• No results found

Dark Matter Detectors

N/A
N/A
Protected

Academic year: 2022

Share "Dark Matter Detectors"

Copied!
29
0
0

Loading.... (view fulltext now)

Full text

(1)

Future Noble Liquid

Dark Matter Detectors

Patrick Decowski

GRAPPA - University of Amsterdam / Nikhef decowski@nikhef.nl

May 2013 - Latest Results in Dark Matter Searches

(2)

Patrick Decowski - Nikhef

Monolithic detectors

Good self-shielding and homogenous, with high electron mobility

Inert and excellent scintillators

Noble Gases

  Unit Argon Xenon

Z 18 54

A 40 ~132

Liquid Density g/cm3 1.4 3.06

Energy Loss (dE/dX) MeV/cm 2.1 3.8

Radiation Length cm 14 2.8

Boiling Point @ 1 bar oK 87.3 165

Scintillation Wavelength nm 125 175

Scintillation ph/keV 40 42

Ionization e-/keV 42 64

Lifetime of triplet molecule ns 1600 22

Background Isotope   39Ar (1 Bq/kg) 136Xe

Price $ (but UAr) $$$

WIMP-nucleon spin-independent cross section grows as A2

→ Using xenon attractive

(3)

Particle-dependent Response

χ, n β,ɣ

Image E.Pantic

(4)

Patrick Decowski - Nikhef/UvA

Use ratio of fast-to-slow signal components

Need many photons

Works well in

LAr, LNe

But also in

LXe, NaI, CsI

Pulse Shape Discrimination

Electron Recoil Nuclear Recoil

t t

Signal size

DEAP/CLEAN, KIMS, DarkSide, XMASS etc.

Possible to achieve very high ER/NR discrimination

Using scintillation light:

Typical ER/NR discrimination:

LXe [no PSD]: 99.75%

LAr [with PSD]: 99.9999%

(5)

General Considerations

Liquid

S1

Gas Liquid

S1 S2

E ee-- e-

Single Phase Dual Phase

(6)

Patrick Decowski - Nikhef/UvA

General Considerations

Single Phase Dual Phase

Simple design

4pi PMT coverage

Position reconstruction ~cm

Large detector scalability

Electron drift allows ER / NR discrimination

Position reconstruction ~mm

Scalability up to a certain degree, then modularity

(7)

General Considerations

Single Phase Dual Phase

Simple design

4pi PMT coverage

Position reconstruction ~cm

Large detector scalability

Electron drift allows ER / NR discrimination

Position reconstruction ~mm

Scalability up to a certain degree, then modularity

Argon Xenon

Cheap material

Pulse shape discrimination capability

Does not have 2ν2β decay isotope

No isotope with spin

39Ar decays at 1Bq/kg → underground argon

Higher energy thresholds

Attractive WIMP-nucleon SI cross section scaling

Excellent self-shielding

Spin-dependent couplings

Other than 136Xe no natural radioactive isotopes

Expensive per unit mass

(8)

Patrick Decowski - Nikhef/UvA

Kamioka Gran Sasso (LNGS)

Frejus (LSM) SNOLab

SURF

Underground Labs with DM Experiments

Soudan Boulby

Yangyang JinPing

South Pole Canfranc

(9)

Kamioka Gran Sasso (LNGS)

Frejus (LSM) SNOLab

SURF

Underground Labs with DM Experiments

Soudan Boulby

Yangyang JinPing

South Pole Canfranc

(10)

Patrick Decowski - Nikhef

DEAP-3600

@SNOLAB

Ar:

1000kg FV / 3600kg total

Initially using atmospheric Ar

Plan to also use UAr

255 high-QE PMTs

50cm light guides for n- moderation

Pulse Shape Discrimination

DEAP-1: 3x10-8 suppression

Detector in 8m Water Tank

Installation underway

Start science in Oct 2014, 1st results in early 2015

(11)

DEAP-3600

@SNOLAB

Ar:

1000kg FV / 3600kg total

Initially using atmospheric Ar

Plan to also use UAr

255 high-QE PMTs

50cm light guides for n- moderation

Pulse Shape Discrimination

DEAP-1: 3x10-8 suppression

Detector in 8m Water Tank

Installation underway

Start science in Oct 2014, 1st results in early 2015

Depleted Ar 3000 kg-yr

(12)

Patrick Decowski - Nikhef/UvA

DEAP-3600

DEAP

(13)

XMASS

100kg / 835kg

Dark Matter

Commissioning Run

BG among the lowest achieved so far:

8.2±0.5 mBq 222Rn

<0.28 mBg 220Rn

< 2.7 ppt natKr

14.7 PE/keV

1ton / 5ton

Dark Matter “XENON1T sensitivity”

Construction 2014-2015

Science 2016

10ton / 25ton

Multi-purpose:

DM

solar pp-ν

0ν2β

XMASS-1 XMASS-1.5 XMASS-II

(14)

Patrick Decowski - Nikhef/UvA

XMASS Background

All 680 PMTs

Original

Cu ring around PMTs

Cu plate over gaps in rings

→ New PMTs for XMASS 1.5

Al Seal with 238U & 210Pb

ev/day/keV/kg

MC assuming Al contamination Data

Expected MC

XMASS-I Refurbishment

Refurbishment reduced BG to 1/100

(15)

DarkSide-G2

Scale up of DS-50, using same Boron loaded Liq. Scint. neutron veto system

~3.6t fiducial / 3.8t active LUAr (e.g.

depleted 39Ar)

Will use both S2/S1 identification and Pulse Shape Discrimination

Allows excellent BG rejection

If funded, commissioning in 2017

558 3” PMTs

@LNGS

(16)

Patrick Decowski - Nikhef

@Jinping

Everything built for 1 ton target, staged approach:

Phase-1a:

25kg fiducial / 120kg total [ongoing]

Phase-1b:

300kg fiducial / 500kg total

Phase-2:

1 ton fiducial / 1.5 total

Phase-1a science run started ~Feb 2014

Phase-1b late 2014

PandaX

142x R8250 PMTs

37x R11410 PMTs

(17)

Projected PandaX Sensitivity

(100 days x 25 kg)

(1yr x 300 kg)

Phase-1a: 25 kg [ongoing]

Phase-1b: 300 kg

(18)

Patrick Decowski - Nikhef/UvA

LZ

8 tons Xe - 5.6t fiducial

Reuse LUX watertank

New Gd-LS for (α,n) and spallation-n veto

Pending funding,

installation start 2016 HV

25 tons Gd-LS

2x241 PMTs

1.5m

@SURF

(19)

LZ Fiducial Claim

With nothing:

→2.8ton FV

Xe veto optically separated from main

TPC

→4.1ton FV

CLAIM:

Xe veto+Gd-LAB

→5.6ton FV

(20)

Patrick Decowski - Nikhef/UvA

XENON1T

1.1m

XENON1T

1.4m

XENONnT

Double amount of LXe (~7 tons), ~double # PMTs Design XENON1T with as much reuse as possible

(21)

Calibration Aspects

LZ DarkSide-G2

How to bring calibration sources close to the detector?

“Articulated Arm”

In-situ calibration of ER

Tritium

83mKr

Neutron sources

DD

YBe

AmLi

(22)

Patrick Decowski - Nikhef/UvA

DARWIN: the ultimate DM detector

~400 3” PMTs

~500 3” PMTs

21t LXe total → 14t Fiducial

Ar Xe

ASPERA Design Study

Start construction in 2020

(23)

Energy [keV]

0 500 1000 1500 2000 2500

]-1 keV× -1 y× -1 t×Rate [evts -1

10 1 10 102

Total

Materials

222Rn

85Kr

β β 2ν

7Be pp+

Fiducial Mass [t]

2 4 6 8 10 12 14 16

]-1 y× -1 t×Rate in ROI [evts

1 10 102

Materials

85Kr β

β 2ν

Total β

β Total w/o 2ν

7Be pp+

222Rn

L. Baudis et al, arXiv:1309.7024

2-30keV

0.1ppt of natKr

DARWIN

0.1 μBq/kg 222Rn

Background dominated by solar & 2ν2β neutrinos

(24)

Patrick Decowski - Nikhef/UvA

Neutrino fluxes

Neutrino background will start to dominate

Solar neutrinos

Atmospheric neutrinos

Electronic recoil discrimination

Finite discrimination→ if sufficient ER events, they will leak into NR

Coherent Neutrino Scattering

Nuclear recoil!

Neutrino Energy [MeV]

10-1 1 10 102 103

]-1 .MeV-1 .s-2 Neutrino Flux [cm

10-3

1 103

106

109

1012

1013

pp pep hep

7Be_384.3keV 7Be_861.3keV 8B

13N 15O 17F dsnbflux_8 dsnbflux_5 dsnbflux_3 AtmNu_e AtmNu_ebar AtmNu_mu AtmNu_mubar

J. Billard et al, arXiv:1307.5458

(25)

Neutrino Backgrounds

Energy [keV]

1 2 3 4 5 6 7 8 10 20 30 40 102

]-1 keV× -1 y× -1 t×Rate [evts -3

10 10-2

10-1

7Be pp+

WIMP 100 GeV/c2

WIMP 40 GeV/c2

β β 2ν

cm2

10-47

2× cm2

10-48

2×

Energy [keV]

10-1

4× 1 2 3 4 5 6 7 8 910 20

]-1 keV× -1 y× -1 t×Rate [evts -310

10-2

10-1

1 10 102

WIMP 100 GeV/c2

WIMP 40 GeV/c2

WIMP 6 GeV/c2

: Sum ν

8B ν:

: atm ν

: DSNB ν

: hep

ν 2×10-47 cm2

cm2

10-48

2×

cm2

10-45

4×

ν + N → ν + N ν + e- → ν + e-

L. Baudis et al, arXiv:1309.7024

ER/NR 99.5%, 50% NR accept

Expected recoil spectra in Xe

(26)

Patrick Decowski - Nikhef/UvA

Ultimate limits

Adapted from SNOWMASS Report arXiv:1310.8327

1 10 100 1000 104

10 50 10 49 10 48 10 47 10 46 10 45 10 44 10 43 10 42 10 41 10 40 10 39

10 14 10 13 10 12 10 11 10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3

WIMP Mass GeV c2

WIMPnucleoncrosssectioncm2 WIMPnucleoncrosssectionpb

8B Neutrinos

Atmospheric and DSNB Neutrinos

CDMS II Ge (2009) Xenon100 (2012)

CRESST CoGeNT (2012)

CDMS Si (2013)

EDELWEISS (2011)

DAMA SIMPLE (2012)

ZEPLIN-III (2012) COUPP (2012)

7Be

Neutrinos

NEUTR

INO C OHER ENT SCATTERIN G

NEUTRINO COHERENT SCATTERING

(27)

Ultimate limits

1 10 100 1000 104

10 50 10 49 10 48 10 47 10 46 10 45 10 44 10 43 10 42 10 41 10 40 10 39

10 14 10 13 10 12 10 11 10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3

WIMP Mass GeV c2

WIMPnucleoncrosssectioncm2 WIMPnucleoncrosssectionpb

8B Neutrinos

Atmospheric and DSNB Neutrinos

CDMS II Ge (2009) Xenon100 (2012)

CRESST CoGeNT (2012)

CDMS Si (2013)

EDELWEISS (2011)

DAMA SIMPLE (2012)

ZEPLIN-III (2012) COUPP (2012)

SuperCDMS Soudan Low Threshold SuperCDMS Soudan CDMS-lite

XENON 10 S2 (2013)

CDMS-II Ge Low Threshold (2011)

SuperCDMS Soudan

Xenon1T LZ LUX

DarkSide G2

DarkSide 50

DEAP3600

PICO250-CF3I PICO250-C3F8

SNOLAB SuperCDMS

7Be

Neutrinos

NEUTR

INO C OHER ENT SCATTERIN G

NEUTRINO COHERENT SCATTERING

XENONnT

DARWIN

Adapted from SNOWMASS Report arXiv:1310.8327

(28)

Patrick Decowski - Nikhef/UvA

Reach of Future Detectors

L. Baudis, Physics of the Dark Universe 1, 94 - 108 (2012).

@ Mχ 50-100 GeV

(29)

Conclusions

Due to scalability, many nobel liquid proposals to explore WIMP

parameter space

Next months will bring clarity into

which projects will be selected in the G2-downselect in the US

The ultimate backgrounds will be coming from neutrinos

I hope we will not only discover coherent neutrino scattering…

1 10 100 1000 104

10 50 10 49 10 48 10 47 10 46 10 45 10 44 10 43 10 42 10 41 10 40 10 39

WIMP Mass GeV c2

WIMPnucleoncrosssectioncm2

8B Neutrinos

Atmospheric and DSNB Neutrinos

CDMS II Ge (2009) Xenon100 (2012)

CRESST CoGeNT (2012)

CDMS Si (2013)

EDELWEISS (2011)

DAMA SIMPLE (2012)

ZEPLIN-III (2012) COUPP (2012)

SuperCDMS Soudan Low Threshold SuperCDMS Soudan CDMS-lite

XENON 10 S2 (2013)

CDMS-II Ge Low Threshold (2011)

SuperCDMS Soudan

Xenon1T LZ LUX

DarkSide G2

DarkSide 50

DEAP3600

PICO250-CF3I PICO250-C3F8

SNOLAB SuperCDMS

7Be Neutrinos NEUTR

INO C OHER ENT SCATTERIN G

NEUTRINO COHERENT SCATTERING

XENONnT

DARWIN

References

Related documents

● A different perspective on DM clustering (in phase space) using the Particle Phase Space Average Density (P 2 SAD)?. ● DM annihilation can be computed directly from the P 2 SAD

Gary Mamon (IAP), 11 October 2016, 4th Gaia Challenge, Stockholm, Theia: the new Astrometry Frontier?. Can we better constrain the nature of

The direct implementation of the coalescence model is not much more cumbersome to implement than the energy spectrum approach, and since it yields more physically correct

As one of the important features of the VLTC model, after the chiral symmetry breaking in the T-quark sector the left and right components of the original Dirac T-quark fields

• Indirect detection of particles produced in dark matter annihilation: neutrinos, gamma rays &amp; other e.m!. waves, antiprotons, antideuterons, positrons in ground-

These constraints can be compared to dark matter models explaining a number of recent anomalous results from other indirect and direct dark matter searches. Re- cent measurements by

Tait, Interpreting Dark Matter Direct Detection Independently of the Local Velocity and Density Distribution,

Chapter 7 presents analysis details and results for a search for muon neutrinos from dark matter annihilation in the center of the Sun using the 79-string configuration of the