Comments on the q-deformed AdS
5× S
5superstring
Sergey Frolov
with Gleb Arutyunov and Riccardo Borsato: 1312.3542 and in progress
Hamilton Mathematics Institute and School of Mathematics, Trinity College Dublin and
Institut f ¨ur Mathematik und Institut f ¨ur Physik, Humboldt-Universit ¨at zu Berlin and
Steklov Mathematical Institute, Moscow
Supersymmetric Field Theories, Nordita, August 15, 2014
Outline
1
Introduction
2
AdS
5× S
5q 3
Small κ limit
4
Large κ limit
5
Folded string
6
RR-fields
7
L.c. gauge and S-matrix
8
Summary
Motivation
“Harmonic oscillator” of AdS/CFT: Maldacena ’97
IIB strings in AdS5× S5 ⇐⇒ N = 4 SU(N) SYM In planar limit one getsintegrablequantum string sigma model Energies of string states ≡ Scaling dimensions of SYM operators Integrable deformations
Orbifolds
γ-deformedAdS5× S5 (TsT-transformed)
Both can be described by thesameAdS5× S5 action but with twisted boundary conditions for the world-sheet fields
New type of deformation with real parameter Delduc, Magro, Vicedo ’13
Uses solutions of classical YBE Klimcik ’08
We show that the (bosonic part of the) world-sheet S-matrix coincides with thepsuq(2|2) ⊕ psuq(2|2)-invariant S-matrix
psu(2, 2|4) 7−→ psuq(2, 2|4) ⊃ psuq(2|2) ⊕ psuq(2|2)Delduc, Magro, Vicedo ’14
Dual field theory is not Lorentz invariant.
New type of noncommutative field theory?
Motivation
“Harmonic oscillator” of AdS/CFT: Maldacena ’97
IIB strings in AdS5× S5 ⇐⇒ N = 4 SU(N) SYM In planar limit one getsintegrablequantum string sigma model Energies of string states ≡ Scaling dimensions of SYM operators Integrable deformations
Orbifolds
γ-deformedAdS5× S5 (TsT-transformed)
Both can be described by thesameAdS5× S5 action but with twisted boundary conditions for the world-sheet fields
New type of deformation with real parameter Delduc, Magro, Vicedo ’13
Uses solutions of classical YBE Klimcik ’08
We show that the (bosonic part of the) world-sheet S-matrix coincides with thepsuq(2|2) ⊕ psuq(2|2)-invariant S-matrix
psu(2, 2|4) 7−→ psuq(2, 2|4) ⊃ psuq(2|2) ⊕ psuq(2|2)Delduc, Magro, Vicedo ’14
Dual field theory is not Lorentz invariant.
New type of noncommutative field theory?
Motivation
“Harmonic oscillator” of AdS/CFT: Maldacena ’97
IIB strings in AdS5× S5 ⇐⇒ N = 4 SU(N) SYM In planar limit one getsintegrablequantum string sigma model Energies of string states ≡ Scaling dimensions of SYM operators Integrable deformations
Orbifolds
γ-deformedAdS5× S5 (TsT-transformed)
Both can be described by thesameAdS5× S5 action but with twisted boundary conditions for the world-sheet fields
New type of deformation with real parameter Delduc, Magro, Vicedo ’13
Uses solutions of classical YBE Klimcik ’08
We show that the (bosonic part of the) world-sheet S-matrix coincides with thepsuq(2|2) ⊕ psuq(2|2)-invariant S-matrix
psu(2, 2|4) 7−→ psuq(2, 2|4) ⊃ psuq(2|2) ⊕ psuq(2|2)Delduc, Magro, Vicedo ’14
Dual field theory is not Lorentz invariant.
New type of noncommutative field theory?
Motivation
“Harmonic oscillator” of AdS/CFT: Maldacena ’97
IIB strings in AdS5× S5 ⇐⇒ N = 4 SU(N) SYM In planar limit one getsintegrablequantum string sigma model Energies of string states ≡ Scaling dimensions of SYM operators Integrable deformations
Orbifolds
γ-deformedAdS5× S5 (TsT-transformed)
Both can be described by thesameAdS5× S5 action but with twisted boundary conditions for the world-sheet fields
New type of deformation with real parameter Delduc, Magro, Vicedo ’13
Uses solutions of classical YBE Klimcik ’08
We show that the (bosonic part of the) world-sheet S-matrix coincides with thepsuq(2|2) ⊕ psuq(2|2)-invariant S-matrix
psu(2, 2|4) 7−→ psuq(2, 2|4) ⊃ psuq(2|2) ⊕ psuq(2|2)Delduc, Magro, Vicedo ’14
Dual field theory is not Lorentz invariant.
New type of noncommutative field theory?
Matrix realisation of su(2, 2|4)
M =
m θ η n
1 str M ≡ tr m − tr n = 0
2 M†H + HM = 0 , H =
Σ 0 0 14
, Σ =
12 0 0 −12
3 m†= −Σm Σ , n†= −n , η†= −Σ θ , m ∈ u(2, 2) , n ∈ u(4)
4 Bosonic subalgebra ofsu(2, 2|4):su(2, 2) ⊕ su(4) ⊕u(1)
5 psu(2, 2|4)is aquotient algebraofsu(2, 2|4)over thisu(1)
Z
4-grading
M =M(0)+M(1)+M(2)+M(3)
M(0,2)= 12
m ∓ KmtK−1 0 0 n ∓ KntK−1
M(1,3)= 12
0 θ ∓iK ηtK−1 η ±iK θtK−1 0
K = diag(−iσ2, −iσ2) M(0)andM(2)are even;M(1)andM(3)are odd M(0)formso(4, 1) ⊕ so(5) ⊂ su(2, 2) ⊕ su(4).
M(2)form the tangent space of the coset SU(2, 2) × SU(4)/SO(4, 1) × SO(5) = AdS5× S5 [M1(k ),M2(m)] =M3(k +m)moduloZ4
Notation:Piare projectors onM(i):Pi(M) = M(i)
Z
4-grading
M =M(0)+M(1)+M(2)+M(3)
M(0,2)= 12
m ∓ KmtK−1 0 0 n ∓ KntK−1
M(1,3)= 12
0 θ ∓iK ηtK−1 η ±iK θtK−1 0
K = diag(−iσ2, −iσ2) M(0)andM(2)are even;M(1)andM(3)are odd M(0)formso(4, 1) ⊕ so(5) ⊂ su(2, 2) ⊕ su(4).
M(2)form the tangent space of the coset SU(2, 2) × SU(4)/SO(4, 1) × SO(5) = AdS5× S5 [M1(k ),M2(m)] =M3(k +m)moduloZ4
Notation:Piare projectors onM(i):Pi(M) = M(i)
Strings on AdS
5× S
5 Metsaev, Tseytlin ’98Letg∈ SU(2, 2|4). Introduce the one-formA ∈ su(2, 2|4) A = −g−1dg = A(0)+A(2)+A(1)+A(3) Action S =R dσdτL for superstrings onAdS5× S5
L = −g 2 h
γαβstr A(2)α A(2)β + αβstr A(1)α A(3)β i g = 2παR20 =
√ λ
2π, τ σ=1 and γαβ=hαβ√
−h, detγ = −1 L = −g
4 γαβ− αβ strh
(P3+2P2− P1)(Aα).Aβ
i
q-deformed AdS
5× S
5: L and R-operator
Delduc, Magro, Vicedo ’13L = −g
4(1 + η2) γαβ− αβ strh ˜d (Aα) 1
1 − ηRg◦ d(Aβ)i ,
q = e−ν/g, ν =1+η2η2 Arutyunov, Borsato, SF ’13; Delduc, Magro, Vicedo ’14
Piare projections onM(i):Pi(M) = M(i) d = P1+ 2
1 − η2P2−P3, d = P˜ 3+ 2
1 − η2P2−P1, str A d (B) = str ˜d (A) B Rg(M) = g−1R(gMg−1)g = adjg−1◦ R ◦ adjg(M)
Rsatisfies the modified classical Yang-Baxter equation
[R(M), R(N)]−R [R(M), N]+[M, R(N)] = [M, N] , str R(M) N = −str M R(N)
We choose
R(M)jk =
−i Mjk if j < k 0 if j = k i Mjk if j > k L is invariant underg→ gh,h∈ SO(4, 1) × SO(5) × U(1) L isκ-symmetric, and a Lax connection is known
q-deformed AdS
5× S
5: L and R-operator
Delduc, Magro, Vicedo ’13L = −g
4(1 + η2) γαβ− αβ strh ˜d (Aα) 1
1 − ηRg◦ d(Aβ)i ,
q = e−ν/g, ν =1+η2η2 Arutyunov, Borsato, SF ’13; Delduc, Magro, Vicedo ’14
Piare projections onM(i):Pi(M) = M(i) d = P1+ 2
1 − η2P2−P3, d = P˜ 3+ 2
1 − η2P2−P1, str A d (B) = str ˜d (A) B Rg(M) = g−1R(gMg−1)g = adjg−1◦ R ◦ adjg(M)
Rsatisfies the modified classical Yang-Baxter equation
[R(M), R(N)]−R [R(M), N]+[M, R(N)] = [M, N] , str R(M) N = −str M R(N)
We choose
R(M)jk =
−i Mjk if j < k 0 if j = k i Mjk if j > k L is invariant underg→ gh,h∈ SO(4, 1) × SO(5) × U(1) L isκ-symmetric, and a Lax connection is known
q-deformed AdS
5× S
5: L and R-operator
Delduc, Magro, Vicedo ’13L = −g
4(1 + η2) γαβ− αβ strh ˜d (Aα) 1
1 − ηRg◦ d(Aβ)i ,
q = e−ν/g, ν =1+η2η2 Arutyunov, Borsato, SF ’13; Delduc, Magro, Vicedo ’14
Piare projections onM(i):Pi(M) = M(i) d = P1+ 2
1 − η2P2−P3, d = P˜ 3+ 2
1 − η2P2−P1, str A d (B) = str ˜d (A) B Rg(M) = g−1R(gMg−1)g = adjg−1◦ R ◦ adjg(M)
Rsatisfies the modified classical Yang-Baxter equation
[R(M), R(N)]−R [R(M), N]+[M, R(N)] = [M, N] , str R(M) N = −str M R(N)
We choose
R(M)jk =
−i Mjk if j < k 0 if j = k i Mjk if j > k L is invariant underg→ gh,h∈ SO(4, 1) × SO(5) × U(1) L isκ-symmetric, and a Lax connection is known
Explicit bosonic Lagrangian: metric parts
Arutyunov, Borsato, SF ’13L = −g
2(1 + κ2)12 γαβ− αβstrh A(2)α
1 1 − κRg◦ P2
(Aβ)i
, κ = 2η 1 − η2 Choose a coset representativeg
Invert the operator 1 − κRg◦ P2
Bosonic Lagrangian is given by the sum of the AdS and sphere parts L = La+Ls=LaG+LaWZ+LsG+LsWZ
The metric pieces
LaG= −g
2(1 + κ2)12γαβ
−∂αt∂βt 1 + ρ2
1 − κ2ρ2 + ∂αρ∂βρ (1 + ρ2) (1 − κ2ρ2) + ∂αζ∂βζρ2
1 + κ2ρ4sin2ζ+∂αψ1∂βψ1ρ2cos2ζ
1 + κ2ρ4sin2ζ + ∂αψ2∂βψ2ρ2sin2ζ
,
LsG= −g
2(1 + κ2)12γαβ
∂αφ∂βφ 1 − r2
1 + κ2r2 + ∂αr ∂βr (1 − r2) (1 + κ2r2) + ∂αξ∂βξr2
1 + κ2r4sin2ξ+∂αφ1∂βφ1r2cos2ξ
1 + κ2r4sin2ξ + ∂αφ2∂βφ2r2sin2ξ ,
Explicit bosonic Lagrangian: metric parts
Arutyunov, Borsato, SF ’13L = −g
2(1 + κ2)12 γαβ− αβstrh A(2)α
1 1 − κRg◦ P2
(Aβ)i
, κ = 2η 1 − η2 Choose a coset representativeg
Invert the operator 1 − κRg◦ P2
Bosonic Lagrangian is given by the sum of the AdS and sphere parts L = La+Ls=LaG+LaWZ+LsG+LsWZ
The metric pieces LaG= −g
2(1 + κ2)12γαβ
−∂αt∂βt 1 + ρ2
1 − κ2ρ2 + ∂αρ∂βρ (1 + ρ2) (1 − κ2ρ2) + ∂αζ∂βζρ2
1 + κ2ρ4sin2ζ+∂αψ1∂βψ1ρ2cos2ζ
1 + κ2ρ4sin2ζ + ∂αψ2∂βψ2ρ2sin2ζ
,
LsG= −g
2(1 + κ2)12γαβ
∂αφ∂βφ 1 − r2
1 + κ2r2 + ∂αr ∂βr (1 − r2) (1 + κ2r2) + ∂αξ∂βξr2
1 + κ2r4sin2ξ+∂αφ1∂βφ1r2cos2ξ
1 + κ2r4sin2ξ + ∂αφ2∂βφ2r2sin2ξ ,
Explicit bosonic Lagrangian: metric parts
Arutyunov, Borsato, SF ’13L = −g
2(1 + κ2)12 γαβ− αβstrh A(2)α
1 1 − κRg◦ P2
(Aβ)i
, κ = 2η 1 − η2 Choose a coset representativeg
Invert the operator 1 − κRg◦ P2
Bosonic Lagrangian is given by the sum of the AdS and sphere parts L = La+Ls=LaG+LaWZ+LsG+LsWZ
The metric pieces LaG= −g
2(1 + κ2)12γαβ
−∂αt∂βt 1 + ρ2
1 − κ2ρ2 + ∂αρ∂βρ (1 + ρ2) (1 − κ2ρ2) + ∂αζ∂βζρ2
1 + κ2ρ4sin2ζ+∂αψ1∂βψ1ρ2cos2ζ
1 + κ2ρ4sin2ζ + ∂αψ2∂βψ2ρ2sin2ζ
,
LsG= −g
2(1 + κ2)12γαβ
∂αφ∂βφ 1 − r2
1 + κ2r2 + ∂αr ∂βr (1 − r2) (1 + κ2r2) + ∂αξ∂βξr2
1 + κ2r4sin2ξ+∂αφ1∂βφ1r2cos2ξ
1 + κ2r4sin2ξ + ∂αφ2∂βφ2r2sin2ξ ,
Explicit bosonic Lagrangian: WZ parts
The Wess-Zumino parts LaWZ =g
2κ(1 + κ2)12αβ ρ4sin 2ζ
1 + κ2ρ4sin2ζ∂αψ1∂βζ , LsWZ = −g
2κ(1 + κ2)12αβ r4sin 2ξ
1 + κ2r4sin2ξ∂αφ1∂βξ . The deformed action is invariant under the shifts oft, ψk, φ, φk
The ranges ofρandr:0 ≤ ρ ≤ 1
κ and0 ≤ r ≤ 1 The deformed AdS issingularat ρ =1/κ
In the undeformed case:−Z02+Z12+Z22+Z32+Z42− Z52= −1 Z1+iZ2= ρcos ζ eiψ1, Z3+iZ4= ρsin ζ eiψ2, Z0+iZ5=p
1 + ρ2eit
whileφ , φ1, φ2, ξ ,r are related toYA,YA2=1as
Y1+iY2=r cos ξ eiφ1, Y3+iY4=r sin ξ eiφ2, Y5+iY6=p
1 − r2eiφ
Explicit bosonic Lagrangian: WZ parts
The Wess-Zumino parts LaWZ =g
2κ(1 + κ2)12αβ ρ4sin 2ζ
1 + κ2ρ4sin2ζ∂αψ1∂βζ , LsWZ = −g
2κ(1 + κ2)12αβ r4sin 2ξ
1 + κ2r4sin2ξ∂αφ1∂βξ . The deformed action is invariant under the shifts oft, ψk, φ, φk
The ranges ofρandr:0 ≤ ρ ≤ 1
κ and0 ≤ r ≤ 1 The deformed AdS issingularat ρ =1/κ
In the undeformed case:−Z02+Z12+Z22+Z32+Z42− Z52= −1 Z1+iZ2= ρcos ζ eiψ1, Z3+iZ4= ρsin ζ eiψ2, Z0+iZ5=p
1 + ρ2eit
whileφ , φ1, φ2, ξ ,r are related toYA,YA2=1as
Y1+iY2=r cos ξ eiφ1, Y3+iY4=r sin ξ eiφ2, Y5+iY6=p
1 − r2eiφ
Explicit bosonic Lagrangian: WZ parts
The Wess-Zumino parts LaWZ =g
2κ(1 + κ2)12αβ ρ4sin 2ζ
1 + κ2ρ4sin2ζ∂αψ1∂βζ , LsWZ = −g
2κ(1 + κ2)12αβ r4sin 2ξ
1 + κ2r4sin2ξ∂αφ1∂βξ . The deformed action is invariant under the shifts oft, ψk, φ, φk
The ranges ofρandr:0 ≤ ρ ≤ 1
κ and0 ≤ r ≤ 1 The deformed AdS issingularat ρ =1/κ
In the undeformed case:−Z02+Z12+Z22+Z32+Z42− Z52= −1 Z1+iZ2= ρcos ζ eiψ1, Z3+iZ4= ρsin ζ eiψ2, Z0+iZ5=p
1 + ρ2eit
whileφ , φ1, φ2, ξ ,r are related toYA,YA2=1as
Y1+iY2=r cos ξ eiφ1, Y3+iY4=r sin ξ eiφ2, Y5+iY6=p
1 − r2eiφ
Small κ limit
SF, unpublishedTheSq5 part reduces toS5andLsWZvanishes. Letg(1 + κ2)12 =1
dsa2= −dt2 1 + ρ2
1 − κ2ρ2 + d ρ2 (1 + ρ2) (1 − κ2ρ2) + d ζ2ρ2
1 + κ2ρ4sin2ζ + d ψ12ρ2cos2ζ
1 + κ2ρ4sin2ζ+d ψ22ρ2sin2ζ , Ba= κ
2
ρ4sin 2ζ
1 + κ2ρ4sin2ζd ψ1∧ dζ
1 κ → 0, all the coordinates are finite. One getsAdS5withR = −20
2 κ → 0, ρ →1/ρ/κ, t → κt, ψ2→ κψ2; ρ >1 Babecomes a total derivative and the metric
ds2a= − dt2
ρ2− 1+ d ρ2
ρ2− 1 + ρ2 d ζ2
sin2ζ + ρ2cot2ζd ψ21+sin2ζ ρ2 d ψ22 The curvatureR = −4 − 2 ρ2+1
ρ2(ρ2−1)− 2cos 2ζρ2 <0
Small κ limit
SF, unpublishedTheSq5 part reduces toS5andLsWZvanishes. Letg(1 + κ2)12 =1
dsa2= −dt2 1 + ρ2
1 − κ2ρ2 + d ρ2 (1 + ρ2) (1 − κ2ρ2) + d ζ2ρ2
1 + κ2ρ4sin2ζ + d ψ12ρ2cos2ζ
1 + κ2ρ4sin2ζ+d ψ22ρ2sin2ζ , Ba= κ
2
ρ4sin 2ζ
1 + κ2ρ4sin2ζd ψ1∧ dζ
1 κ → 0, all the coordinates are finite. One getsAdS5withR = −20
2 κ → 0, ρ →1/ρ/κ, t → κt, ψ2→ κψ2; ρ >1 Babecomes a total derivative and the metric
ds2a= − dt2
ρ2− 1+ d ρ2
ρ2− 1 + ρ2 d ζ2
sin2ζ + ρ2cot2ζd ψ21+sin2ζ ρ2 d ψ22 The curvatureR = −4 − 2 ρ2+1
ρ2(ρ2−1)− 2cos 2ζρ2 <0
Small κ limit
SF, unpublishedTheSq5 part reduces toS5andLsWZvanishes. Letg(1 + κ2)12 =1
dsa2= −dt2 1 + ρ2
1 − κ2ρ2 + d ρ2 (1 + ρ2) (1 − κ2ρ2) + d ζ2ρ2
1 + κ2ρ4sin2ζ + d ψ12ρ2cos2ζ
1 + κ2ρ4sin2ζ+d ψ22ρ2sin2ζ , Ba= κ
2
ρ4sin 2ζ
1 + κ2ρ4sin2ζd ψ1∧ dζ
3 κ → 0, ρ → ρ/√
κ, t →√
κt, ζ → ζ0+√ κζ, ψ1→√
κψ1/cos ζ0, ψ2→√
κψ2/sin ζ0. Baand the metric
ds2a= ρ2(−dt2+d ψ22) +ρ2(d ζ2+d ψ21) 1 + ρ4sin2ζ0
+d ρ2 ρ2 , Ba= ρ4sin ζ0
1 + ρ4sin2ζ0
d ψ1∧ dζ
This is the Maldacena-Russo background! Maldacena, Russo ’99
Small κ limit
SF, unpublishedTheSq5 part reduces toS5andLsWZvanishes. Letg(1 + κ2)12 =1
dsa2= −dt2 1 + ρ2
1 − κ2ρ2 + d ρ2 (1 + ρ2) (1 − κ2ρ2) + d ζ2ρ2
1 + κ2ρ4sin2ζ + d ψ12ρ2cos2ζ
1 + κ2ρ4sin2ζ+d ψ22ρ2sin2ζ , Ba= κ
2
ρ4sin 2ζ
1 + κ2ρ4sin2ζd ψ1∧ dζ
3 κ → 0, ρ → ρ/√
κ, t →√
κt, ζ → ζ0+√ κζ, ψ1→√
κψ1/cos ζ0, ψ2→√
κψ2/sin ζ0. Baand the metric
ds2a= ρ2(−dt2+d ψ22) +ρ2(d ζ2+d ψ21) 1 + ρ4sin2ζ0
+d ρ2 ρ2 , Ba= ρ4sin ζ0
1 + ρ4sin2ζ0
d ψ1∧ dζ
This is the Maldacena-Russo background! Maldacena, Russo ’99
Small κ limit
SF, unpublishedThe curvature
R = −4 + 40 1 + ρ4sin2ζ0
− 56
(1 + ρ4sin2ζ0)2
2 4 6 8
-20 -15 -10 -5
Large κ limit
Hoare, Roiban, Tseytlin ’14dsa2=g(1 + κ2)12
−dt2 1 + ρ2
1 − κ2ρ2 + d ρ2 (1 + ρ2) (1 − κ2ρ2) + d ζ2ρ2
1 + κ2ρ4sin2ζ + d ψ12ρ2cos2ζ
1 + κ2ρ4sin2ζ+d ψ22ρ2sin2ζ
dss2=g(1 + κ2)12d φ2 1 − r2
1 + κ2r2 + dr2 (1 − r2) (1 + κ2r2) + d ξ2r2
1 + κ2r4sin2ξ+ d φ21r2cos2ξ
1 + κ2r4sin2ξ+d φ22r2sin2ξ
κ → ∞,g → κg,ρ →1/ρ,ψ2→ ψ2/κ,r → 1/r,φ2= φ2/κ The WZ term becomes a total derivative and the metric
1
gds2a=dt2 1 + ρ2
− d ρ2
1 + ρ2+d ζ2ρ2
sin2ζ +d ψ12ρ2cot2ζ +d ψ22 ρ2 sin2ζ 1
gds2s=d φ2 r2− 1
+ dr2
r2− 1+d ξ2r2
sin2ξ +d φ21r2cot2ξ + d φ22 r2 sin2ξ T-duality along theψ2andφ2directions givesdS5×H5
Large κ limit
Hoare, Roiban, Tseytlin ’14dsa2=g(1 + κ2)12
−dt2 1 + ρ2
1 − κ2ρ2 + d ρ2 (1 + ρ2) (1 − κ2ρ2) + d ζ2ρ2
1 + κ2ρ4sin2ζ + d ψ12ρ2cos2ζ
1 + κ2ρ4sin2ζ+d ψ22ρ2sin2ζ
dss2=g(1 + κ2)12d φ2 1 − r2
1 + κ2r2 + dr2 (1 − r2) (1 + κ2r2) + d ξ2r2
1 + κ2r4sin2ξ+ d φ21r2cos2ξ
1 + κ2r4sin2ξ+d φ22r2sin2ξ
κ → ∞,g → κg,ρ →1/ρ,ψ2→ ψ2/κ,r → 1/r,φ2= φ2/κ The WZ term becomes a total derivative and the metric
1
gds2a=dt2 1 + ρ2
− d ρ2
1 + ρ2+d ζ2ρ2
sin2ζ +d ψ12ρ2cot2ζ +d ψ22 ρ2 sin2ζ 1
gds2s=d φ2 r2− 1
+ dr2
r2− 1+d ξ2r2
sin2ξ +d φ21r2cot2ξ + d φ22 r2 sin2ξ T-duality along theψ2andφ2directions givesdS5×H5
Large κ limit: T-duality along the time direction
SF, unpublisheddsa2=g(1 + κ2)12
−dt2 1 + ρ2
1 − κ2ρ2 + d ρ2 (1 + ρ2) (1 − κ2ρ2) + d ζ2ρ2
1 + κ2ρ4sin2ζ + d ψ12ρ2cos2ζ
1 + κ2ρ4sin2ζ+d ψ22ρ2sin2ζ
dss2=g(1 + κ2)12d φ2 1 − r2
1 + κ2r2 + dr2 (1 − r2) (1 + κ2r2) + d ξ2r2
1 + κ2r4sin2ξ+ d φ21r2cos2ξ
1 + κ2r4sin2ξ+d φ22r2sin2ξ
κ → ∞,g → κg,ρ → ρ/κ,t → t/κ,r → r /κ,φ → φ/κ The WZ term becomes 0, and the metric
1
gds2a= − dt2
1 − ρ2 + d ρ2
1 − ρ2 + ρ2 d ζ2 +d ψ12cos2ζ +d ψ22sin2ζ 1
gds2s= d φ2
1 + r2 + dr2
1 + r2 +r2 d ξ2+d φ21cos2ξ +d φ22sin2ξ T-duality along thetandφdirections givesdS5×H5
Large κ limit: T-duality along the time direction
SF, unpublisheddsa2=g(1 + κ2)12
−dt2 1 + ρ2
1 − κ2ρ2 + d ρ2 (1 + ρ2) (1 − κ2ρ2) + d ζ2ρ2
1 + κ2ρ4sin2ζ + d ψ12ρ2cos2ζ
1 + κ2ρ4sin2ζ+d ψ22ρ2sin2ζ
dss2=g(1 + κ2)12d φ2 1 − r2
1 + κ2r2 + dr2 (1 − r2) (1 + κ2r2) + d ξ2r2
1 + κ2r4sin2ξ+ d φ21r2cos2ξ
1 + κ2r4sin2ξ+d φ22r2sin2ξ
κ → ∞,g → κg,ρ → ρ/κ,t → t/κ,r → r /κ,φ → φ/κ The WZ term becomes 0, and the metric
1
gds2a= − dt2
1 − ρ2 + d ρ2
1 − ρ2 + ρ2 d ζ2 +d ψ12cos2ζ +d ψ22sin2ζ 1
gds2s= d φ2
1 + r2 + dr2
1 + r2 +r2 d ξ2+d φ21cos2ξ +d φ22sin2ξ T-duality along thetandφdirections givesdS5×H5
Mirror of AdS
5× S
5≡ AdS
5× S
5κ=∞ Arutyunov, van Tongeren ’14
Metric and curvature (g = 1)
ds2a= − dt2
1 − ρ2 + d ρ2
1 − ρ2+ ρ2 d ζ2 +d ψ21cos2ζ +d ψ22sin2ζ , Ra=41 − 2ρ2 1 − ρ2
dss2= d φ2
1 + r2 + dr2
1 + r2+r2 d ξ2+d φ21cos2ξ +d φ22sin2ξ , Rs=−41 + 2r2 1 + r2
Dilaton Φ = Φ0−12log(1 − ρ2)(1 + r2) The five-form F = 4e−Φ(ωφ− ωt)
No Killing spinors =⇒ susy is not realised by superisometries In l.c. gauget = τ,pφ=1, it is the mirror of theAdS5× S5 strings Particular case of the general mirror duality Arutynov, de Leeuw, van Tongeren ’14
Mirror of AdS
5× S
5≡ AdS
5× S
5κ=∞ Arutyunov, van Tongeren ’14
Metric and curvature (g = 1)
ds2a= − dt2
1 − ρ2 + d ρ2
1 − ρ2+ ρ2 d ζ2 +d ψ21cos2ζ +d ψ22sin2ζ , Ra=41 − 2ρ2 1 − ρ2
dss2= d φ2
1 + r2 + dr2
1 + r2+r2 d ξ2+d φ21cos2ξ +d φ22sin2ξ , Rs=−41 + 2r2 1 + r2
Dilaton Φ = Φ0−12log(1 − ρ2)(1 + r2) The five-form F = 4e−Φ(ωφ− ωt)
No Killing spinors =⇒ susy is not realised by superisometries In l.c. gauget = τ,pφ=1, it is the mirror of theAdS5× S5 strings Particular case of the general mirror duality Arutynov, de Leeuw, van Tongeren ’14
(S, J) folded string
SF, Roiban in progressFolded string spinning in AdS5
qand rotating about a circle in S5
q. Ansatz is the same as for the undeformed case SF, Tseytlin ’02
t = κτ , ψ1= ωτ , ρ = ρ(σ) , φ = ντ , ζ = ψ2=r = ξ = φ1= φ2=0 The WZ term does not contribute. Virasoro constraint gives
(ρ0)2= (1 + ρ2) ω2κ2ρ4− (ω2− κ2− κ2ν2)ρ2+ κ2− ν2 We wantρ0=0atρ = ρ0, andrhs > 0forρ < ρ0. Thus
κ > ν , ω2> κ2+ κ2ν2 =⇒ ν2< ω2 1 + κ2 ρ0satisfies
ω2κ2ρ40− (ω2− κ2− κ2ν2)ρ20+ κ2− ν2=0 ,
(ρ∓0)2=ω2− κ2− κ2ν2∓ q
(ω2− κ2− κ2ν2)2− 4ω2κ2(κ2− ν2) 2κ2ω2
Since(ρ0)2>0atρ =1/κboth roots must be less than1/κ2 κ ≤ ωp
1 + κ2− κp ω2− ν2 In what follows we denoteρ0≡ ρ−0.
(S, J) folded string
SF, Roiban in progressFolded string spinning in AdS5
qand rotating about a circle in S5
q. Ansatz is the same as for the undeformed case SF, Tseytlin ’02
t = κτ , ψ1= ωτ , ρ = ρ(σ) , φ = ντ , ζ = ψ2=r = ξ = φ1= φ2=0 The WZ term does not contribute. Virasoro constraint gives
(ρ0)2= (1 + ρ2) ω2κ2ρ4− (ω2− κ2− κ2ν2)ρ2+ κ2− ν2 We wantρ0=0atρ = ρ0, andrhs > 0forρ < ρ0. Thus
κ > ν , ω2> κ2+ κ2ν2 =⇒ ν2< ω2 1 + κ2 ρ0satisfies
ω2κ2ρ40− (ω2− κ2− κ2ν2)ρ20+ κ2− ν2=0 ,
(ρ∓0)2=ω2− κ2− κ2ν2∓ q
(ω2− κ2− κ2ν2)2− 4ω2κ2(κ2− ν2) 2κ2ω2
Since(ρ0)2>0atρ =1/κboth roots must be less than1/κ2 κ ≤ ωp
1 + κ2− κp ω2− ν2 In what follows we denoteρ0≡ ρ−0.
(S, J) folded string
The periodicity condition onρ(σ)implies 2π =
Z2π 0
d σ = 4 Zρ0
0
d ρ q
(1 + ρ2) ω2κ2ρ4− (ω2− κ2− κ2ν2)ρ2+ κ2− ν2 Angular momentumJ = J/g(1 + κ2)12
J = ν Z 2π
0
d σ = 2πν SpinS = S/g(1 + κ2)12
S = ω Z 2π
0
d σ ρ2=4ω Z ρ0
0
d ρ ρ2 q
(1 + ρ2) ω2κ2ρ4− (ω2− κ2− κ2ν2)ρ2+ κ2− ν2 EnergyE = E/g(1 + κ2)12
E = κ Z2π
0
d σ 1 + ρ2 1 − κ2ρ2 =4κ
Z ρ0 0
d ρp1 + ρ2
(1 − κ2ρ2)pω2κ2ρ4− (ω2− κ2− κ2ν2)ρ2+ κ2− ν2
Large S expansion
corresponds toω → ∞, andρ0→ ρ+0. Then κ → ωp
1 + κ2− κp
ω2− ν2, ρ20→ r
1 + 1 κ2
r 1 − ν2
ω2 − 1< 1 2κ2 No matter how fast the string rotates, itneverhits the singularity!
If ν2
ω2 → 1
1+κ2 then ρ0→ 0 Let J = 0
E =w0
κ L+ 2 κ
logw0− 1 w0+1− 32
k0κ2
e−L+32
2L
k0κ2 −8 + 11κ2
k0κ4 − 16 w0k02κ3
e−2L+ · · ·
L = κ k0
S + 2 k0
log 1 + k0
1 − k0
, w0= r
1 +√ κ
1 + κ2, k0= r
1 −√ κ 1 + κ2
Compare with Gubser, Klebanov, Polyakov ’02
E = S + 2 log S + 8 log 2 − 2 +
∞
X
n=1
Pn(log S)e−n log S
Large S expansion at κ = ∞
Take the limit κ → ∞ and rescale E → E/κ and S → S/κ2 E = 2S + 4√
2 + 2 log 3 − 2√
2
− 32√
2e−L+32
4S − 19√ 2
e−2L+ · · · , L =√
2S + 4
Is there scattering theory atS = ∞? Can the terms∼ e−nLbe obtained from TBA?
If JS is constant
E = E0+E1e−αS+· · · , α =√
L+ 2L
(L −1)S+2(L − 2)√
L(1 + L) (L −1)3S2 +· · · ,
E0= LS + 4√ L
L− 1 − 4csch−1√
L− 1
+ 8 (L − 2) (L −1)3S + · · · , E1= − 32√
L
(L −1)2 −64(L − 2)(1 + 3L)
(L −1)4S + · · · , L=1 + r
1 + J2 S2
Large S expansion at κ = ∞
Take the limit κ → ∞ and rescale E → E/κ and S → S/κ2 E = 2S + 4√
2 + 2 log 3 − 2√
2
− 32√
2e−L+32
4S − 19√ 2
e−2L+ · · · , L =√
2S + 4
Is there scattering theory atS = ∞? Can the terms∼ e−nLbe obtained from TBA?
If JS is constant
E = E0+E1e−αS+· · · , α =√
L+ 2L
(L −1)S+2(L − 2)√
L(1 + L) (L −1)3S2 +· · · ,
E0= LS + 4√ L
L− 1 − 4csch−1√
L− 1
+ 8 (L − 2) (L −1)3S + · · · , E1= − 32√
L
(L −1)2 −64(L − 2)(1 + 3L)
(L −1)4S + · · · , L=1 + r
1 + J2 S2
Dilaton
Arutyunov, Borsato, SF in progressIntroduce the coordinates
x0=t , x1= ψ2, x2= ψ1, x3=sin2ζ , x4= ρ2, x5= φ3, x6= φ2, x7= φ1, x8=sin2ξ , x9=r2.
The gravity fields can depend only onx3,x4,x8,x9.
The only nonvanishing components ofHµνρareH234andH789
Dilaton equation
4∇2Φ −4(∇µΦ)2+R − 1
12HµνρHµνρ=0
Φ =Φ0+ Φa(x3,x4) + Φs(x8,x9) +Φas(x3,x4,x8,x9) 4∇2Φa− 4(∇µΦa)2+Ra−1
2H234H234= c(κ)
L2 , L2=g(1 + κ2)12