• No results found

Analysis  and  optimization  of  building   energy  efficiency  in  Hammarby  Sjöstad

N/A
N/A
Protected

Academic year: 2021

Share "Analysis  and  optimization  of  building   energy  efficiency  in  Hammarby  Sjöstad"

Copied!
73
0
0

Loading.... (view fulltext now)

Full text

(1)

     

   

Analysis  and  optimization  of  building   energy  efficiency  in  Hammarby  Sjöstad  

 

 

ABOLFAZL  SOUSANABADI  FARAHANI   MOHAMMADHASSAN  MOHAMMADI  

 

 

                         

(2)

           

   

Analysis  and  optimization  of  building  energy   efficiency  in  Hammarby  Sjöstad  

                                 

By    

ABOLFAZL  SOUSANABADI  FARAHANI   MOHAMMADHASSAN  MOHAMMADI    

               

 

Thesis  Submitted  to  the  Department  of  Energy  Technology,  Royal  Institute  of   Technology  (KTH),  in  Fulfilment  of  the  Requirement  for  the  Degree  of  Master  of  Science  

July  2013    

   

(3)

LIST  OF  FIGURES  ...  5  

ABSTRACT  ...  6  

1.   INTRODUCTION  ...  7  

1.1.   OVERVIEW  ...  7  

1.2.   HAMMARBY  SJÖSTAD  ...  7  

1.2.1.   Hammarby  Model  ...  8  

1.2.2.   Ventilation  systems  ...  10  

1.3.   OBJECTIVES  ...  13  

2.   METHODOLOGY  ...  14  

2.1.   OVERVIEW  ...  14  

2.2.   DATA  GATHERING  AND  DATA  BASE  CREATION  ...  14  

2.3.   ENERGY  MAPPING  ...  16  

2.4.   PATTERN  RECOGNITION  ...  16  

2.5.   ENERGY  INSPECTION  ...  17  

2.6.   MEASUREMENT  TECHNIQUES  ...  17  

2.7.   BUILDING  ENERGY  SIMULATION  ...  17  

2.8.   ANALYSIS  RESULTS  AND  PRACTICAL  PROPOSALS  ...  18  

3.   RESULTS  AND  DISCUSSIONS  ...  19  

3.1.   ENERGY  MAPPING  ...  19  

3.2.   PATTERN  RECOGNITION  ...  20  

3.2.1.   Specific  energy  consumption  vs.  Built  year  ...  20  

3.2.2.   Energy  consumption  vs.  Byggherre  ...  24  

3.2.3.   Byggherre  (private  &  public)  vs.  Energy  consumption  ...  26  

3.2.4.   Technical  Installation  vs.  Specific  energy  consumption  ...  27  

3.2.5.   Electricity  usage  vs.  Total  specific  energy  consumption  ...  29  

3.2.6.   OVK  status  vs.  Specific  energy  consumption  ...  30  

3.3.   INFRARED  PHOTO  (IR-­‐PHOTOS)  ...  31  

3.3.1.   Good  case  ...  32  

3.3.2.   Bad  case  ...  33  

3.4.   ENERGY  INSPECTIONS  ...  35  

3.4.1.   Unnecessary  lighting  ...  35  

3.4.2.   Pressure  sensors  ...  37  

3.4.3.   Temperature  sensors  ...  38  

3.4.4.   Lighting  sensors  ...  39  

3.4.5.   Frequency  regulators  ...  39  

3.4.6.   Filters  ...  41  

3.4.7.   Fans  ...  41  

3.4.8.   Inlets  ...  41  

3.4.9.   Individual  measurements  ...  42  

3.4.10.   Operation  and  maintenance  ...  42  

3.4.11.   Potential  for  development  ...  43  

3.4.12.   Other  observations  and  proposals  ...  44  

3.5.   ENERGY  AUDIT  REPORTS  AND  RECOMMENDED  SOLUTIONS  ...  45  

3.5.1.   Report  for  BRF  Hamnkranen  ...  45  

3.5.2.   Report  for  BRF  Sjöstadshamnen  ...  46  

3.5.3.   Report  for  BRF  Sjöresan  ...  47  

3.5.4.   Report  for  BRF  La  Dolce  Vita  ...  49  

3.5.5.   Report  for  BRF  Innanhavet  1  ...  49  

3.5.6.   Report  for  BRF  Båtbyggaren  ...  51  

3.5.7.   Report  for  BRF  Älven  ...  51  

3.5.8.   Report  for  BRF  Hammarby  Kaj  ...  52  

3.5.9.   Report  for  BRF  Farleden  ...  52  

(4)

3.5.10.   Report  for  BRF  Sickla  kanal  ...  53  

3.5.11.   Report  for  BRF  Seglatsen  ...  55  

3.5.12.   Report  for  BRF  Sjöportalen  ...  56  

3.6.   GOOD  CASES  VERSUS  BAD  CASES  ...  56  

3.7.   MEASUREMENT  TECHNIQUES  ...  59  

3.7.1.   Fortum  real–time  information  ...  59  

3.7.2.   Automatic  meter  reading  system  (AMR)  ...  63  

3.8.   BUILDING  ENERGY  SIMULATION  ...  64  

3.8.1.   Geometry  ...  64  

3.8.2.   Individual  effects  on  building  energy  performance  ...  65  

3.8.3.   Conclusion  ...  69  

4.   CONCLUSIONS  AND  RECOMMENDATIONS  ...  70  

4.1.   CONCLUSIONS  ...  70  

4.2.   RECOMMENDATIONS  ...  72  

BIBLIOGRAPHY  ...  73    

                                                           

(5)

List  of  figures  

 

Figure  1.1:  Overview  of  Hammarby  Sjöstad  (Stockholms  stad,  2008)  ...  7  

Figure  1.2:  Hammarby  model  (Hammarby  Sjöstad,  2013)  ...  9  

Figure  3.1:  Energy  mapping  of  Hammarby  Sjöstad  ...  19  

Figure  3.2:  Specific  energy  consumption  vs.  Built  year  ...  20  

Figure  3.3:  Specific  energy  consumption,  Electricity  usage  vs.  Built  year  ...  21  

Figure  3.4:  Number  of  buildings  with  no  air  treatment  vs.  Built  year  (Time  periods)  ...  22  

Figure  3.5:  Number  of  buildings  with  FTX  system  vs.  Built  year  (Time  periods)  ...  23  

Figure  3.6:  Number  of  buildings  with  FVP  system  vs.  Built  year  (Time  periods)  ...  23  

Figure  3.7:  Specific  energy  consumption  vs.  Byggherre,  Dashed  red  lines  represent  buildings  with  FVP  system   installed  ...  24  

Figure  3.8:  Specific  energy  consumption  (heating  only)  vs.  buildings  with/without  FVP  system  installed  ...  25  

Figure  3.9:  Specific  energy  consumption  (electricity  only)  vs.  buildings  with/without  FVP  system  installed  .  25   Figure  3.10:  Specific  energy  consumption  vs.  buildings  with/without  FVP  system  installed  ...  26  

Figure  3.11:  Specific  energy  consumption  vs.  Byggherre  (Private  &  Public)  ...  26  

Figure  3.12:  Effect  of  education  in  specific  energy  consumption  (Familjebostader)  ...  27  

Figure  3.13:  Average  specific  energy  consumption  for  different  types  of  ventilations  systems  ...  29  

Figure  3.14:  Percentage  of  electricity  usage  versus  total  specific  energy  consumption  ...  30  

Figure  3.15:  OVK  status  versus  specific  energy  consumption  ...  31  

Figure  3.16:  Good  case  –  building  ...  32  

Figure  3.17:  Good  case  –  Entrance  ...  32  

Figure  3.18:  Good  case  –  balcony  door  ...  33  

Figure  3.19:  Bad  case  –  heat  loss  through  windows  and  walls  ...  34  

Figure  3.20:  Bad  case  –  heat  loss  through  poor  insulation  around  the  windows  ...  34  

Figure  3.21:  Bad  case  –  heat  loss  through  windows  and  walls  ...  34  

Figure  3.22:  Unnecessary  lighting  in  garage  ...  36  

Figure  3.23:  Unnecessary  lighting  in  the  building  ...  36  

Figure  3.24:  Unnecessary  lighting  in  town  (Hammarby  Sjöstad)  ...  37  

Figure  3.25:  Pressure  sensor  (False  installation)  ...  37  

Figure  3.26:  Temperature  sensor  (ground  surface  sensor)  ...  38  

Figure  3.27:  Temperature  sensor  in  garage  (false  installation)  ...  39  

Figure  3.28:  Lighting  sensor  (false  installation)  ...  39  

Figure  3.29:  Frequency  regulator  ...  40  

Figure  3.30:  Frequency  regulator  (Setting  manual)  ...  40  

Figure  3.31:  Dirty  Filter  ...  41  

Figure  3.32:  Clogged  inlet  ...  42  

Figure  3.33:  Wasting  of  hot  water  in  a  local  restaurant  ...  42  

Figure  3.34:  An  example  of  technician  visit  timetable  ...  43  

Figure  3.35:  Waste  of  heated  air  through  vents  on  the  roof  ...  44  

Figure  3.36:  Best  buildings  versus  worst  buildings  ...  57  

Figure  3.37:  Examples  of  windows  in  buildings  with  poor  energy  performance  ...  58  

Figure  3.38:  Examples  of  windows  in  buildings  with  good  energy  performance  ...  58  

Figure  3.39:  Energy  account  –  real  time  data  for  electricity  ...  60  

Figure  3.40:  Energy  account  –  real  time  data  for  heating  ...  60  

Figure  3.41:  Energy  account  –  example  of  monthly  data  for  heating  ...  61  

Figure  3.42:  Energy  account  –  daily  electricity  usage  data,  comparison  between  a  sample  day  this  year  and   the  same  day  last  year  ...  62  

Figure  3.43:  Energy  account  –  monthly  heating  data  (comparison  between  year  2012  and  2013  ...  62  

Figure  3.44:  Specific  energy  consumption  (only  district  heating)  from  Energy  declaration  vs.  real-­‐time  data  ...  63  

Figure  3.45:  Building  layout  ...  64  

Figure  3.46:  Building  physical  model  ...  65  

Figure  3.47:  Glazing  effect  ...  66  

Figure  3.48:  Windows  to  wall  ratio  effect  ...  67  

Figure  3.49:  Air  tightness  effect  ...  68  

Figure  3.50:  Ventilation  technique  effect  ...  69    

(6)

Abstract  

 

It  is  often  considered  that  building  performance  in  an  operational  phase  is  not  as  good   as   its   designed   performance.   In   fact,   approximately   40%   of   the   world’s   total   primary   energy   consumption   is   accounted   existing   buildings.   Therefore,   it   would   be   of   a   great   importance  to  analyze  and  optimize  the  existing  buildings  performance  by  taking  total   energy  consumption  and  comfort  situation  into  consideration.  This  is  possible  through   measuring  and  analyzing  the  current  building  performance.  

 

Hammarby  Sjöstad  is  a  high  profile  example  of  sustainable  city  development  which  has   been   chosen   as   a   case   study   in   this   research   project   because   most   of   the   operational   buildings   located   there   have   not   reached   their   projected   efficiency   during   the   design   phase.  Therefore,  the  main  objective  of  this  research  study  is  to  investigate  this  problem   and  formulate  cost-­‐effective,  high  performance  solutions  in  order  to  increase  the  overall   efficiency  of  the  buildings  in  Hammarby  area.  In  this  study  a  “Case  Study”  methodology   has   been   performed   with   literature   studies,   in-­‐depth   interviews,   seminars   and   gathering   of   quantitative   data,   concerning   the   operational   goals   of   the   environmental   program  of  Hammarby  Sjöstad.  

 

To   gather   the   required   data,   meetings   with   different   organizations   were   scheduled.  

More   than   15   important   parameters   were   gathered   for   more   than   100   buildings   in   Hammarby  Sjöstad.    

 

Going  through  all  the  data,  some  relations  were  discovered  which  led  to  interesting  yet   simple  solutions  for  the  low  energy  efficiency  of  the  buildings  in  the  area.  Patterns  were   recognized   however   they   had   to   be   evaluated   and   their   accuracy   had   to   be   tested.  

Moreover,   to   further   evaluate   the   performance   of   the   buildings,   Energy   audits   were   done  with  the  help  of  an  energy  expert.  The  aforementioned  buildings  were  visited  and   their  performance  was  checked  in  detail  to  further  prove  the  pattern  results.  Different   parameters   were   considered   during   the   visits   including   the   architecture,   technical   installations   and   maintenance.   Meanwhile,   by   taking   advantage   of   the   DesignBuilder   software,   a   number   of   simulations   were   performed   in   order   to   further   examine   the   previous   findings.   Finally,   some   practical   recommendations   and   also   conclusions   are   presented.    

 

Keywords:  Energy  efficiency,  building  energy  performance  ,  sustainable  energy,   Optimization,  Smart  city,  Green  building,  Ventilation  technique,  Energy  audits,  Energy   simulation  

           

(7)

1. Introduction  

1.1. Overview    

Existing  buildings  account  for  approximately  40%  of  the  world’s  total  primary  energy   consumption   and   24%   of   the   world’s   CO2   emissions,   according   to   the   International   Energy  Agency,  (IEA,  2006).  

 

There   is   a   great   opportunity   in   real   estate   sector   to   make   significant   reductions   in   energy  consumption,  therefore  reducing  the  need  for  supply  and  end-­‐use  energy  costs.  

It   is   therefore   essential   to   introduce   effective   energy   efficiency   measures   in   the   built   environment  if  governments  and  business  tend  to  successfully  address  energy  security   and  ambitious  carbon  reduction  targets.  

 

On  the  other  hand,  rising  energy  costs  encourage  households  and  businesses  to  reduce   their   energy   consumption   rate.   It   is   evident   now   that   ‘greener’,   more   energy   efficient   buildings  are  more  valuable  in  the  property  market  than  conventional  buildings,  which   increases  the  commercial  incentive  to  invest  in  properties  with  improved  sustainability   performance.    

 

1.2. Hammarby  Sjöstad  

 Hammarby  Sjöstad  is  a  high  profile  example  of  sustainable  city  development  located  on   both  side  of  lake  Hammarby  sjö,  bordering  Nacka  Municipality  to  the  east.  An  overview   highlighted  picture  of  this  area  taken  by  Stockholms  stad  in  2008  is  represented  below   in  Fig.  1.1.  

 

Figure  1.1:  Overview  of  Hammarby  Sjöstad  (Stockholms  stad,  2008)    

(8)

The   city   of   Stockholm   has   high   ambitions   for   environmental   issues   and   sustainable   development.   New   areas   are   planned   or   in   developing   process   and   the   most   valuable   input   for   these   projects   would   be   the   experience   from   environmental   profile   of   Hammarby   Sjöstad.   In   Hammarby   Sjöstad,   the   goal   has   been   to   implement   the   environmental  profile  in  the  urban  district,  both  internally  and  externally,  in  order  to   create  a  sustainable  residential  environment.  

 The  development  of  the  area  has  not  interfered  with  the  people  life  style,  as  there  are   many  residential  buildings,  several  workplaces  and  business  properties  already  in  use.  

The   overall   goal   for   Hammarby   Sjöstad   project   was   set   on   50%   lower   environmental   impact  comparing  to  the  early  1990s.  (Sofie  Pandis  Iverot,  2011)  

 

The  most  noticeable  reduction  in  energy  consumption  and  environmental  impact  was   expected   to   happen   within   the   buildings   in   the   operational   phase.   A   huge   save   was   expected   in   in   the   amount   of   heating   demand   and   drinking   water.   The   reason   behind   this   expected   outcome   was   the   effort   and   investment   of   developers   in   order   to   save   energy   by   using   extra   insulation,   energy   efficient   windows,   proper   ventilation,   electrically   efficient   installations,   lighting   control   and   so   on.   Some   buildings   have   installed  heat  pumps  in  the  exhaust  air  to  recover  heat.    

 

Also,   choice   of   eco-­‐friendly   building   products   and   materials,   proper   fittings   with   reduced  water  flow  and  low-­‐flush  toilets  have  helped  with  regard  to  indoor  air  quality,   water  and  sewage  control.  

 

According   to   previous   study   (Brick,   2008),   the   percentage   of   car   journeys   has   been   decreased,  while  the  number  of  journeys  using  Tvärbanan  and  the  ferry,  have  increased   in  comparison  with  1990s  level.  

 

1.2.1. Hammarby  Model    

Everyone   in   Hammarby   Sjöstad   is   a   part   of   an   eco-­‐cycle.   The   eco-­‐cycle   solution   in   Hammarby   Sjöstad   is   called   the   Hammarby   Model.   In   this   model   transportation   systems,  waste  management,  water  treatment  and  energy  production  are  considered  as   key  parameters  toward  sustainability.    

 

The   Hammarby   model   has   been   developed   jointly   by   Stockholm   Water   Company,   Fortum  and  Stockholm  Waste  Management  Administration.  

 

There   are   many   eco-­‐city   models   being   developed   in   the   world   today   however,   smart   interaction  of  different  sustainable  technologies  in  Hammarby  model  makes  it  a  unique   example  among  others.    (Figure  1.2)  

 

(9)

Figure  1.2:  Hammarby  model  (Hammarby  Sjöstad,  2013)    

The   Hammarby   model   is   recognized   by   its   unique   interaction   among   three   main   parameters;  Energy,  Waste  and  Water.  A  brief  description  for  each  part  is  given  below.  

 

1.2.1.1. Energy    

According  to  Hammarby  model,  the  residents  are  supposed  to  produce  half  the  amount   of   energy   they   need.   This   can   be   achieved   by   e.g.   reusing   the   heat   from   the   purified   wastewater,  and  by  utilizing  the  energy  from  the  combustible  household  waste,  which   has  been  separated  at  source.  

 

1.2.1.2. Waste    

Waste   management   in   Hammarby   area   is   a   well-­‐developed   system,   where   with   collaboration   of   residents,   waste   is   being   separated   at   source,   which   will   lead   to   reduced  amount  of  waste  transports  in  the  area.  

 

In   courtyard   chutes,   the   residents   can   leave   combustible   household   waste   and   food   waste  at  a  certain  spot  with  separate  intakes.  The  waste  is  collected  via  an  automated   underground  pneumatic  system.  Other  type  of  waste,  such  as  paper,  metal,  glass,  bulky   waste   and   plastic   packaging   material   is   collected   in   block-­‐based   recycling   rooms.  

Hazardous   waste,   such   as   varnish,   paint,   nail   polish,   solvents   and   cleaning   agents   are   collected  at  area-­‐based  hazardous  waste  collection  points.  

(10)

1.2.1.3. Water  and  sewage  

• The  natural  cycle  of  water  in  Hammarby  Sjöstad    

The  collected  water  from  lake  Mälaren  is  purified  in  Norsborg  water  treatment  plant  up   to  drinking  purification  level.  The  treated  water  is  then  sent  through  pipes  to  residents   in   Hammarby   area   and   is   used   for   e.g.   cooking,   drinking,   washing,   showering   and   flushing   toilets.   This   water   after   being   used   becomes   sewage,   which   is   then   sent   to   Henriksdal’s   wastewater   treatment   plant   to   be   treated   by   mechanical,   chemical   and   biological  means.  

• District  heating  and  cooling    

District   heating   in   Hammarby   Sjöstad   is   a   part   of   a   larger   Stockholm   district   heating   grid.   In   Hammarby   Sjöstad,   before   the   purified   wastewater   is   released   into   the   Baltic   Sea,   it   is   pumped   to   Hammarby   District   Heating   plant.   In   district   heating   plant   the   energy   in   the   water,   in   form   of   heat,   is   being   extracted   by   taking   advantage   of   heat   pumps.  This  heat  is  further  used  for  district  heating  purposes.  The  cold  water  produced   in  the  process,  is  used  for  district  cooling  of  the  area.  

• Biogas    

About   1000   apartments   in   Hammarby   area   have   biogas   cookers.   This   biogas   is   the   byproduct   of   sludge,   from   wastewater   treatment,   digestion.     Interestingly,   the   biogas  

"produced"  from  the  waste  product  of  an  average  family  in  Hammarby  area,  is  almost   equal  to  the  amount  of  biogas  they  use  for  cooking.  The  use  of  biogas-­‐powered  cookers   in   Hammarby   area   has   resulted   in   20   percent   lower   electricity   consumption.    

(Hammarby  Sjöstad,  2013)    

1.2.2. Ventilation  systems      

A   lack   of   proper   ventilation   can   cause   too   much   humidity,   condensation,   overheating   and   creation   of   odors,   smokes   and   pollutants.   Ventilation   is   a   part   of   HVAC   (heating,   ventilation   and   air-­‐conditioning)   system,   which   is   very   energy   intensive,   usually   including  of  large  fans,  air-­‐conditioning  and  heating  components.  

 

Therefore   it   is   also   of   much   importance   for   this   area   to   consider   proper   type   of   ventilation  system  with  cost  effective  low  energy  consumption  rate.  Proper  ventilation   should  be  continuously  monitored  and  that  is  why  the  house  must  be  provided  with  a   ventilation   system.   Below,   brief   descriptions   of   different   techniques   being   used   in   Hammarby  Sjöstad  are  given.  

 

Five  different  methods  of  ventilation  are  as  follows:  

 

• S  =  Natural  ventilation  (Självdrag)  

• F=  Mechanical  exhaust  air  system  (Mekaniskt  frånluftsystem)  

• FT  =  Mechanical  exhaust  and  supply  air  system  (Till-­‐  och  Frånluftsystem)  

(11)

• FTX   =   Mechanical   exhaust   and   supply   air   system   with   heat   recovery   (Från-­‐   och   tilluftsventilation  med  värmeåtervinning)  

• FVP  =  Exhaust  air  heat  pump  (Frånluft  värmepump)   1.2.2.1. Natural  ventilation  (Självdrag)  

 

This  ventilation  system  is  the  most  commonly  used  system  in  private  buildings.  Natural   ventilation   system   is   usually   found   in   older   type   of   buildings   where   the   air   naturally   enters   through   running,   leaks   and   sometimes   through   special   windows.   This   system   works  poorly  in  the  summer  and  provides  overall  uneven  ventilation.  Modern  houses   are   too   tight   and   not   suitable   for   natural   ventilation.   Besides,   the   air   coming   into   the   house  is  not  filtered  which  can  cause  problem  for  the  tenants.  

• Advantage  of  Natural  ventilation  

− It  is  inexpensive  to  install    

− It  is  maintenance-­‐free  (doesn’t  require  regular  maintenance)  

• Disadvantages  of  Natural  ventilation  

− It  is  extremely  weather  dependent    

− It  doesn’t  provide  a  proper  thermal  comfort  

− It  is  difficult  to  control  supply  air  

1.2.2.2. Mechanical  exhaust  air  or  extraction  system  (Mekaniskt  frånluftsystem)    

It  is  a  common  type  of  ventilation  in  houses  today.  The  basis  is  to  "pull"  the  air  through   the   house   and   creating   negative   pressure.  A   centrally   located   fan   sucks   the   air   continuously  in  moderation.  The  fan  can  be  mounted  on  different  places  such  as  roof  or   stove  hood.    

 

Controlling  the  flow  is  done  either  by  a  separate  speed  control  or  stove  hood  controls.  

Supply   air/fresh   air   enters   through   the   vent   in   the   living   areas   or   grilles   in   windows.  Fresh  air  is  taken  in  the  same  way  as  in  “S”  system  and  the  inconveniency  of   the  unfiltered  air  remains.    

• Advantages  of  Mechanical  exhaust  air    

− It  often  provides  good  ventilation    

− It  is  rather  inexpensive  to  install    

• Disadvantages  of  Mechanical  exhaust  air    

− Ventilation  can  be  noisy  

− Operating  expenses  are  high  

− There  is  often  little  or  no  recovery    

− It  is  difficult  to  control  the  supply  air  

1.2.2.3. Mechanical  exhaust  and  supply  air  system  (Till  -­‐  och  Frånluftsystem)    

It   is   an   unusual   way   of   ventilation,   which   is   not   allowed   nowadays   in   new   constructions.  The   basic   principle   of   ventilation   is   to   take   in   the   fresh   air   (supply)  

(12)

through  clean  spaces  such  as  bedrooms  and  living  room  while  taking  out  the  used  air   (exhaust)   through   the   kitchen   and   bathroom.   In   systems   with   controlled   airflow   can   have  both  supply  and  exhaust  air  in  the  same  room.  (energimyndigheten,  2013)  

• Advantage  of  Mechanical  exhaust  and  supply  air  system    

− It  provides  very  good  and  controlled  indoor  air.    

• Disadvantages  of  Mechanical  exhaust  and  supply  air  system  

− It  is  quite  expensive  to  install    

− Ventilation  can  be  noisy  

− Operating  expenses  are  high  

− There  is  no  recovery  

1.2.2.4. Mechanical  exhaust  and  supply  air  system  with  heat  recovery  (Från  -­‐  och   tilluftsventilation  med  värmeåtervinning)  

 

This   technique   is   very   similar   to   FT   ventilation   system.   A   heat   exchanger   in   the   air-­‐

handling   unit   recycles   the   heat   from   the   exhaust   air   to   preheat   the   supply   air   before   entering   the   building.     This   technique   can   potentially   recover   about   30-­‐60%   of   the   exhaust  heat.  

 

Fans  can  be  mounted  to  the  attic,  roof  or  adjacent  to  the  hood.  Controlling  the  flow  is   done  either  with  a  separate  speed  control  or  with  stove  hood  controls.    

• Advantages  of  Mechanical  exhaust  and  supply  air  system  with  heat  recovery  

− Recycling  heat  from  exhaust  air  results  in  a  higher  efficiency  

− It  provides  good  air  quality  thanks  to  controlled  supply  and  exhaust  air  

• Disadvantages  of  Mechanical  exhaust  and  supply  air  system  with  heat  recovery    

− It  is  expensive  to  install    

− Operating  expenses  are  high  (It  requires  more  maintenance  than  other  systems)  

− Ventilation  can  be  noisy.  (There  is  some  risk  of  noise  if  the  unit  is  not  installed   properly)  

1.2.2.5. Exhaust  air  heat  pump  (Frånluft  värmepump)    

The  apparent  efficiency  or  coefficient  of  performance  (COP)  of  a  heat  pump  can  reach   up   to   500%.   The   working   principle   of   a   heat   pump   is   basically   the   same   as   in   a   refrigerator.    

 

Exhaust   air   heat   pump   recovers   heat   from   the   ventilation  system   exhaust   air.  

Afterward,   The   recovered   energy   will   be   transferred   through   a   heat   exchanger   in   air   handling   unit   thus   warming   the   fresh   air.   The   exhaust   air   heat   pump   can   be   used   for   water  heating  during  the  hot  season  when  the  fresh  air  does  not  need  to  be  pre-­‐heated.  

• Advantages  of  exhaust  air  heat  pump  (FVP):  

− The   installation   is   relatively   easy,   especially   for   the   buildings   with   F-­‐type   of   ventilation  system  

(13)

− It   is   a   complete   package   that   can   provide   heat,   hot   water,   ventilation   and   heat   recovery  

− In   comparison   to   FTX,   more   heat   can   be   extracted   by   this   method.   In   fact,   the   amount  of  heat  is  limited  to  the  sensible  heat  in  the  ventilated  air  which  means   that   it   corresponds   to   the   energy   extracted   when   the   air   is   cooled   and   dehumidified  from  20C  to  the  ambient  temperature  

• Disadvantage  of  exhaust  air  heat  pump  (FVP):  

− It  is  expensive  to  install  for  old  buildings  with  natural  ventilation  system  since  a   duct  system  is  required  to  be  built  

 

1.3. Objectives    

A   number   of   evaluations   and   research   projects   have   been   performed   focusing   on   different   aspects   of   sustainable   development   of   Hammarby   Sjöstad.   Hellström   conducted  a  research  with  a  focus  on  Hammarby  model  (Hellström,  2005),  Engberg  and   Svane   worked   on   the   implementation   of   the   Environmental   strategy   (Engberg,   2007)   and  the  evaluation  of  environmental  profile  of  Hammarby  Sjöstad  was  investigated  by   the   department   of   industrial   ecology   at   KTH   (Sofie   Pandis   Iverot,   2011).   However,   despite   the   great   effort   regarding   the   reduction   of   energy   consumption   in   real   estate   sector   in   Hammarby   Sjöstad,   most   of   the   buildings   have   not   reached   the   projected   efficiency  during  the  design  phase.    

 

Therefore,  the  main  objective  of  this  research  study  is  to  investigate  this  problem  and   formulate   cost-­‐effective,   high   performance   solutions   in   order   to   increase   the   overall   efficiency  of  the  buildings  in  Hammarby  area.  In  this  study  a  “Case  Study”  methodology   has   been   performed   with   literature   studies,   in-­‐depth   interviews,   seminars   and   gathering   of   quantitative   data,   concerning   the   operational   goals   of   the   environmental   program  of  Hammarby  Sjöstad.  

 

To   gather   the   required   data,   meetings   with   different   organizations   were   scheduled.  

More   than   15   important   parameters   were   gathered   for   more   than   100   buildings   in   Hammarby  Sjöstad.  Going  through  all  the  data,  some  relations  were  discovered  which   led  to  interesting  yet  simple  reasons  for  the  low  energy  efficiency  of  the  buildings  in  the   area.   Patterns   were   recognized   however   they   had   to   be   evaluated   and   their   accuracy   had   to   be   tested.   To   have   a   better   sense   of   the   problem   and   to   further   evaluate   the   performance   of   the   buildings,   Energy   audits   were   done   with   the   help   of   an   energy   expert,   Willy   Ociansson,   for   12   selected   BRFs.   The   aforementioned   buildings   were   visited  and  their  performance  was  checked  in  detail  to  further  prove  the  pattern  results.  

Different   parameters   were   considered   during   the   visits   including   the   architecture,   technical   installations   and   maintenance.   Meanwhile,   by   taking   advantage   of   the   DesignBuilder   software,   a   number   of   simulations   were   performed   in   order   to   further   examine  the  previous  findings.  

 

(14)

2. Methodology    

2.1. Overview    

To  achieve  the  objectives  of  this  study  the  research  process  was  structured  within  seven   different  phases  as  follows:  

 

• Data  gathering  and  database  creation  

• Energy  mapping  

• Pattern  recognition  

• Energy  inspection  

• Measurement  techniques  

• Building  energy  simulation  

• Result  analysis  and  presenting  practical  proposals    

2.2. Data  gathering  and  data  base  creation    

In  this  stage  of  the  study,  literature  studies  were  carried  out  in  order  to  get  an  overall   view   and   a   better   understanding   about   the   problem.   Considering   the   involvement   of   HS2020/Energi   in   initiation   of   this   project,   the   baseline   for   low   energy   consumption   goal   was   set   at   100   kWh/(m2.year)   for   the   existing   buildings   in   Hammarby   Sjöstad.  

Therefore,   creating   a   database   for   more   than   one   hundred   buildings   to   illustrate   the   current  situation  in  energy  consumption  seemed  to  be  a  fundamental  need  to  begin  the   project.  

 

Database   generation   has   begun   based   on   a   primary   excel   sheet   received   from   the   Stockholm  county  environmental  administration  (Stockholmsstad  Miljöförvaltningen).  

 

The  database  was  categorized  based  on  known  priorities  and  different  parameters  were   chosen   by   the   board   members   of   the   HS2020/Energi   to   be   included   in   the   database.    

These  parameters  are  as  follows:  

 

• Energy  declaration  date  

• Building’s  built  year  

• Address  

• Location  on  the  map  

• Owner  

• Tenant  owner’s  association  (BRF  or  bostadsrättsföreningar)  

• Membership   in   Hammarby   Sjöstad   local   association   (Medlemskap   i   sjöstadsföreningen)  

• Name  of  property  (Fastighetsbeteckning)  

• Constructor  (Byggherre,  “The  organization  initiating  the  construction,  the  owner”)  

• Architect  company  

• Entrepreneur  

• Atemp,  m2  (Areas  that  are  intended  to  be  heated  to  over  10  degrees  Celsius)  

(15)

• BOA,   m2   (Boarea,   The   living   space   together   with   the   auxiliary   areas   building   floor   space)  

• LOA,  m2  (Area  of  the  premises  including  garage)  

• Number  of  apartments  in  the  building  

• Number  of  stairways  

• Specific  Energy  Consumption,  kWh/(m2.year)  

• Share  of  electricity  usage  in  Specific  Energy  Consumption,  kWh/(m2.year)  

• Ventilation  system  type  

• OVK  status  (Mandatory  ventilation  control)  

• Visited  buildings  (This  refers  to  the  buildings  which  have  been  visited  by  the  energy   expert  during  the  preparation  of  energy  declaration)  

• Avgift   (fee   per   Square   meter:   This   is   a   monthly   fee   which   will   cover   the   common   costs,   such   as   property   maintenance,   repairs,   heating,   garbage   collection,   administration,   and   the   association's   expense.   This   fee   normally   must   be   paid   no   later  than  the  last  working  day  before  the  new  month  begins)    

• Maintenance  company  (Driftfirma)  

• Technical  Installation  

• Comments  and  additional  information    

Considering   the   importance,   availability   and   time,   different   meetings   and   interviews   were   scheduled,   questionnaires   were   sent   via   email   or   telephone   conversations   and   energy  declaration  documents  beside  some  dated  maps  were  fetched  from  Stockholm   energy  centrum.    

 

Some  of  the  data  resources  include:  

 

• Boverket  (Energy  declarations)  

• Stockholms  stad  (Energy  and  environment  department)  

• BRFs  (bostadsrättsföreningar  or  condominium  associations)  

• Sjöstadsföreningen  (Hammarby  Sjöstad  local  association)  

• Fortum  

• Riksbyggen  

• KTH  

• Glashus  Ett  

• Other  sources    

Database  generation  happened  to  be  the  most  time  consuming  and  complicated  phase   of   this   project.   The   list   below   shows   different   type   of   questions   in   the   questionnaire,   which   has   been   used   in   the   meetings   and   interviews   with   condominium   associations   (BRF’s)  based  on  priorities  of  HS2020/Energi.  Some  of  the  main  questions  include:    

 

• Who  are  the  “Byggherre/Entreprenör/Arkitekt”  of  this  building  

• Who   is/was   responsible   for   maintenance   and   which   type   of   contract   do   you   have   with   them?   When   is/was   the   expiry   date   of   this   contract?   Any   contact   person   for   future   follow-­‐up?   (Avtal   med   vilken   driftfirma?   Avtalet   löper   ut   när?  

Kontaktperson?)  

• Does   BRF   own   the   flats   or   is   it   a   “renting   out”   type   (Allmännyttig/hyresrätt   eller   BRF?)    

(16)

• How  is  the  monthly  Fee  per  m2  (Avgift  per  kvm)?  

• Technical  installations    

• Is  garage  heated  (Värmda  garage)    

• Is  there  electricity  heating  in  downpipes  (Elvärme  i  stuprör)  

• Is   there   individual   hot   water   measurement?   (Individuell   mätning   av   värme-­‐

varmvatten)  

• How  is  the  remaining  guaranty  time  (Kvarstående  garantiärenden)    

 In  conclusion,  some  factors  were  chosen  as  “General  Factor”  which  were  collected  for  all   of   the   buildings   and   were   further   used   in   Energy   Mapping   and   Pattern   Recognition   phase.  Other  factors,  has  been  considered  as  “Special  Factors”  which  has  been  gathered   more  in  detail  for  Energy  Inspection  phase  and  have  been  used  in  Pattern  Recognition,   Building  Energy  Simulation  and  also  Presenting  Practical  Proposal.  

 

2.3. Energy  mapping    

A   basic   energy   map   of   Hamarby   Sjöstad   was   created   previously   however,   the   new   database  made  it  possible  to  have  a  more  detailed  and  more  precise  mapping  solution   for  the  area.  The  purpose  of  this  phase  has  been  to  provide  sufficient  data  for  energy   consumption   visualization.   Some   practical   issues   have   been   discussed   about   the   real   time  visualization.  

 

Regarding   the   real   time   visualization,   considering   the   previous   mapping   by   “Mikael   Östling”  and  also  meeting  Greencon  Company,  it  has  been  concluded  that  there  are  not   enough  means  to  finance  real  time  visualization  at  this  stage.  

 

2.4. Pattern  recognition    

The  comprehensive  database  has  made  it  possible  to  perform  a  proper  and  up  to  date   energy   mapping.   Furthermore,   this   huge   source   of   data   has   been   utilized   in   order   to   search,   discover,   discuss   and   analyze   some   patterns   among   the   existing   buildings   in   Hammarby  Sjöstad  and  derive  conclusions  to  detect  unseen  problems  and  come  up  with   proposals  to  reduce  or  eliminate  the  negative  effect  and  even  in  some  cases,  practical   solutions  are  suggested.    

 

The  investigated  patterns  are  presented  as  follows:  

 

• Energy  consumption  versus  building’s  built  year  

• Electricity  consumption  versus  building’s  built  year  

• Energy  consumption  versus  Byggherre1  

• Privat  &  Allmännyttan  versus  Energy  Consumption  

• Ventilation  type  versus  specific  energy  consumption  (Teknisk  installation  -­‐  Specifik   energianvändning)  

                                                                                                               

(17)

• Electricity   usage   versus   total   energy   consumption   (El   användning   -­‐   Totalt   energiförbrukning)  

• OVK   (Mandatory   Ventilation   Control)   status   versus   specific   energy   consumption   (OVK  status  -­‐  Specifik  energianvändning)  

• IR-­‐photos    

Each  pattern  will  be  explained  and  discussed  in  detail  in  the  results  and  discussion  part   of  this  report.  

 

2.5. Energy  inspection    

Twelve   different   condominium   associations   (bostadsrättsföreningar   or   BRFs)   have   been  visited  one  by  one  and  inspected  in  collaboration  with  Willy  Ociansson,  the  award   winning  energy  expert  in  energy  efficiency  from  Karlstad.  An  abstract  report  with  the   most  important  headlines  of  the  inspection  results  has  been  prepared  and  sent  out  to   each   condominium   association   (BRF)   to   indicate   general   and   special   deficiencies   and   help  them  to  obtain  a  better  understanding  of  the  situation  and  give  them  the  possibility   of   planning   to   take   relevant   action   to   tackle   (at   least   some   of   those)   problems.   The   detailed   results   together   with   proposals   for   lowering   the   energy   consumption   and   improve  indoor  climate  will  be  presented  in  the  results  and  discussion  part.  

 

2.6. Measurement  techniques    

The   different   measurement   techniques   have   been   studied.   Moreover,   the   available   measurement  instruments  in  technical  installations  have  been  investigated.  Considering   the   importance   of   access   to   real   time   data,   a   considerable   amount   of   time   have   been   spent   on   searching   for   the   best   way   to   get   hold   of   such   data.   The   findings   will   be   presented  in  the  results  and  discussion  section.  

 

Furthermore,  the  placement  of  the  measuring  instruments  according  to  their  relevant   functions   has   been   assessed   during   the   energy   inspections.   Possible   adjustments   and/or  replacement  are  presented  in  the  proposal  phase.  

 

2.7. Building  energy  simulation    

Currently,   many   different   factors   should   be   taken   into   consideration   and   balanced   accordingly   to   provide   well-­‐functioned,   comfortable   and   good   quality   buildings.  

Besides,   buildings   must   comply   with   building   regulations,   the   environmental   impacts   must   be   reduced   and   the   current   energy   systems   should   be   optimized   in   order   to   decrease  the  energy  consumption  (and  consequently  energy  costs).  

 

To  accomplish  the  goal  of  this  study  and  complete  the  framework,  a  sample  building  has   been  modeled  with  building  performance  analysis  software  called  DesignBuilder.  This   software  is  acknowledged  as  the  most  comprehensive  interface   to   the   state   of   the   art   EnergyPlus  building  simulator.  (DesignBuilder)  

 

(18)

A   number   of   parameters   such   as   building   type,   windows   size,   glazing   type,   etc.   were   assumed   in   the   simulation   to   be   able   to   perform   a   comparison   of   different   building   designs  and  their  performance.  The  results  will  be  illustrated  and  discussed  in  detail  in   results  and  discussion  section.  

 

2.8. Analysis  results  and  practical  proposals    

At   last,   the   results   of   all   the   previously   mentioned   phases   were   presented,   discussed   and   analyzed.   Finally,   considering   different   assessment   methods,   evaluations   overall   understanding   of   the   situation,   some   practical   proposals   are   provided   for   different   cases  in  order  to  reduce  (and  in  some  cases  minimize)  the  total  energy  consumption.    

                                                                   

(19)

3. Results  and  Discussions  

3.1. Energy  mapping    

Energy  mapping  helps  with  providing  municipalities,  researchers  and  utilities  a  simple   way   to   evaluate   existing   energy   use   in   a   community   and   plan   to   improve   energy   efficiency   by   means   of   utilizing   better   building   standards   and   alternative   energy   resources.    

 

The   mapping   process   represents   the   idea   that   maximizing   the   energy   efficiency   in   Hammarby   area   requires   planning   to   go   beyond   integration   of   transportation   issues,   improvements   in   the   built   environment   and   orientation   of   the   buildings   but   making   sure  that  unavoidable  energy  needs  are  met  in  the  most  effective  way,  such  as  obtaining   the  highest  and  best  use  from  a  given  primary-­‐energy  resource.    

 

Inputs  to  energy  mapping  can  potentially  maximize  the  amount  of  energy  savings  and   greenhouse  gas  (GHG)  emissions  reduction.  The  mapping  itself  is  the  means  by  which   these  enhancements  are  communicated  to  researchers,  decision  makers  and  end  users.  

 

To   maintain   the   economic   attractiveness   and   competitiveness   of   a   community,   a   futuristic   municipal   long   term   planning   for   maintaining   and   encouraging   access   to   secure,  affordable  sources  of  energy  is  required.    

 

Figure  3.1:  Energy  mapping  of  Hammarby  Sjöstad    

 Considering   the   positive   aspects   of   energy   mapping   process   and   based   on   a   primary   database,  a  basic  visualization  map  was  designed  (Fig.  3.1)  to  illustrate  the  purpose  of   energy  mapping  in  Hammarby  area.  With  completion  of  this  study,  the  newly  generated   comprehensive  database  has  made  it  possible  for  the  design  group  to  prepare  a  more   detailed  and  precise  mapping  solution  for  HS2020  project.    

 

(20)

In  this  study,  the  purpose  of  this  phase  has  been  to  provide  sufficient  data  for  energy   consumption  visualization  and  some  practical  issues  have  been  discussed  about  the  real   time   visualization.   In   this   map,   users   will   be   able   to   find   details   of   real   time,   monthly   and   annual   energy   consumption   data   for   individual   buildings   across   the   Hammarby   area   derived   from   statistical   data   and   broken   down   into   specific   energy   uses   like   electricity  and  district  heating.    

 The   red   blocks   represent   the   buildings   with   the   highest   specific   energy   consumption   and  the  green  blocks  represent  the  buildings  with  the  best  (i.e.  lowest)  specific  energy   consumption.   The   other   colors   represent   the   buildings   with   the   specific   energy   consumption  in  between.  

 

3.2. Pattern  Recognition  

3.2.1. Specific  energy  consumption  vs.  Built  year    

As  it  is  shown  in  the  figure  below  (Fig.  3.2),  buildings  in  Hammarby  Sjöstad,  which  are   considered   in   this   study,   were   built   during   a   60   years   period   from   1944   till   2012.  

However,  the  vast  majority  of  these  buildings  were  built  in  a  15  years  period  from  1997   to  2012  as  illustrated  in  the  figure  below.  

 

Figure  3.2:  Specific  energy  consumption  vs.  Built  year      

Red  bars  in  the  figure  represent  the  specific  energy  consumption  (only  district  heating)   and  the  black  horizontal  line  represents  the  100  kWh/(m2.year)  goal  of  HS2020/Energi   project.   Considering   the   technology   development,   environmental   goals   and   increased   public   awareness,   one   would   expect   the   energy   consumption   in   the   buildings   to   be   decreased  during  this  period  of  time.  However,  as  it's  shown  in  the  figure,  there  is  no   notable  change  in  specific  energy  consumption  from  1944  to  2012.  

 

(21)

In   the   next   figure   (Fig.   3.3),   the   amount   of   energy   as   electricity2  from   total   specific   energy  is  shown  in  the  same  period  of  time  (blue  bars).  In  this  figure  once  again  the  red   bars  represent  the  specific  energy  consumption  (only  district  heating).  Once  again,  by   introduction  of  efficient  electrical  instruments,  appliances,  lamps  and  etc.,  the  electricity   consumption   could   have   been   decreased;   however   the   figure   represents   no   special   trend.      

 

Figure  3.3:  Specific  energy  consumption,  Electricity  usage  vs.  Built  year    

Several   parameters   have   been   considered   in   this   study   to   find   out   about   the   reasons   behind  the  high  rate  of  energy  consumption  in  new  buildings.    

 Most  of  the  considered  parameters  are  set  into  two  different  categories  as  follows:  

 

• Architecture  

• Energy  efficient  installation    

3.2.1.1. Architecture    

After   the   energy   crisis   of   the   1970's,   an   entirely   different   building   design   approach   began   to   take   hold   toward   saving   energy.     Small   windows   along   with   tight   building   envelope  resulted  in  lower  energy  consumption  comparing  to  past  1970s.      

 

Buildings   were   sealed   without   thought   of   the   importance   of   fresh   air   and   proper   ventilation.   The   new,   tight,   energy   efficient   buildings   did   not   perform   properly   in   ventilating   the   indoor   pollutants,   thereby   creating   a   whole   host   of   problems.     Also,   hidden   moisture   problems   due   to   tight   construction   began   to   surface,   which   were   leading  to  an  increasing  incidence  of  mold  growth  and  related  health  problems.  (Center   of  desease  control  and  prevention,  2013)  

 Tight,  energy  efficient  construction  to  save  energy  is  an  excellent  idea,  so  is  the  fresh  air   and   no   interior   moisture   problems.   Attention   has   to   be   focused   on   the   importance   of   good   indoor   air   quality   and   its   effect   on   health.   Good   building   practices   and   proper                                                                                                                  

2      It  is  only  the  external  electricity  usage  of  the  building  that  is  considered  here.  The  individual  electricity  usage  of   each  apartment  is  NOT  included.  

References

Related documents

Keywords: Stockholm, LIP, Hammarby Sjöstad, Sustainability, Innovation, Planning, Policy, Translation, Actor-Network Theory, Laboratory, Project, Urban Specialists?. © Copyright

Arvode till styrelsen utgår enligt beslut på årsstämman och för 2007 uppgick arvodet till totalt 2 405 tkr, varav ordförande erhållit 365 tkr samt en extra ersättning för arbe- te

Området kommer i sin helhet fär 200 hektar mellan Skanstull och Danvikstull på båda att rymma ca 8000 nya lägenheter för 20 000 invånare sidor om Hammarby sjö.. att rymma ca

In order to be attractive to future tenants, as well as save energy and money, and be environmentally friendly, the owners of Magasin 6 should take into

By visualizing their heating demand and consumption, including the inside temperature of the apartment, people could turn down their radiator in order to decrease

with

Det har inte varit möjligt att skapa en tydlig överblick över hur FoI-verksamheten på Energimyndigheten bidrar till målet, det vill säga hur målen påverkar resursprioriteringar

When a conventional industrial motor is compared with high efficient motors, it is inferred that 90 percent of the conventional industrial motors cannot adjust their operation to