRATEGY... 6  

2.1   LITERATURE  STUDY  ...6  

2.2   DATA  COLLECTION...7  

2.2.1  Observation  study  of  existing  software. ...7  

2.2.2  Focus  group  with  industry  experts...8  

2.2.3  Driver  study. ...9  

2.3   SOFTWARE  RECOMMENDATIONS... 10  

2.3.1  Exploration ...10  

2.3.2  Generation...11  

2.3.3  Evaluation...11  

2.3.4  Communication...12  

2.4   ANALYSIS  AND  EVALUATION... 12  

3   THEORY  BACKGROUND...13  

3.1   DIGITAL  HUMAN  MODELING  (DHM)... 13  

3.2   OCCUPANT  PACKAGING... 16  

3.3   SEATING  POSTURES... 19  

3.4   COMFORT  ANGLES... 20  

4   RESULTS ...22  

4.1   DATA  COLLECTION... 22  

4.1.1   Industry  observation...22  

4.1.2   Driver  study...23  

4.1.3   Experts  focus  group ...26  

4.2   COMPARISON... 28  

4.2.1   Driver  literature  posture  vs.  Observed  postures ...28  

4.2.2   Postures  of  different  vehicles...30  

4.3   WITH  IMMA  SOFTWARE... 31  

4.3.1   Posture  demonstrations  with  software...31  

4.3.2   Observations  of  software/suggestions ...32  

5   DISCUSSION ...37  

5.1   PROBLEM  DEFINITION... 37  

5.2   LITERATURE  STUDY... 37  

5.3   METHOD  STRUCTURE... 38  

5.4   RESULTS... 38  

5.4.1   Data  collection...38  

5.4.2   Comparison ...40  

5.4.3   Software...40  

6   RECOMMENDATIONS  FOR  FURTHER  INVESTIGATION ...42  

7   CONCLUSION ...43  

(5)

  v  

REFERENCES...44  

IMAGES...45  

APPENDICES ...46  

APPENDIX  A... 46    

     

(6)
(7)

  1  

 

1 Introduction  

 

The  objective  of  this  chapter  is  to  present  an  introduction  to  the  report  by  providing  a   background,  aims  and  objectives,  limitations  of  the  project.  

 

1.1 Background    

The  market  for  new  products  has  grown  and  become  stricter  with  norms,  which   encourage   industries   to   provide   better   quality   products   for   the   new   demanding   consumers.   Companies,   require   improvements   in   the   interaction   between   the   users   and   their   designed   products,   they   are   expected   to   provide   safer   and   healthier  environments  for  their  clients.  It  has  been  demonstrated  that  the  ideal   time   to   evaluate   the   products,   is   before   the   product   is   manufactured   (Chaffin,   2001).   This   should   be   done   to   decrease   the   costs   and   time   in   the   development   process,   and   avoid   long   periods   of   prototype   testing.   Therefore,   product   development   industries   have   become   more   interested   in   virtual   tools   that   can   predict  the  interaction  of  the  future  users,  to  ensure  their  well  being.  

 

Hence,  the  interest  of  the  vehicle  industry  on  developing  Digital  Human  Modelling   (DHM)  tools  that  are  focused  on  their  needs.  Companies  are  expected  to  improve   the  cockpit  environment  for  the  driver,  having  a  special  focus  on  providing  enough   tools  to  simplify  the  tasks  to  be  executed  and  preventing  health  hazards.      

 

One   of   the   main   objectives   is   to   accommodate   drivers   comfortably   and   avoid   fatigue  in  the  cockpit  of  the  different  vehicles.  For  that,  designers  should  consider:  

population   sizes,   tasks   to   accomplish,   special   physical   characteristics,   and   understand   that   the   preferred   postures   selected   by   the   drivers   might   vary   according   to   the   different   factors.   Thus,   selecting   seats   and   controls   inside   the   cockpit   area   is   a   complicated   chore   for   the   designers.   Understanding   these   necessities   in   the   vehicle   industry,   ergonomic   evaluations   have   evolved.   Before,   postures   were   defined   by   2-­‐dimensional   evaluations   but   adjustments   were   needed  later  in  the  design  process  when  full  size  prototypes  were  available.  Now,   3D   human   simulations   can   provide   a   more   complete   assessment   of   the   posture   that  drivers  will  acquire  and  make  the  required  modifications  early  in  the  design   process.      

 

The   available   software   has   facilitated   the   ergonomic   assessments,   but   still   has   areas  of  improvement.  Most  of  the  existing  software  require  expert  skills  to  make   verifications   of   driver-­‐vehicle   interaction,   tasks   require   a   lot   of   manual  

(8)

manipulation   which   decreases   the   accuracy   of   the   evaluations   and   makes   them   time  consuming.  Therefore,  assessments  are  limited,  because  there  is  no  option  to   instruct  the  manikins  to  repeat  tasks  and  make  comparisons;  consequently,  there   is  not  much  time  available  to  reevaluate  with  other  population  sizes.  

Companies   require   improvements   in   software   to   ensure   their   vehicles   are   safer   and   more   comfortable,   cost   effective   and   less   time   consuming,   ergonomic   evaluations  that  will  ensure  them  to  be  more  competitive  on  the  market.  Knowing   the  expectations  and  necessities  of  the  vehicle  industries,  the  Intelligently  Moving   manikin  (IMMA,  2015)  software  was  developed  in  cooperation  with:  the  University   of   Skövde,   Fraunhofer-­‐Chalmers   Research   Center   for   Industrial   Mathematics   (FCC),  Chalmers  University  of  Technology,  Volvo  Group  and  Scania.  Their  goal  is  to   reach   product   development   departments   by   providing   a   tool   that   could   aid   designers   in   studying   the   driver-­‐vehicle   interaction   by   having   ergonomic   evaluations  early  on  the  design  process,  in  order  to  achieve  this  they  have  initiated   the  Virtual  Driver  research  project.  

 

1.2 Aims  and  Objectives    

The  aim  of  this  project  is  to  suggest  a  standard  seating  posture  that  could  be  used   with   ergonomic   software   like   IMMA.   This   could   assist   to   provide   an   adequate   predicted   posture   for   the   vehicle   industry   during   product   development.   This   model  or  models  should  be  valid  for  the  different  seat  models,  relevant  to  some  of   the   most   important   vehicle   categories   in   the   industry,   which   include:   busses,   trucks,  construction  vehicles  and  cars.        

 

Some  of  the  general  objectives  shared  with  the  Virtual  Driver  Project  are:  

-­‐ To  provide  the  user  with  a  predicted  posture,  having  in  consideration  the   different  anthropometry  that  drivers  could  have.  

-­‐ Having  an  easy  and  quick  interface  for  the  users  to  manipulate  manikins  to   perform  specific  virtual  tasks.  

-­‐ Consider  the  different  types  of  interactions  that  a  driver  could  have  with  a   vehicle,   not   only   with   the   seat   but   also   with   other   controls   inside   and   outside  the  cockpit.  

 

Specifically,  the  aim  of  this  research  report,  as  a  contribution  to  the  Virtual  Driver   project,   is   to   identify   a   comfort   model   for   driver   seating   preferences   for   a   wide   range   of   vehicles.   And   have   it   demonstrated   with   the   Virtual   Driver   implementation  of  the  IMMA  software.  

 

In   order   to   successfully   achieve   the   research   project,   some   objectives   are   to   be   considered:  

(9)

  3   - Compare   predicted   postures   based   on   literature   information   with   preferred  postures  for  drivers  of  trucks,  buses,  construction  vehicles  and   cars.  

- Demonstrate  with  the  IMMA  software  the  comparison  of  postures.  

- Propose  a  posture  prediction  editor  interface.    

- Suggest  procedures  for  software  usage.    

 

1.3 Limitations    

In  reference  to  the  literature  study;  the  majority  of  the  available  references,  with  a   similar  structure  for  measuring  the  body  angles,  were  limited  to  car  postures  or   working  postures  which  not  necessarily  include  the  driving  task.  There  were  not   many   significant   studies   found,   on   driver   preferred   postures   for   other   types   of   vehicles.  Hence,  the  comparison  between  literature  ideal  postures  and  observed   ones  is  limited.  

 

Ideally  the  driver  study  should  have  a  large  sample  for  each  type  of  vehicle  and   include   different   models   within   each   category,   to   provide   with   a   more   accurate   range  for  each  angle  of  the  preferred  postures.  However,  due  to  time  limitations,   for   the   purpose   of   this   research   there   was   only   a   sample   of   drivers   from   the   different  categories  and  most  samples  were  with  different  models.  

 

1.4 Project  overview    

The  purpose  of  the  research  was  to  identify  a  seating  comfort  model  that  could  be   used  as  a  default  posture  in  the  IMMA  software  for  the  different  types  of  vehicles   that  had  to  be  evaluated  in  the  industry.    

 

To  meet  the  purpose,  the  first  step  was  to  have  a  clear  understanding  of  the  topic   and   of   the   problematic   related   to   the   driving   seated   postures.   This   would   help   define   how   software   can   affect   in   the   development   process   in   the   industry.  

Secondly,   to   define   the   ideal   postures   for   the   drivers   a   comparison   was   needed   between   previous   posture   studies,   selected   postures   by   drivers   and   predicted   postures   of   different   software.   With   this   a   more   accurate   posture   prediction   model  could  be  defined  and  used  for  the  Virtual  Driver  project.    

 

To   start   the   literature   study,   vehicles   had   to   be   identified   and   defined   to   understand   the   specific   characteristics   for   each   category   (trucks,   buses,   construction  vehicles  and  cars).  Also,  since  the  topic  of  the  research  was  focused   on   the   vehicle   industry,   knowledge   on   the   standards   and   specifications   were   required  as  well.  Furthermore,  an  understanding  of  the  characteristics  of  existing  

(10)

seated  postures  models  and  why  were  they  defined  with  certain  attributes.  This,   was   included   in   the   theory   background,   along   with   the   study   for   existing   ergonomic  evaluations  and  international  standards  that  the  software  is  expected   to  include  for  the  ergonomic  evaluations.  Additionally,  existing  software  had  to  be   analyzed,   by   observing   the   procedures   of   usage   by   the   industry   experts,   to   determine  the  most  important  features  of  the  software.    

This   preview   study   had   the   objective   to   understand   the   expectations   that   the   research  had  to  achieve  and  the  actual  limitations  with  software,  that  IMMA  could   overcome.    

 

Even  though  the  main  users  of  the  software  are  the  designers  or  engineers  in  the   vehicle  industry,  their  work  directly  affects  the  end-­‐users  of  the  vehicles:  drivers   and  passengers.  Hence,  for  the  Virtual  Driver  Research  the  aim  is  to  include  the   interactions   of   all   the   passengers   with   the   vehicles.   However,   the   scope   of   this   research  will  only  focus  on  the  driver  as  an  end-­‐user.    

Accordingly,  the  input  of  the  end-­‐user  had  to  be  considered  in  order  to  compare   and   contrast   with   the   literature   study   and   the   predicted   postures   of   existing   software.  To  have  that  input  of  the  user  a  driver  study  was  done,  focusing  in  the   preferred  seated  postures  of  the  different  types  of  vehicles.    

 

As   part   of   contributing   with   the   development   of   the   Virtual   Driver   the   IMMA   software  had  to  be  examined  in  order  to  understand,  from  a  user  point  of  view,   how  the  software  worked.  Since  IMMA  is  under  development  there  was  access  to   personalize  relevant  features  of  the  software,  like  the  seated  posture  prediction,   and  be  able  to  test  the  functionality  before  the  official  release  was  public.  From   being  involved  with  the  software,  and  having  a  user  point  of  view  along  with  the   insight   of   the   industry   experts,   gave   the   opportunity   to   propose   suitable   modifications  and  suggest  improvements  that  could  be  included  in  future  versions   of  the  software.  Therefore,  recommendations  were  made  for  the  specific  features   that  were  related  to  the  posture  prediction  and  placement  of  the  manikin.    

 

Initially,   the   contact   with   the   industry   was   limited   to   the   usage   of   existing   software,  therefore  a  deeper  study  was  needed  to  see  what  the  experts  needed   without   the   limitations   of   the   actual   procedures.   Hence,   a   focus   group   was   organized  with  the  experts  in  ergonomics  of  the  industry.  Taking  advantage  of  this   expert   focus   group   some   of   the   proposed   suggestions   for   the   software   were   demonstrated,  to  obtain  feedback  from  future  users  of  the  software  and  with  that   refine  the  suggested  modifications  before  they  were  considered  for  the  software.    

 

Having  in  consideration  all  the  input  from:  the  vehicle  industry,  end  users  from  the   driver  study,  previous  posture  studies  and  existing  standards;  as  the  result  of  this   research   a   proposal   was   presented   for   the   posture   prediction   toolkit   in   the   software.  This,  included  the  suggested  default  postures  for  the  different  types  of   vehicles  and  a  proposal  for  software  considerations,  as  the  interface  and  method  

(11)

  5   of   operation,   concerning   the   features   used   for   the   posture   prediction   toolkit.  

(12)

   

2 Design  strategy  

This  chapter  will  present  the  methodology  used  in  order  to  reach  the  aims  and  objectives   of  this  project  (the  execution  of  the  project  will  be  presented  in  the  following  chapters),   the  approach  taken  was  to  divide  the  research  in  the  following  sections:  

-­‐ A  literature  study  or  preview  study.  Containing  the  process  to  analyze  the  theory   behind  the  ergonomic  software  for  driver  seating  postures.    

-­‐ Data   collection.   Includes   the   methods   selected   for   gathering   information   from   the   users   that   will   be   potentially   benefited   from   ergonomic   software   in   the   vehicle  industry.  

-­‐ Software   recommendations.   Methodology   followed   for   creating   a   proposal   for   improvements  in  the  IMMA  software.  

-­‐ Analysis  and  evaluations.    

 

2.1 Literature  study    

For  a  better  understanding  of  the  concepts  that  will  be  dealt  with  throughout  this   project   a   literature   study   was   made   with   information   from   books,   articles,   and   databases.   Focusing   the   search   on:   ergonomic   concepts,   published   papers   from   experts  in  ergonomic  assessments,  and  suggested  driving  postures  from  previous   experimental  investigations.  Also,  since  some  of  the  objectives  of  this  research  are   to   improve   ergonomic   software,   existing   software   was   reviewed   through   a   literature   study   on   published   papers   and   the   available   manuals.   The   software   available   through   the   University   of   Skövde   were   Ramsis   8.3   and   Jack   5.2,   which   provided  an  initial  comprehension  of  virtual  ergonomic  evaluations.

The   obtained   literature   study   was   processed   and   presented   in   the   Theory   Background   in   Chapter   3   of   this   report.   Which   was   divided   by   sections,   starting   with  a  general  overview  of  Digital  Human  Modelling  softwares  (section  3.1)  and   their  existing  toolkits  in  Occupant  Packaging  (section  3.2),  followed  by  a  general   overview   on   the   Seated   Postures   (section   3.3)   and   the   Comfort   Angles   (section   3.4)  that  define  the  driver  postures.    

(13)

  7   2.2 Data  collection  

Since   the   Literature   Study   was   based   in   secondary   information   obtained   from   books,   research   papers   and   software   manuals,   primary   information   for   the   specific  research  was  needed.  Therefore,  the  data  collection  was  focused  on  the   ergonomic   experts   in   the   industry   (the   users)   and   the   different   vehicle   drivers   (the  end-­‐users),  providing  primary  information  for  this  research.  

It  was  noted  that  the  ergonomic  software  is  used  mainly  by  experts  in  the  field,   therefore  an  observation  study  of  existing  software  was  required.  Having  as  an   objective  going  to  the  industries  and  observing  the  software  during  the  design   development  stages  for  all  the  types  of  vehicles  and  in  the  different  industries   involved  in  the  Virtual  Driver  project.  

Another  important  input  from  the  vehicle  industry  was  to  define  the  necessities   the  experts  had  when  making  ergonomic  assessments,  without  being  biased  by   the   characteristics   of   the   existing   software.   Therefore   a   focus   group   with   the   experts   in   the   industry   was   the   selected   method,   which   would   allow   the   participants  to  express  their  ideas  on  improving  ergonomic  evaluations  in  their   field.   Giving   a   better   feedback,   which   could   provide   a   more   complete   improvement  in  ergonomic  software,  based  on  the  specific  needs  of  ergonomic   experts.    

The   main   objective   of   this   research   is   to   define   optimal   seating   postures,   consequently  the  input  of  vehicle  drivers  was  required.  Hence,  a  driver  study  was   planned,  to  obtain  general  information  of  the  drivers  and  their  preferred  seating   posture  for  each  type  of  vehicles.  

             

2.2.1  Observation  study  of  existing  software.

This   section   was   focused   in   understanding   the   procedures   used   in   the   vehicle   industry   to   evaluate   ergonomic   comfort   postures   and   how   they   apply  this  knowledge  to  their  designs.  

The  companies  that  were  part  of  the  collaboration  in  the  Virtual  Driver   project   and   had   the   availability   to   participate   in   the   observation   study   were:  Volvo  Trucks,  Volvo  Construction  Vehicles,  and  Scania.

The   study   was   planned   as   an   open   interview   because   it   was   the   first   contact  with  the  industry  experts,  since  the  objective  was  to  understand   how  the  experts  interacted  with  their  software  it  was  decided  that  they   needed   the   freedom   to   present   what   they   considered   a   priority.   But   in  

(14)

order   to   obtain   similar   data   to   compare   from   the   companies   a   questionnaire   was   sent,   allowing   them   to   prepare   previous   to   the   presentation   and   giving   some   guidance   of   what   was   expected   in   the   meeting.  This  type  of  interview  was  casual  and  gave  the  opportunity  for   follow  up  questions  when  further  explanations  were  needed.      

Each   company   organized   their   own   type   of   meeting   and   presentation,   based   on   the   same   questions   (included   in   the   Appendix   A)   which   were   mainly   about:   the   procedures   followed   by   the   experts   in   making   an   ergonomic   assessment,   the   steps   to   use   a   virtual   manikin   in   DHM   software,   the   types   of   assessments   used   to   verify   the   obtained   ergonomic   information.   One   of   the   objectives   was   also   to   understand   where   in   the   process   of   product   development   were   the   ergonomic   evaluations  needed,  how  detailed,  and  how  frequently.  Some  questions   were  more  specific  for  the  type  of  software  and  the  type  of  information   required  to  get  an  adequate  evaluation.

The   process   followed   during   the   interview   consisted   in   the   experts   explaining   their   evaluation   procedures   and   having   time   at   the   end   for   follow   up   questions.   The   entire   meeting   was   audio   recorded   for   future   revision  and  to  prevent  important  information  to  be  misinterpreted.  

2.2.2  Focus  group  with  industry  experts.  

In   order   to   define   the   necessities   the   ergonomic   experts   had,   without   being  biased  their  existing  software.  A  focus  group  was  planned  to  obtain   feedback  from  the  experts  on  the  ergonomic  evaluation  process.  

From   the   observation   study   in   the   companies,   the   contact   with   the   experts   of   the   ergonomic   software   was   already   established,   but   due   to   time  limitations  the  focus  group  was  only  made  with  one  of  the  involved   companies.   Therefore   the   participants   on   the   focus   group   were:   three   ergonomic   assessment   experts   (each   with   different   experience   time),   a   software   expert,   and   an   ergonomic   expert.   Being   this   ones   the   participants  previously  involved  in  the  observation  study.  

There  were  two  main  parts  for  the  focus  group,  one  focused  on  the  needs   of  the  ergonomic  experts  and  the  other  one  to  obtain  feedback  for  the   suggested   software   modifications   (this   last   one   will   have   a   complete   explanation  in  section  2.3  of  this  report).  To  understand  the  real  needs  of   the   experts,   two   activities   were   planned   under   specific   time:   a   Best/Worst  experience  with  DHM  software  and  an  Ideal  Scenario:

(15)

  9  

For  the  best/worst  case  scenario,  the  participants  were  asked  to  think   of  specific  situations  in  their  daily  work  with  DHM  software  that  had   an   extremely   positive   outcome   and   one   with   an   extremely   negative   one,   this   could   be   directly   related   to   the   software   or   an   external   factor  could  have  been  the  trigger.  They  were  provided  with  pen  and   paper   to   write   down   their   experiences   and   then   asked   to   describe   them   step   by   step   of   how   it   happened,   it   was   finalized   with   the   participants   sharing   their   experiences   and   commenting   on   the   experiences  of  others.  

 

As  a  second  activity  in  this  part,  the  participants  were  asked  to  think   of  an  ideal  scenario  assuming  they  were  their  own  boss,  and  describe   what   would   be   the   best   input   or   set   of   orders   to   gain   the   best   ergonomic  assessment  in  their  specific  areas  of  expertise.  Then  they   were  asked  to  present  their  scenarios  and  comment  on  the  scenarios   presented   by   the   rest   of   the   group   to   understand   the   inputs   and   outputs  that  sometimes  are  missing  for  their  daily  tasks.  

 

To  make  sure  that  there  will  be  no  information  loss,  all  the  activities  were   audio  recorded  for  a  later  review.  

2.2.3  Driver  study.

From   the   literature   study   (presented   in   the   Theory   Background   in   Chapter  3  of  this  report)  it  was  noted  that  not  all  vehicles  were  driven  the   same   way   and   therefore   different   drivers   had   to   be   observed   to   get   a   better   understanding   of   the   range   of   seated   postures   in   the   vehicle   industry.  

A   visit   was   made   to   3   different   companies   that   owned   a   variety   of   vehicles   in   the   Skövde   area,   there   the   professional   drivers   (for   buses,   trucks   and   construction   vehicles)   volunteered   from   their   companies   to   participate  in  the  study.  The  volunteer  car  drivers  were  found  in  Skövde   as  well.  Therefore  the  small  sample  of  drivers  for  the  study  consisted  in   20   different   drivers   from   various   backgrounds;   ranging   in   age   from   22-­‐  

56,  height  from  1.60  m  to  1.90.

Three  car  drivers  were  females,  the  rest  of  the  drivers  were  males.  The   drivers  for  the  study  were:    4  for  buses,  5  for  trucks,  6  for  construction   vehicles,  and  10  non-­‐professional  car  drivers.    

First,  a  basic  survey  (Appendix  B)was  applied  to  the  drivers,  which  asked   information   about   their   driver   experience,   the   type   of   vehicles   they   normally  drove,  a  description  of  the  tasks  they  did  with  the  vehicle,  the   time  they  were  in  the  cockpit  either  driving  or  doing  another  task.  And  

(16)

also,   general   information   about   the   drivers   was   asked,   like   age   and   height.  

Some   of   the   drivers   changed   vehicles   everyday,   specially   for   buses   and   construction  vehicles.  In  those  cases  they  were  asked  to  try  different  seat   heights  and  inclinations  until  they  found  the  most  comfortable  for  them.  

For   drivers   that   used   the   same   vehicle   all   the   time   they   were   asked   to   make  sure  they  were  in  their  normal  comfort  position.  

Once  the  drivers  were  comfortable  in  their  driving  posture  (hands  on  the   wheel   and   feet   on   pedals)   a   side   picture   was   taken.   The   pictures   were   taken   from   different   sides   depending   on   the   vehicle   considering   where   the  access  was  in  relation  to  the  seat,  so  pictures  were  taken  to  the  right   of   the   driver   from   the   access   door   for   buses   and   from   the   left   of   the   seated  driver  through  the  driver  door  for  all  other  vehicles

The  obtained  pictures  were  selected  for  an  optimal  view  of  the  posture   and  from  the  selection,  lines  and  angles  were  traced  to  obtain  the  body   angle  measurements  with  software.  Measurement  tables  were  obtained   from   this   procedure   containing   the   angles   for   thigh-­‐back,   knee,   ankle,   shoulder,  elbow  and  wrist  as  seen  from  the  side  pictures  of  the  drivers.

2.3 Software  recommendations  

As   part   of   contributing   with   the   development   of   the   Virtual   Driver   research,   suggestions   were   made   for   the   IMMA   software.   This   section   of   the   report   will   focus   on   the   explaining   the   process   of   developing   software   modifications   by   following   a   general   design   methodology   of:   Exploration,   Generation,   Evaluation   and  Communication  (Cross,  2000).  

2.3.1  Exploration  

For  this  Exploration  stage  the  IMMA  software  was  revised,  initially  to  understand   the  principles  behind  ergonomic  evaluations  and  afterwards  from  a  user  point  of   view.  Gathering  enough  information  to  propose  adequate  improvements  in  the   software.  

From  the  observation  study  and  the  focus  group  it  was  noted  that  the  ergonomic   experts   in   the   industry   have   limited   results   in   their   assessments   because   of   software  limitations,  therefore  it  became  of  great  importance  to  improve  IMMA   in  those  specific  areas.  

While   trying   out   the   IMMA   software   as   a   user,   it   was   observed   that   some   modifications  needed  to  be  made  in  order  to  facilitate  the  use  of  the  software  

(17)

  11   and   the   manipulation   of   the   manikins.   Therefore   key   areas   had   to   be   reevaluated,  like  the  way  the  input  had  to  be  entered  for  a  new  manikin  or  a  new   scene,   the   interface   for   the   posture   prediction   toolkit   and   the   feedback   the   software  gives  to  the  user.        

2.3.2  Generation  

In  the  Exploration  stage  the  needs  and  areas  of  improvement  for  the  software   were  defined.  So,  in  this  Generation  stage  the  acquired  knowledge  will  be  taken   into   consideration   for   the   defining   how   the   improvements   of   the   software   should  be.  

The  needs  of  the  users  along  with  the  capabilities  of  the  actual  IMMA  software   have   to   be   contemplated   for   the   suggestions,   since   the   idea   is   that   the   recommendations  are  applied  in  the  next  version  release  of  the  software.  This   stage  will  be  part  of  a  cycle  since  constant  evaluation  will  be  made  to  define  the   most  adequate  software  improvements.  

To  simplify  the  creative  process  the  main  issues  of  the  software  that  had  to  be   addressed   are:   simplify   the   placement   of   a   manikin   in   a   virtual   scenario   ,   facilitate   the   usage   of   the   posture   prediction   toolkit,   and   improve   the   presentation  of  results  for  an  ergonomic  evaluation.  

 

2.3.3  Evaluation    

An  initial  proposal  was  created  for  each  of  the  main  areas  of  development  for   the  software,  this  suggested  interface  was  presented  to  the  focus  group  for  an   evaluation   and   later   on   improvements   were   made   to   the   suggestions,   considering  the  comments  from  the  experts.

The  main  evaluation  done  for  this  software  suggestion  was  the  focus  group.  A   sample  of  the  software  interface  suggestion  was  exposed  to  the  experts  in  a  step   by  step  presentation,  giving  an  initial  objective  to  achieve  with  the  software  and   demonstrating  how  it  could  be  done  with  IMMA.  

For  the  focus  group,  a  scenario  was  given  with  certain  tasks  to  complete.  Then,  a   step  by  step  presentation  was  given,  of  how  the  tasks  would  be  handled,  with   the  specific  modifications  proposed  for  the  IMMA  software.  The  experts  of  the   focus   group   made   some   comments   on   the   software   interface   and   the   demonstrated  postures,  which  allowed  to  re  arrange  the  suggestions  and  include   the  expert's  input.    

(18)

2.3.4  Communication

Since   the   development   process   for   the   software   suggestions   is   considered   a   cycle,   the   communication   stage   had   to   be   constant   throughout   the   process.  

Because,  not  only  was  the  proposal  presented  to  the  focus  group  of  experts,  but   it   was   also   explained   and   exposed   to   the   software   developers   which   had   to   understand  what  were  the  reasons  to  modify  the  IMMA  software  and  apply  the   changes  as  suggested  in  the  newer  versions  of  the  software.  This  stage  will  also   include  the  graphical  demonstration,  shown  in  the  Results  chapter  of  this  report,   of  the  suggested  improvements  to  the  software.        

2.4 Analysis  and  evaluation  

This  section  will  be  for  the  analysis  and  evaluation  of  the  obtained  information.  In   this  case  it  will  consist  in  comparisons  between  the  different  obtained  data  and   presenting   it   in   the   Result   section   of   this   report.   Starting,   with   comparing   the   literature   values   suggested   for   ideal   seating   postures   and   the   obtained   values   from  the  drivers  study  with  their  preferred  postures.  Another  comparison  will  be   between  the  industry  procedures  for  ergonomic  assessments  and  the  ones  found   in  the  literature  study.    

 

As  part  of  the  evaluation,  various  options  for  ergonomic  models/strategies  will  be   used  and  evaluated  for  their  accuracy.  Also,  a  tryout  of  the  strategies  will  be  done   with   the   IMMA   software;   to   demonstrate   the   differences   between   postures  

strategies   for   the   different   types   of   vehicles.  

(19)

  13  

3 Theory  background  

 

The  objective  of  the  Theory  background  is  to  understand  where  the  project  stands  as   a  research  project  and  in  the  market.  To  fully  understand  the  needs  of  the  vehicle   industries   towards   ergonomic   software   and   the   possibilities   this   might   bring   in   a   near  future.  

 

3.1 Digital  Human  Modeling  (DHM)    

   

Due   to   the   speed   and   the   competitive   environment   in   which   products   are   developed   and   manufactured,   it   is   required   to   fulfill   safety   requirements   in   the   most   effective   way   early   in   the   development   process,   which   leads   to   testing   before  productions  begins.  This  has  been  addressed  by  digital  evaluations  of  the   products   previous   to   their   manufacturing.   (Chaffin,   2007).   Therefore,   digital   humans   are   created   to   virtually   simulate   interactions   with   the   products   and   generate   assessments   that   will   help   the   designers   improve   the   features   of   the   product  even  before  physical  existence.  

 

Seen   from   an   ergonomic   point   of   view,   digital   avatars   or   manikins   have   been   created   with   specific   characteristics   representing   a   certain   population   and   predicting   the   human   interaction   with   the   objects.   These   digital   humans   are   specified  by  the  designer  with  some  group  attributes  like:  stature,  weight,  gender   or  age  (Kullberg,  2014).  To  make  an  evaluation,  the  manikin  has  to  be  placed  in  a   virtual   scenario   in   which   certain   tasks   should   be   fulfilled,   the   designer   sets   the   manikin  to  do  the  tasks  and  an  evaluation  is  presented  for  the  health  risks  that  the   specific  assignment  might  provoke  to  the  manikin.  Focusing  on  the  forces  applied   in  the  joints  through  the  postures  acquired.  

 

The  development  of  DHM  software  has  increased  in  the  last  40  years,  more  than   150   ergonomic   evaluations   with   virtual   humans   are   known   according   to   Duffy   (2009),  from  which  they  are  focused  in  different  industries,  having  a  bigger  impact   in  manufacturing  areas  and  in  the  vehicle  industries,  from  aircrafts  to  construction   vehicles.  

 

(20)

Figure  3.1:    3D  CAD  digital  male  and  female  with  reach  envelopes  (University  of     California,  2014).  

       

Figure  3.2:    Manikin  sample  and  use  of  Jack  Medical  software  (Siemens,  2010).    

   

(21)

  15    

 

Figure  3.3:    IMMA  manikins  in  assembly  analysis  (FCC,  2014).    

     

Some   existing   software   in   the   market   is   used   in   the   industries   to   analyze   the   ergonomic   postures   of   workers,   focusing   mainly   on   a   series   of   tasks   along   the   production  line  and  evaluating  the  risk  levels  throughout  the  working  process,  this   helps   avoid   worker   injuries   and   provides   safe   interactions   that   will   improve   efficiency  along  the  line.  In  other  cases,  software  is  used  to  test  vehicles  and  the   interaction  with  them,  including  default  posture  prediction  for  drivers;  this  can  be   obtained  by  placing  the  manikin  in  the  adequate  position  on  the  seat  and  selecting   possible  tasks  or  movements;  an  ergonomic  assessment  can  be  obtained  from  the   final  postures.    

 

The  ergonomic  software  studied  for  this  theoretical  background  was:  Ramsis,  Jack   and   Delmia   Human,   for   their   default   seated   postures   and   posture   prediction   toolkits.   For   further   understanding   of   the   principles   behind   the   software,   there   will   be   an   observation   study   of   the   real   usage   of   the   software   by   experts   in   ergonomic  assessments;  during  the  visits  to  vehicle  companies.      

 

Jack  was  studied  as  a  reference  to  ergonomic  software,  but  it  was  not  in  use  in  any   of  the  visited  industries.  The  available  version  to  study  had  some  of  the  functions   for   predicting   postures   from   the   occupant-­‐packaging   tool.   However,   it   must   be   noted  that  the  found  default  seated  postures  are  not  designed  for  driver  seating,   they  are  designed  focusing  on  seated  work  tasks.  One  of  the  interesting  features   that   the   software   has,   is   the   availability   to   set   tasks   to   the   manikin   in   order   to   repeat  them  with  different  size  manikins,  generating  a  more  complete  evaluation.      

 

(22)

Ramsis  was  another  reference  of  ergonomic  software,  having  the  opportunity  to   verify   postures   and   obtain   ergonomic   evaluations.   Also,   Ramsis   software   was   found  in  the  industry,  so  observations  were  noted  from  expert  users.  The  software   can  be  used  as  part  of  the  Catia  software,  this  provides  different  functions  and  the   feel   of   the   software   is   different   since   the   interface   used   is   the   one   from   Catia.  

There   are   different   versions   of   Ramsis,   according   to   the   needs,   in   reference   to   posture   prediction   the   software   is   specialized   in   driver   seating,   therefore   the   occupant  packaging  toolkit  seems  to  be  complete  for  static  seated  postures.  Also,   it   was   observed   that   there   are   different   default   postures   like:   a   regular   seating   posture,   a   car   seated   posture   and   the   opportunity   of   a   truck   seated   posture   (which  are  not  available  in  all  the  versions  of  the  software).    

 

Another   software   observed   in   the   industry   was   Delmia   Human,   but   due   to   the   access   limitations,   this   software   could   not   be   studied   directly   even   though,   it   is   used  by  the  companies  related  to  this  study.  As  well  as  Ramsis,  Delmia  Human  can   be  used  as  a  tool  within  the  interface  of  Catia.  This  software  is  not  specialized  in   seating   postures   but   seems   to   be   more   efficient   for   other   types   of   assessments   between  the  different  vehicle  interactions  and  the  manikins.  

 

All   the   software   studied   can   be   used   to   obtain   predicted   seated   postures   for   vehicles,   but   each   software   has   a   specific   procedure   in   order   to   make   an   evaluation   and   also   provides   different   type   of   data   even   though   the   safety   standards  that  they  will  have  to  fulfill  might  be  the  same.  Each  of  the  software  was   created   for   specific   needs   in   the   industry,   but   have   now   evolved   and   include   similar  toolkits  to  solve  ergonomic  evaluations  even  though  the  principle  behind   each   software   is   different.   Due   to   these   characteristics   the   evaluations   for   a   vehicle   might   not   be   the   same   with   the   different   software,   but   as   long   as   the   international  standards  are  covered  the  evaluations  are  valid.  

   

3.2 Occupant  Packaging    

 

The   seated   posture   prediction   feature   is   usually   included   in   the   Occupant   Packaging  toolkit  of  the  Digital  Human  Modelling  software,  therefore  this  section   will  be  focused  in  the  toolkit  and  some  of  the  international  standards  that  should   be  considered  for  the  driver  postures.    

 

The  automotive  industry  uses  the  term  “Packaging”  for  the  activities  that  involve   arranging   the   distribution   of   space   within   a   vehicle.   Having   in   consideration   components,   systems   and   occupants   to   be   placed   adequately   without   compromising  their  functions  and  limited  to  the  available  space  defined  by  the   concept  designers  (Bhise,  2012).  

(23)

  17    

Occupant  Packaging  in  DHM  software,  assist  the  designers  and  engineers  on  how   to   position   the   virtual   manikins   within   the   occupant   compartment   of   the   vehicles,   throughout   a   virtual   representation   that   can   include   drawings   and   models  of  the  relevant  areas  to  be  assessed.  Certain  standards,  reference  points,   and   key   measurements   are   taken   in   consideration   when   developing   a   vehicle.  

According   to   Bhise   (2012)   some   of   the   main   considerations   for   occupant   packaging  can  be  grouped  into:    

1. Entry  and  egress  space.    

2. Comfortable  seated  posture.  

3. Hand  and  foot  controls.  

4. Visibility.  

5. Storage  space   6. Service.    

 

The  vehicle  industry  needs  ergonomic  software  to  include  an  occupant  packaging   toolkit  for  ergonomic  evaluations  during  the  development  process,  to  distribute   efficiently   the   space   inside   the   cockpit.   This   toolkit   can   include   human   factor   analysis   for   comfort   and   performance   (Jack   manual,   2013)   that   are   based   in   existing  parameters.  For  example,  some  of  the  tools  provided  by  Jack  software   (Jack  manual,  2013)  within  the  Occupant  Package  Toolkit  are:  

SAE  packaging  guidelines  

Posture  prediction    

Comfort  assessment  

Pedal  behavior  

Vision  analysis    

These   types   of   tools   aid   designers   to   find:   comfortable   seated   postures,   ideal   location   of   the   hand   and   foot   controls,   and   evaluate   the   visibility   levels   in   the   vehicles.  Therefore,  some  of  the  main  considerations  as  defined  by  Bhise  (2012)   are   covered   (2.Comfortable   seated   posture,   3.Hand   and   foot   controls,   and   4.Visibility),  leaving  further  analysis  to  the  engineers,  for  a  complete  assessment   of  space  and  the  interaction  with  the  passengers.    

 

In   order   to   accommodate   the   manikin   in   the   virtual   vehicle   environment,   it   is   required   to   understand   certain   concepts;   like   international   standards   based   in   anthropometric  criteria,  from  which  vehicle  measurements  are  made.  

 

Bhise   (2012)   and   Ghikas   (2013),   mention   that   some   of   the   most   common   reference   points   (Figure   2.1),   based   on   SAE   standards,   used   in   the   automotive   industry  are  (Ghikas,  2013):    

   

(24)

Figure  3.4:    Interior  package  reference  points  and  dimensions  (Bhise,  2012).    

   

AHP.   Accelerator   Heel   Point.   Contact   of   driver’s   lowest   heel   point   with   vehicle  floor.  

 

A47.  Pedal  plane  angle.  Angle  of  accelerator  pedal  from  the  horizontal  of   the  vehicle.  

 

BOF.   Ball   of   foot.   Point   on   a   straight   line   tangent   to   the   bottom   of   the   shoe,  located  on  the  middle  of  the  foot  width.  

 

H-­‐point.   Point   in   a   human   body   acting   like   center   between   torso   and   thigh.    

 

SgRP.   Seating   reference   point.   It   is   a   specific   H-­‐point   used   in   occupant   packaging  .  

   

Since   there   are   different   types   of   vehicles   and   each   one   has   specific   needs,   a   target   group   should   be   identified;   hence   a   specific   range   of   body   sizes   can   be   selected   to   fulfill   the   task   and   be   accommodated   having   in   consideration   the   mentioned  reference  points.  In  the  industry,  depending  on  the  product  there  are   population  percentiles  used  to  test  a  product,  to  make  sure  the  health  and  safety   requirements  apply  for  most  users  (Kullberg,  2014).  

     

(25)

  19    

3.3 Seating  Postures    

 

Since   the   purpose   of   the   research   was   to   identify   a   seated   comfort   model,   this   section  of  the  report  is  a  summary  focusing  on  analyzing  previous  research  studies   on  seating  postures.  

 

Some   of   the   literature   found   with   detailed   explanation   on   the   seating   postures   were   experimental   studies   made   for   working   postures,   which   require   certain   concentration,   and   the   user   to   be   seated   according   to   the   characteristics   of   the   task  to  be  accomplished.    

 

It   is   important   for   the   industries   to   adequately   use   simulations   to   evaluate   the   seats   being   developed,   because   customers   often   complain   about   postural   discomfort  in  (Andersson,  1999;  Ebe  &  Griffin,  2001):  

neck  

shoulder  

lower  back    

Therefore,   the   design   of   products   that   will   require   seated   postures   cannot   be   ergonomically  evaluated  only  on  a  static  reference,  other  considerations  should  be   done,   since   external   factors   will   affect   the   posture   and   the   level   of   comfort   will   change  according  to  the  task  and  length  of  working  period.  To  avoid  health  risks   various  simulations  should  be  made  previous  to  defining  a  seat  arrangement.    

 

Similarly,  for  the  vehicle  industry,  in  order  to  define  the  driver  seating  posture  all   factors  related  to  the  driver  should  be  considered,  not  only  the  driving  difficulty,   but  also  other  tasks  that  will  be  executed  within  the  cockpit  area.  Hence,  studies   have  been  made  specializing  on  a  vehicle  type  and  in  relation  to  specific  tasks  to   avoid   discomfort   and   fatigue   with   seating   postures.   Some   examples   are   the   investigations   for   car   driving   optimum   seating   postures   from   Andersson,   Örtengren,  Nachemson,  and  Elfström,  (1974)  and  Hanson,  Sperling  &  Akselsson   (2006)   which   also   have   external   factors   in   consideration   to   define   a   suitable   posture,  and  observe  that  drivers  adjust  their  position  throughout  the  a  period  of   time.    

 

Several   studies   were   found   on   seated   driver   postures,   however   using   old   references  to  predict  postures  might  not  be  appropriate  since,  some  older  studies   defined  postures  according  to  strength  required  for  driving  tasks.  However,  due  to   the   improvements   in   technology,   the   human   strength   does   not   play   such   an   important   role   in   driving.   Hydraulics,   computer   aided   mechanisms,   along   with  

References

Related documents

In a VPN architecture, when a remote user connects to a private network using VPN, the user is given access to a network segment and resources shared in the segment can be accessed

ALTO is a particle detector array based on WCD technique, similar to the High Al- titude Water Cherenkov Gamma-Ray Observatory (HAWC) experiment in Mexico but combined with SDs, for

0 0.5 1 1.5 2 2.5 3 3.5 Early Directed URI Versionized API Metadata Retrievability Expressive Request Proactive Filtering ‘me’ Accessible Resources Versionized Resources

The structural analysis revealed that mutations R130D/S208R and S208C stabilize the dimeric state of the enzyme, which is different from wild type

Trying to interpret the physical meaning of the tensionless theory in the transversal gauge, it is of great help to compare the field equations of the tensionless string (A.78) and

In particular, we want to point out that all four ReLU autoencoders with bias, depth 11 and width 128 that we trained using random pictures resulted in that every single training

The analysis of verbosity shows that functional code is generally less verbose than the imperative equivalent, especially with regards to programmatic lines, but also in terms of

This section will discuss the main challenges that arise when trying to detect stegomalware hidden within covert channels and digital media files as well as what different types