• No results found

Comments on the q-deformed AdS

N/A
N/A
Protected

Academic year: 2022

Share "Comments on the q-deformed AdS"

Copied!
52
0
0

Full text

(1)

Comments on the q-deformed AdS

5

× S

5

superstring

Sergey Frolov

with Gleb Arutyunov and Riccardo Borsato: 1312.3542 and in progress

Hamilton Mathematics Institute and School of Mathematics, Trinity College Dublin and

Institut f ¨ur Mathematik und Institut f ¨ur Physik, Humboldt-Universit ¨at zu Berlin and

Steklov Mathematical Institute, Moscow

Supersymmetric Field Theories, Nordita, August 15, 2014

(2)

Outline

1

Introduction

2

AdS

5

× S

5



q 3

Small κ limit

4

Large κ limit

5

Folded string

6

RR-fields

7

L.c. gauge and S-matrix

8

Summary

(3)

Motivation

“Harmonic oscillator” of AdS/CFT: Maldacena ’97

IIB strings in AdS5× S5 ⇐⇒ N = 4 SU(N) SYM In planar limit one getsintegrablequantum string sigma model Energies of string states ≡ Scaling dimensions of SYM operators Integrable deformations

Orbifolds

γ-deformedAdS5× S5 (TsT-transformed)

Both can be described by thesameAdS5× S5 action but with twisted boundary conditions for the world-sheet fields

New type of deformation with real parameter Delduc, Magro, Vicedo ’13

Uses solutions of classical YBE Klimcik ’08

We show that the (bosonic part of the) world-sheet S-matrix coincides with thepsuq(2|2) ⊕ psuq(2|2)-invariant S-matrix

psu(2, 2|4) 7−→ psuq(2, 2|4) ⊃ psuq(2|2) ⊕ psuq(2|2)Delduc, Magro, Vicedo ’14

Dual field theory is not Lorentz invariant.

New type of noncommutative field theory?

(4)

Motivation

“Harmonic oscillator” of AdS/CFT: Maldacena ’97

IIB strings in AdS5× S5 ⇐⇒ N = 4 SU(N) SYM In planar limit one getsintegrablequantum string sigma model Energies of string states ≡ Scaling dimensions of SYM operators Integrable deformations

Orbifolds

γ-deformedAdS5× S5 (TsT-transformed)

Both can be described by thesameAdS5× S5 action but with twisted boundary conditions for the world-sheet fields

New type of deformation with real parameter Delduc, Magro, Vicedo ’13

Uses solutions of classical YBE Klimcik ’08

We show that the (bosonic part of the) world-sheet S-matrix coincides with thepsuq(2|2) ⊕ psuq(2|2)-invariant S-matrix

psu(2, 2|4) 7−→ psuq(2, 2|4) ⊃ psuq(2|2) ⊕ psuq(2|2)Delduc, Magro, Vicedo ’14

Dual field theory is not Lorentz invariant.

New type of noncommutative field theory?

(5)

Motivation

“Harmonic oscillator” of AdS/CFT: Maldacena ’97

IIB strings in AdS5× S5 ⇐⇒ N = 4 SU(N) SYM In planar limit one getsintegrablequantum string sigma model Energies of string states ≡ Scaling dimensions of SYM operators Integrable deformations

Orbifolds

γ-deformedAdS5× S5 (TsT-transformed)

Both can be described by thesameAdS5× S5 action but with twisted boundary conditions for the world-sheet fields

New type of deformation with real parameter Delduc, Magro, Vicedo ’13

Uses solutions of classical YBE Klimcik ’08

We show that the (bosonic part of the) world-sheet S-matrix coincides with thepsuq(2|2) ⊕ psuq(2|2)-invariant S-matrix

psu(2, 2|4) 7−→ psuq(2, 2|4) ⊃ psuq(2|2) ⊕ psuq(2|2)Delduc, Magro, Vicedo ’14

Dual field theory is not Lorentz invariant.

New type of noncommutative field theory?

(6)

Motivation

“Harmonic oscillator” of AdS/CFT: Maldacena ’97

IIB strings in AdS5× S5 ⇐⇒ N = 4 SU(N) SYM In planar limit one getsintegrablequantum string sigma model Energies of string states ≡ Scaling dimensions of SYM operators Integrable deformations

Orbifolds

γ-deformedAdS5× S5 (TsT-transformed)

Both can be described by thesameAdS5× S5 action but with twisted boundary conditions for the world-sheet fields

New type of deformation with real parameter Delduc, Magro, Vicedo ’13

Uses solutions of classical YBE Klimcik ’08

We show that the (bosonic part of the) world-sheet S-matrix coincides with thepsuq(2|2) ⊕ psuq(2|2)-invariant S-matrix

psu(2, 2|4) 7−→ psuq(2, 2|4) ⊃ psuq(2|2) ⊕ psuq(2|2)Delduc, Magro, Vicedo ’14

Dual field theory is not Lorentz invariant.

New type of noncommutative field theory?

(7)

Matrix realisation of su(2, 2|4)

M =

 m θ η n



1 str M ≡ tr m − tr n = 0

2 MH + HM = 0 , H =

 Σ 0 0 14

 , Σ =

 12 0 0 −12



3 m= −Σm Σ , n= −n , η= −Σ θ , m ∈ u(2, 2) , n ∈ u(4)

4 Bosonic subalgebra ofsu(2, 2|4):su(2, 2) ⊕ su(4) ⊕u(1)

5 psu(2, 2|4)is aquotient algebraofsu(2, 2|4)over thisu(1)

(8)

Z

4

-grading

M =M(0)+M(1)+M(2)+M(3)

M(0,2)= 12

 m ∓ KmtK−1 0 0 n ∓ KntK−1



M(1,3)= 12

 0 θ ∓iK ηtK−1 η ±iK θtK−1 0



K = diag(−iσ2, −iσ2) M(0)andM(2)are even;M(1)andM(3)are odd M(0)formso(4, 1) ⊕ so(5) ⊂ su(2, 2) ⊕ su(4).

M(2)form the tangent space of the coset SU(2, 2) × SU(4)/SO(4, 1) × SO(5) = AdS5× S5 [M1(k ),M2(m)] =M3(k +m)moduloZ4

Notation:Piare projectors onM(i):Pi(M) = M(i)

(9)

Z

4

-grading

M =M(0)+M(1)+M(2)+M(3)

M(0,2)= 12

 m ∓ KmtK−1 0 0 n ∓ KntK−1



M(1,3)= 12

 0 θ ∓iK ηtK−1 η ±iK θtK−1 0



K = diag(−iσ2, −iσ2) M(0)andM(2)are even;M(1)andM(3)are odd M(0)formso(4, 1) ⊕ so(5) ⊂ su(2, 2) ⊕ su(4).

M(2)form the tangent space of the coset SU(2, 2) × SU(4)/SO(4, 1) × SO(5) = AdS5× S5 [M1(k ),M2(m)] =M3(k +m)moduloZ4

Notation:Piare projectors onM(i):Pi(M) = M(i)

(10)

Strings on AdS

5

× S

5 Metsaev, Tseytlin ’98

Letg∈ SU(2, 2|4). Introduce the one-formA ∈ su(2, 2|4) A = −g−1dg = A(0)+A(2)+A(1)+A(3) Action S =R dσdτL for superstrings onAdS5× S5

L = −g 2 h

γαβstr A(2)α A(2)β  + αβstr A(1)α A(3)β i g = 2παR20 =

λ

, τ σ=1 and γαβ=hαβ

−h, detγ = −1 L = −g

4 γαβ− αβ strh

(P3+2P2− P1)(Aα).Aβ

i

(11)

q-deformed AdS

5

× S

5

: L and R-operator

Delduc, Magro, Vicedo ’13

L = −g

4(1 + η2) γαβ− αβ strh ˜d (Aα) 1

1 − ηRg◦ d(Aβ)i ,

q = e−ν/g, ν =1+η2 Arutyunov, Borsato, SF ’13; Delduc, Magro, Vicedo ’14

Piare projections onM(i):Pi(M) = M(i) d = P1+ 2

1 − η2P2−P3, d = P˜ 3+ 2

1 − η2P2−P1, str A d (B) = str ˜d (A) B Rg(M) = g−1R(gMg−1)g = adjg−1◦ R ◦ adjg(M)

Rsatisfies the modified classical Yang-Baxter equation

[R(M), R(N)]−R [R(M), N]+[M, R(N)] = [M, N] , str R(M) N = −str M R(N)

We choose

R(M)jk =

−i Mjk if j < k 0 if j = k i Mjk if j > k L is invariant underg→ gh,h∈ SO(4, 1) × SO(5) × U(1) L isκ-symmetric, and a Lax connection is known

(12)

q-deformed AdS

5

× S

5

: L and R-operator

Delduc, Magro, Vicedo ’13

L = −g

4(1 + η2) γαβ− αβ strh ˜d (Aα) 1

1 − ηRg◦ d(Aβ)i ,

q = e−ν/g, ν =1+η2 Arutyunov, Borsato, SF ’13; Delduc, Magro, Vicedo ’14

Piare projections onM(i):Pi(M) = M(i) d = P1+ 2

1 − η2P2−P3, d = P˜ 3+ 2

1 − η2P2−P1, str A d (B) = str ˜d (A) B Rg(M) = g−1R(gMg−1)g = adjg−1◦ R ◦ adjg(M)

Rsatisfies the modified classical Yang-Baxter equation

[R(M), R(N)]−R [R(M), N]+[M, R(N)] = [M, N] , str R(M) N = −str M R(N)

We choose

R(M)jk =

−i Mjk if j < k 0 if j = k i Mjk if j > k L is invariant underg→ gh,h∈ SO(4, 1) × SO(5) × U(1) L isκ-symmetric, and a Lax connection is known

(13)

q-deformed AdS

5

× S

5

: L and R-operator

Delduc, Magro, Vicedo ’13

L = −g

4(1 + η2) γαβ− αβ strh ˜d (Aα) 1

1 − ηRg◦ d(Aβ)i ,

q = e−ν/g, ν =1+η2 Arutyunov, Borsato, SF ’13; Delduc, Magro, Vicedo ’14

Piare projections onM(i):Pi(M) = M(i) d = P1+ 2

1 − η2P2−P3, d = P˜ 3+ 2

1 − η2P2−P1, str A d (B) = str ˜d (A) B Rg(M) = g−1R(gMg−1)g = adjg−1◦ R ◦ adjg(M)

Rsatisfies the modified classical Yang-Baxter equation

[R(M), R(N)]−R [R(M), N]+[M, R(N)] = [M, N] , str R(M) N = −str M R(N)

We choose

R(M)jk =

−i Mjk if j < k 0 if j = k i Mjk if j > k L is invariant underg→ gh,h∈ SO(4, 1) × SO(5) × U(1) L isκ-symmetric, and a Lax connection is known

(14)

Explicit bosonic Lagrangian: metric parts

Arutyunov, Borsato, SF ’13

L = −g

2(1 + κ2)12 γαβ− αβstrh A(2)α

1 1 − κRg◦ P2

(Aβ)i

, κ = 2η 1 − η2 Choose a coset representativeg

Invert the operator 1 − κRg◦ P2

Bosonic Lagrangian is given by the sum of the AdS and sphere parts L = La+Ls=LaG+LaWZ+LsG+LsWZ

The metric pieces

LaG= −g

2(1 + κ2)12γαβ

−∂αt∂βt 1 + ρ2

1 − κ2ρ2 + ∂αρ∂βρ (1 + ρ2) (1 − κ2ρ2) + ∂αζ∂βζρ2

1 + κ2ρ4sin2ζ+∂αψ1βψ1ρ2cos2ζ

1 + κ2ρ4sin2ζ + ∂αψ2βψ2ρ2sin2ζ

 ,

LsG= −g

2(1 + κ2)12γαβ

∂αφ∂βφ 1 − r2

1 + κ2r2 + ∂αr ∂βr (1 − r2) (1 + κ2r2) + ∂αξ∂βξr2

1 + κ2r4sin2ξ+∂αφ1βφ1r2cos2ξ

1 + κ2r4sin2ξ + ∂αφ2βφ2r2sin2ξ ,

(15)

Explicit bosonic Lagrangian: metric parts

Arutyunov, Borsato, SF ’13

L = −g

2(1 + κ2)12 γαβ− αβstrh A(2)α

1 1 − κRg◦ P2

(Aβ)i

, κ = 2η 1 − η2 Choose a coset representativeg

Invert the operator 1 − κRg◦ P2

Bosonic Lagrangian is given by the sum of the AdS and sphere parts L = La+Ls=LaG+LaWZ+LsG+LsWZ

The metric pieces LaG= −g

2(1 + κ2)12γαβ

−∂αt∂βt 1 + ρ2

1 − κ2ρ2 + ∂αρ∂βρ (1 + ρ2) (1 − κ2ρ2) + ∂αζ∂βζρ2

1 + κ2ρ4sin2ζ+∂αψ1βψ1ρ2cos2ζ

1 + κ2ρ4sin2ζ + ∂αψ2βψ2ρ2sin2ζ

 ,

LsG= −g

2(1 + κ2)12γαβ

∂αφ∂βφ 1 − r2

1 + κ2r2 + ∂αr ∂βr (1 − r2) (1 + κ2r2) + ∂αξ∂βξr2

1 + κ2r4sin2ξ+∂αφ1βφ1r2cos2ξ

1 + κ2r4sin2ξ + ∂αφ2βφ2r2sin2ξ ,

(16)

Explicit bosonic Lagrangian: metric parts

Arutyunov, Borsato, SF ’13

L = −g

2(1 + κ2)12 γαβ− αβstrh A(2)α

1 1 − κRg◦ P2

(Aβ)i

, κ = 2η 1 − η2 Choose a coset representativeg

Invert the operator 1 − κRg◦ P2

Bosonic Lagrangian is given by the sum of the AdS and sphere parts L = La+Ls=LaG+LaWZ+LsG+LsWZ

The metric pieces LaG= −g

2(1 + κ2)12γαβ

−∂αt∂βt 1 + ρ2

1 − κ2ρ2 + ∂αρ∂βρ (1 + ρ2) (1 − κ2ρ2) + ∂αζ∂βζρ2

1 + κ2ρ4sin2ζ+∂αψ1βψ1ρ2cos2ζ

1 + κ2ρ4sin2ζ + ∂αψ2βψ2ρ2sin2ζ

 ,

LsG= −g

2(1 + κ2)12γαβ

∂αφ∂βφ 1 − r2

1 + κ2r2 + ∂αr ∂βr (1 − r2) (1 + κ2r2) + ∂αξ∂βξr2

1 + κ2r4sin2ξ+∂αφ1βφ1r2cos2ξ

1 + κ2r4sin2ξ + ∂αφ2βφ2r2sin2ξ ,

(17)

Explicit bosonic Lagrangian: WZ parts

The Wess-Zumino parts LaWZ =g

2κ(1 + κ2)12αβ ρ4sin 2ζ

1 + κ2ρ4sin2ζ∂αψ1βζ , LsWZ = −g

2κ(1 + κ2)12αβ r4sin 2ξ

1 + κ2r4sin2ξ∂αφ1βξ . The deformed action is invariant under the shifts oft, ψk, φ, φk

The ranges ofρandr:0 ≤ ρ ≤ 1

κ and0 ≤ r ≤ 1 The deformed AdS issingularat ρ =1/κ

In the undeformed case:−Z02+Z12+Z22+Z32+Z42− Z52= −1 Z1+iZ2= ρcos ζ e1, Z3+iZ4= ρsin ζ e2, Z0+iZ5=p

1 + ρ2eit

whileφ , φ1, φ2, ξ ,r are related toYA,YA2=1as

Y1+iY2=r cos ξ e1, Y3+iY4=r sin ξ e2, Y5+iY6=p

1 − r2e

(18)

Explicit bosonic Lagrangian: WZ parts

The Wess-Zumino parts LaWZ =g

2κ(1 + κ2)12αβ ρ4sin 2ζ

1 + κ2ρ4sin2ζ∂αψ1βζ , LsWZ = −g

2κ(1 + κ2)12αβ r4sin 2ξ

1 + κ2r4sin2ξ∂αφ1βξ . The deformed action is invariant under the shifts oft, ψk, φ, φk

The ranges ofρandr:0 ≤ ρ ≤ 1

κ and0 ≤ r ≤ 1 The deformed AdS issingularat ρ =1/κ

In the undeformed case:−Z02+Z12+Z22+Z32+Z42− Z52= −1 Z1+iZ2= ρcos ζ e1, Z3+iZ4= ρsin ζ e2, Z0+iZ5=p

1 + ρ2eit

whileφ , φ1, φ2, ξ ,r are related toYA,YA2=1as

Y1+iY2=r cos ξ e1, Y3+iY4=r sin ξ e2, Y5+iY6=p

1 − r2e

(19)

Explicit bosonic Lagrangian: WZ parts

The Wess-Zumino parts LaWZ =g

2κ(1 + κ2)12αβ ρ4sin 2ζ

1 + κ2ρ4sin2ζ∂αψ1βζ , LsWZ = −g

2κ(1 + κ2)12αβ r4sin 2ξ

1 + κ2r4sin2ξ∂αφ1βξ . The deformed action is invariant under the shifts oft, ψk, φ, φk

The ranges ofρandr:0 ≤ ρ ≤ 1

κ and0 ≤ r ≤ 1 The deformed AdS issingularat ρ =1/κ

In the undeformed case:−Z02+Z12+Z22+Z32+Z42− Z52= −1 Z1+iZ2= ρcos ζ e1, Z3+iZ4= ρsin ζ e2, Z0+iZ5=p

1 + ρ2eit

whileφ , φ1, φ2, ξ ,r are related toYA,YA2=1as

Y1+iY2=r cos ξ e1, Y3+iY4=r sin ξ e2, Y5+iY6=p

1 − r2e

(20)

Small κ limit

SF, unpublished

TheSq5 part reduces toS5andLsWZvanishes. Letg(1 + κ2)12 =1

dsa2= −dt2 1 + ρ2

1 − κ2ρ2 + d ρ2 (1 + ρ2) (1 − κ2ρ2) + d ζ2ρ2

1 + κ2ρ4sin2ζ + d ψ12ρ2cos2ζ

1 + κ2ρ4sin2ζ+d ψ22ρ2sin2ζ , Ba= κ

2

ρ4sin 2ζ

1 + κ2ρ4sin2ζd ψ1∧ dζ

1 κ → 0, all the coordinates are finite. One getsAdS5withR = −20

2 κ → 0, ρ →1/ρ/κ, t → κt, ψ2→ κψ2; ρ >1 Babecomes a total derivative and the metric

ds2a= − dt2

ρ2− 1+ d ρ2

ρ2− 1 + ρ2 d ζ2

sin2ζ + ρ2cot2ζd ψ21+sin2ζ ρ2 d ψ22 The curvatureR = −4 − 2 ρ2+1

ρ22−1)− 2cos 2ζρ2 <0

(21)

Small κ limit

SF, unpublished

TheSq5 part reduces toS5andLsWZvanishes. Letg(1 + κ2)12 =1

dsa2= −dt2 1 + ρ2

1 − κ2ρ2 + d ρ2 (1 + ρ2) (1 − κ2ρ2) + d ζ2ρ2

1 + κ2ρ4sin2ζ + d ψ12ρ2cos2ζ

1 + κ2ρ4sin2ζ+d ψ22ρ2sin2ζ , Ba= κ

2

ρ4sin 2ζ

1 + κ2ρ4sin2ζd ψ1∧ dζ

1 κ → 0, all the coordinates are finite. One getsAdS5withR = −20

2 κ → 0, ρ →1/ρ/κ, t → κt, ψ2→ κψ2; ρ >1 Babecomes a total derivative and the metric

ds2a= − dt2

ρ2− 1+ d ρ2

ρ2− 1 + ρ2 d ζ2

sin2ζ + ρ2cot2ζd ψ21+sin2ζ ρ2 d ψ22 The curvatureR = −4 − 2 ρ2+1

ρ22−1)− 2cos 2ζρ2 <0

(22)

Small κ limit

SF, unpublished

TheSq5 part reduces toS5andLsWZvanishes. Letg(1 + κ2)12 =1

dsa2= −dt2 1 + ρ2

1 − κ2ρ2 + d ρ2 (1 + ρ2) (1 − κ2ρ2) + d ζ2ρ2

1 + κ2ρ4sin2ζ + d ψ12ρ2cos2ζ

1 + κ2ρ4sin2ζ+d ψ22ρ2sin2ζ , Ba= κ

2

ρ4sin 2ζ

1 + κ2ρ4sin2ζd ψ1∧ dζ

3 κ → 0, ρ → ρ/√

κ, t →√

κt, ζ → ζ0+√ κζ, ψ1→√

κψ1/cos ζ0, ψ2→√

κψ2/sin ζ0. Baand the metric

ds2a= ρ2(−dt2+d ψ22) +ρ2(d ζ2+d ψ21) 1 + ρ4sin2ζ0

+d ρ2 ρ2 , Ba= ρ4sin ζ0

1 + ρ4sin2ζ0

d ψ1∧ dζ

This is the Maldacena-Russo background! Maldacena, Russo ’99

(23)

Small κ limit

SF, unpublished

TheSq5 part reduces toS5andLsWZvanishes. Letg(1 + κ2)12 =1

dsa2= −dt2 1 + ρ2

1 − κ2ρ2 + d ρ2 (1 + ρ2) (1 − κ2ρ2) + d ζ2ρ2

1 + κ2ρ4sin2ζ + d ψ12ρ2cos2ζ

1 + κ2ρ4sin2ζ+d ψ22ρ2sin2ζ , Ba= κ

2

ρ4sin 2ζ

1 + κ2ρ4sin2ζd ψ1∧ dζ

3 κ → 0, ρ → ρ/√

κ, t →√

κt, ζ → ζ0+√ κζ, ψ1→√

κψ1/cos ζ0, ψ2→√

κψ2/sin ζ0. Baand the metric

ds2a= ρ2(−dt2+d ψ22) +ρ2(d ζ2+d ψ21) 1 + ρ4sin2ζ0

+d ρ2 ρ2 , Ba= ρ4sin ζ0

1 + ρ4sin2ζ0

d ψ1∧ dζ

This is the Maldacena-Russo background! Maldacena, Russo ’99

(24)

Small κ limit

SF, unpublished

The curvature

R = −4 + 40 1 + ρ4sin2ζ0

− 56

(1 + ρ4sin2ζ0)2

2 4 6 8

-20 -15 -10 -5

(25)

Large κ limit

Hoare, Roiban, Tseytlin ’14

dsa2=g(1 + κ2)12

−dt2 1 + ρ2

1 − κ2ρ2 + d ρ2 (1 + ρ2) (1 − κ2ρ2) + d ζ2ρ2

1 + κ2ρ4sin2ζ + d ψ12ρ2cos2ζ

1 + κ2ρ4sin2ζ+d ψ22ρ2sin2ζ

dss2=g(1 + κ2)12d φ2 1 − r2

1 + κ2r2 + dr2 (1 − r2) (1 + κ2r2) + d ξ2r2

1 + κ2r4sin2ξ+ d φ21r2cos2ξ

1 + κ2r4sin2ξ+d φ22r2sin2ξ

κ → ∞,g → κg,ρ →1/ρ,ψ2→ ψ2/κ,r → 1/r,φ2= φ2/κ The WZ term becomes a total derivative and the metric

1

gds2a=dt2 1 + ρ2

− d ρ2

1 + ρ2+d ζ2ρ2

sin2ζ +d ψ12ρ2cot2ζ +d ψ22 ρ2 sin2ζ 1

gds2s=d φ2 r2− 1

+ dr2

r2− 1+d ξ2r2

sin2ξ +d φ21r2cot2ξ + d φ22 r2 sin2ξ T-duality along theψ2andφ2directions givesdS5×H5

(26)

Large κ limit

Hoare, Roiban, Tseytlin ’14

dsa2=g(1 + κ2)12

−dt2 1 + ρ2

1 − κ2ρ2 + d ρ2 (1 + ρ2) (1 − κ2ρ2) + d ζ2ρ2

1 + κ2ρ4sin2ζ + d ψ12ρ2cos2ζ

1 + κ2ρ4sin2ζ+d ψ22ρ2sin2ζ

dss2=g(1 + κ2)12d φ2 1 − r2

1 + κ2r2 + dr2 (1 − r2) (1 + κ2r2) + d ξ2r2

1 + κ2r4sin2ξ+ d φ21r2cos2ξ

1 + κ2r4sin2ξ+d φ22r2sin2ξ

κ → ∞,g → κg,ρ →1/ρ,ψ2→ ψ2/κ,r → 1/r,φ2= φ2/κ The WZ term becomes a total derivative and the metric

1

gds2a=dt2 1 + ρ2

− d ρ2

1 + ρ2+d ζ2ρ2

sin2ζ +d ψ12ρ2cot2ζ +d ψ22 ρ2 sin2ζ 1

gds2s=d φ2 r2− 1

+ dr2

r2− 1+d ξ2r2

sin2ξ +d φ21r2cot2ξ + d φ22 r2 sin2ξ T-duality along theψ2andφ2directions givesdS5×H5

(27)

Large κ limit: T-duality along the time direction

SF, unpublished

dsa2=g(1 + κ2)12

−dt2 1 + ρ2

1 − κ2ρ2 + d ρ2 (1 + ρ2) (1 − κ2ρ2) + d ζ2ρ2

1 + κ2ρ4sin2ζ + d ψ12ρ2cos2ζ

1 + κ2ρ4sin2ζ+d ψ22ρ2sin2ζ

dss2=g(1 + κ2)12d φ2 1 − r2

1 + κ2r2 + dr2 (1 − r2) (1 + κ2r2) + d ξ2r2

1 + κ2r4sin2ξ+ d φ21r2cos2ξ

1 + κ2r4sin2ξ+d φ22r2sin2ξ

κ → ∞,g → κg,ρ → ρ/κ,t → t/κ,r → r /κ,φ → φ/κ The WZ term becomes 0, and the metric

1

gds2a= − dt2

1 − ρ2 + d ρ2

1 − ρ2 + ρ2 d ζ2 +d ψ12cos2ζ +d ψ22sin2ζ 1

gds2s= d φ2

1 + r2 + dr2

1 + r2 +r2 d ξ2+d φ21cos2ξ +d φ22sin2ξ T-duality along thetandφdirections givesdS5×H5

(28)

Large κ limit: T-duality along the time direction

SF, unpublished

dsa2=g(1 + κ2)12

−dt2 1 + ρ2

1 − κ2ρ2 + d ρ2 (1 + ρ2) (1 − κ2ρ2) + d ζ2ρ2

1 + κ2ρ4sin2ζ + d ψ12ρ2cos2ζ

1 + κ2ρ4sin2ζ+d ψ22ρ2sin2ζ

dss2=g(1 + κ2)12d φ2 1 − r2

1 + κ2r2 + dr2 (1 − r2) (1 + κ2r2) + d ξ2r2

1 + κ2r4sin2ξ+ d φ21r2cos2ξ

1 + κ2r4sin2ξ+d φ22r2sin2ξ

κ → ∞,g → κg,ρ → ρ/κ,t → t/κ,r → r /κ,φ → φ/κ The WZ term becomes 0, and the metric

1

gds2a= − dt2

1 − ρ2 + d ρ2

1 − ρ2 + ρ2 d ζ2 +d ψ12cos2ζ +d ψ22sin2ζ 1

gds2s= d φ2

1 + r2 + dr2

1 + r2 +r2 d ξ2+d φ21cos2ξ +d φ22sin2ξ T-duality along thetandφdirections givesdS5×H5

(29)

Mirror of AdS

5

× S

5

≡ AdS

5

× S

5



κ=∞ Arutyunov, van Tongeren ’14

Metric and curvature (g = 1)

ds2a= − dt2

1 − ρ2 + d ρ2

1 − ρ2+ ρ2 d ζ2 +d ψ21cos2ζ +d ψ22sin2ζ , Ra=41 − 2ρ2 1 − ρ2

dss2= d φ2

1 + r2 + dr2

1 + r2+r2 d ξ2+d φ21cos2ξ +d φ22sin2ξ , Rs=−41 + 2r2 1 + r2

Dilaton Φ = Φ012log(1 − ρ2)(1 + r2) The five-form F = 4e−Φφ− ωt)

No Killing spinors =⇒ susy is not realised by superisometries In l.c. gauget = τ,pφ=1, it is the mirror of theAdS5× S5 strings Particular case of the general mirror duality Arutynov, de Leeuw, van Tongeren ’14

(30)

Mirror of AdS

5

× S

5

≡ AdS

5

× S

5



κ=∞ Arutyunov, van Tongeren ’14

Metric and curvature (g = 1)

ds2a= − dt2

1 − ρ2 + d ρ2

1 − ρ2+ ρ2 d ζ2 +d ψ21cos2ζ +d ψ22sin2ζ , Ra=41 − 2ρ2 1 − ρ2

dss2= d φ2

1 + r2 + dr2

1 + r2+r2 d ξ2+d φ21cos2ξ +d φ22sin2ξ , Rs=−41 + 2r2 1 + r2

Dilaton Φ = Φ012log(1 − ρ2)(1 + r2) The five-form F = 4e−Φφ− ωt)

No Killing spinors =⇒ susy is not realised by superisometries In l.c. gauget = τ,pφ=1, it is the mirror of theAdS5× S5 strings Particular case of the general mirror duality Arutynov, de Leeuw, van Tongeren ’14

(31)

(S, J) folded string

SF, Roiban in progress

Folded string spinning in AdS5



qand rotating about a circle in S5

q. Ansatz is the same as for the undeformed case SF, Tseytlin ’02

t = κτ , ψ1= ωτ , ρ = ρ(σ) , φ = ντ , ζ = ψ2=r = ξ = φ1= φ2=0 The WZ term does not contribute. Virasoro constraint gives

0)2= (1 + ρ2) ω2κ2ρ4− (ω2− κ2− κ2ν22+ κ2− ν2 We wantρ0=0atρ = ρ0, andrhs > 0forρ < ρ0. Thus

κ > ν , ω2> κ2+ κ2ν2 =⇒ ν2< ω2 1 + κ2 ρ0satisfies

ω2κ2ρ40− (ω2− κ2− κ2ν220+ κ2− ν2=0 ,

0)22− κ2− κ2ν2∓ q

2− κ2− κ2ν2)2− 4ω2κ22− ν2) 2κ2ω2

Since(ρ0)2>0atρ =1/κboth roots must be less than1/κ2 κ ≤ ωp

1 + κ2− κp ω2− ν2 In what follows we denoteρ0≡ ρ0.

(32)

(S, J) folded string

SF, Roiban in progress

Folded string spinning in AdS5



qand rotating about a circle in S5

q. Ansatz is the same as for the undeformed case SF, Tseytlin ’02

t = κτ , ψ1= ωτ , ρ = ρ(σ) , φ = ντ , ζ = ψ2=r = ξ = φ1= φ2=0 The WZ term does not contribute. Virasoro constraint gives

0)2= (1 + ρ2) ω2κ2ρ4− (ω2− κ2− κ2ν22+ κ2− ν2 We wantρ0=0atρ = ρ0, andrhs > 0forρ < ρ0. Thus

κ > ν , ω2> κ2+ κ2ν2 =⇒ ν2< ω2 1 + κ2 ρ0satisfies

ω2κ2ρ40− (ω2− κ2− κ2ν220+ κ2− ν2=0 ,

0)22− κ2− κ2ν2∓ q

2− κ2− κ2ν2)2− 4ω2κ22− ν2) 2κ2ω2

Since(ρ0)2>0atρ =1/κboth roots must be less than1/κ2 κ ≤ ωp

1 + κ2− κp ω2− ν2 In what follows we denoteρ0≡ ρ0.

(33)

(S, J) folded string

The periodicity condition onρ(σ)implies 2π =

Z 0

d σ = 4 Zρ0

0

d ρ q

(1 + ρ2) ω2κ2ρ4− (ω2− κ2− κ2ν22+ κ2− ν2 Angular momentumJ = J/g(1 + κ2)12

J = ν Z

0

d σ = 2πν SpinS = S/g(1 + κ2)12

S = ω Z

0

d σ ρ2=4ω Z ρ0

0

d ρ ρ2 q

(1 + ρ2) ω2κ2ρ4− (ω2− κ2− κ2ν22+ κ2− ν2 EnergyE = E/g(1 + κ2)12

E = κ Z

0

d σ 1 + ρ2 1 − κ2ρ2 =4κ

Z ρ0 0

d ρp1 + ρ2

(1 − κ2ρ2)pω2κ2ρ4− (ω2− κ2− κ2ν22+ κ2− ν2

(34)

Large S expansion

corresponds toω → ∞, andρ0→ ρ+0. Then κ → ωp

1 + κ2− κp

ω2− ν2, ρ20→ r

1 + 1 κ2

r 1 − ν2

ω2 − 1< 1 2κ2 No matter how fast the string rotates, itneverhits the singularity!

If ν2

ω21

1+κ2 then ρ0→ 0 Let J = 0

E =w0

κ L+ 2 κ

logw0− 1 w0+1− 32

k0κ2

e−L+32

 2L

k0κ2 −8 + 11κ2

k0κ4 − 16 w0k02κ3



e−2L+ · · ·

L = κ k0

S + 2 k0

log 1 + k0

1 − k0



, w0= r

1 +√ κ

1 + κ2, k0= r

1 −√ κ 1 + κ2

Compare with Gubser, Klebanov, Polyakov ’02

E = S + 2 log S + 8 log 2 − 2 +

X

n=1

Pn(log S)e−n log S

(35)

Large S expansion at κ = ∞

Take the limit κ → ∞ and rescale E → E/κ and S → S/κ2 E = 2S + 4√

2 + 2 log 3 − 2√

2

− 32√

2e−L+32

4S − 19√ 2

e−2L+ · · · , L =√

2S + 4

Is there scattering theory atS = ∞? Can the terms∼ e−nLbe obtained from TBA?

If JS is constant

E = E0+E1e−αS+· · · , α =√

L+ 2L

(L −1)S+2(L − 2)√

L(1 + L) (L −1)3S2 +· · · ,

E0= LS + 4√ L

L− 1 − 4csch−1√

L− 1

+ 8 (L − 2) (L −1)3S + · · · , E1= − 32√

L

(L −1)2 −64(L − 2)(1 + 3L)

(L −1)4S + · · · , L=1 + r

1 + J2 S2

(36)

Large S expansion at κ = ∞

Take the limit κ → ∞ and rescale E → E/κ and S → S/κ2 E = 2S + 4√

2 + 2 log 3 − 2√

2

− 32√

2e−L+32

4S − 19√ 2

e−2L+ · · · , L =√

2S + 4

Is there scattering theory atS = ∞? Can the terms∼ e−nLbe obtained from TBA?

If JS is constant

E = E0+E1e−αS+· · · , α =√

L+ 2L

(L −1)S+2(L − 2)√

L(1 + L) (L −1)3S2 +· · · ,

E0= LS + 4√ L

L− 1 − 4csch−1√

L− 1

+ 8 (L − 2) (L −1)3S + · · · , E1= − 32√

L

(L −1)2 −64(L − 2)(1 + 3L)

(L −1)4S + · · · , L=1 + r

1 + J2 S2

(37)

Dilaton

Arutyunov, Borsato, SF in progress

Introduce the coordinates

x0=t , x1= ψ2, x2= ψ1, x3=sin2ζ , x4= ρ2, x5= φ3, x6= φ2, x7= φ1, x8=sin2ξ , x9=r2.

The gravity fields can depend only onx3,x4,x8,x9.

The only nonvanishing components ofHµνρareH234andH789

Dilaton equation

4∇2Φ −4(∇µΦ)2+R − 1

12HµνρHµνρ=0

Φ =Φ0+ Φa(x3,x4) + Φs(x8,x9) +Φas(x3,x4,x8,x9) 4∇2Φa− 4(∇µΦa)2+Ra−1

2H234H234= c(κ)

L2 , L2=g(1 + κ2)12

References

Related documents

Chiral algebra idea: correlators of protected operators reduce to meromorphic functions when after an R-symmetry twist are restricted to lay on a plane.... maximal amount

Another possible reason for advertising in English could be the fact that English is, in general, viewed as a global language (Crystal, 2003) and, even though not everyone in

By explaining the nature of these processes in terms of the outcome of a balance between various inducement and blocking mechanisms, the functional dynamics approach can then be

Det finns dock kommuner som säger att de planerar för att alla kommundelar skall få redundans.. Vår egen kommentar är att detta kan bli en av de viktigaste frågorna för att

[r]

The design of an intersubband detector is based on the fact that the energy difference between the electron (or hole) ground state and an excited state within the conduction

Vidare ska personuppgifter inte behandlas för något ändamål som är oförenligt med det för vilket uppgifterna samlades in, enligt PuL 9 § d. Denna bestämmelse syftar till

Finally, it would be interesting to generalize our calculations to other string solutions in the Pilch-Warner background [4, 33, 34], to the string dual of the pure N = 2 theory

Our method relies on a combination of two techniques: first we consider light-cone OPE relations between integrands of different correlators, and then we take the euclidean OPE limit

Making use of the spectral decomposition of the bulk-to-bulk propagator [19] in terms of harmonic functions, we will illustrate this simplification in the case of Witten diagrams

We study the universal conditions for quantum nonperturbative stability against bubble nucleation for pertubatively stable AdS vacua based on positive energy theorems.. We also

In section 3 we construct the one-loop S matrix in terms of the tree-level S-matrix coefficients and identify the redefinition of the two-particle states that cast it in the

Trots att skolor är relativt utvecklade i undervisningen som berör informationssökning och det källkritiska arbetet i samhällskunskap, visar Carlsson och Sundin (2018, s. 46,

Abstract: One-point functions of certain non-protected scalar operators in the defect CFT dual to the D3-D5 probe brane system with k units of world volume flux can be expressed

Endast definitioner och trigonometriska r¨ aknelagar f˚ ar anv¨ andas utan att de f¨ orst bevisas. Sida 2

SCANNING MIRROR

Om enheten kommer i kontakt med vatten (inklusive tillräcklig kondens från värmesystem eller luftkonditionerings- eller ventilationsutrustning) kan det leda till risk för

: S-matrix and dispersion Arutyunov, Borsato, Frolov ’13 (Beisert, Koroteev ’08, Hoare, Hollowood, Miramontes ’11). • Compatible with

A key consequence of the results in this section is that the cut-constructible one-loop S-matrix for the scattering of a particle of mass m with one of mass m 0 is built from

The application of this method to the study of Wilson loops in finite temperature N = 4 SYM using thermal F-string probes in the AdS black hole background, confirms that there are

• Invariance of action is generating functional for exact invariance of the equations of motion.. • exact invariance sufficient to derive invariance of quantum correlators (up

• The symmetry algebra defining the S-matrix of the decompactified light-cone gauge AdS 5 × S 5 superstring can be q-deformed [Beisert, Koroteev ’08]?. − Leads to a deformation of

The spectral equations for the planar AdS/CFT correspondence, if correct, provide the full solution to the spectral problem. The five-loop anomalous dimension of twist-two