• No results found

Purification, Stereoisomeric Analysis and Quantification of Biologically Active Compounds in Extracts from Pine Sawflies, African Butterflies and Orchid Bees

N/A
N/A
Protected

Academic year: 2022

Share "Purification, Stereoisomeric Analysis and Quantification of Biologically Active Compounds in Extracts from Pine Sawflies, African Butterflies and Orchid Bees"

Copied!
78
0
0

Loading.... (view fulltext now)

Full text

(1)

 

   

   

Thesis  for  the  degree  of  Doctor  of  Philosophy,  Sundsvall  2011    

     

PURIFICATION, STEREOISOMERIC ANALYSIS AND

QUANTIFICATION OF BIOLOGICALLY ACTIVE COMPOUNDS IN EXTRACTS FROM PINE SAWFLIES, AFRICAN BUTTERFLIES

AND ORCHID BEES

Joakim Bång  

   

Supervisor:  

Erik  Hedenström    

   

Department  of  Natural  Sciences,  Engineering  and  Mathematics   Mid  Sweden  University,  SE-­‐‑851  70  Sundsvall,  Sweden    

 

ISSN  1652-­‐‑893X  

Mid  Sweden  University  Doctoral  Thesis  116   ISBN  978-­‐‑91-­‐‑86694-­‐‑58-­‐‑6  

 

 

 

(2)
(3)

Akademisk   avhandling   som   med   tillstånd   av   Mittuniversitetet   i   Sundsvall   framläggs   till   offentlig   granskning   för   avläggande   av   filosofie   doktorsexamen   fredag  28  oktober  2011,  klockan  10:15  i  sal  O111,  Mittuniversitetet  Sundsvall.  

Seminariet  kommer  att  hållas  på  svenska.  

                               

PURIFICATION, STEREOISOMERIC ANALYSIS AND

QUANTIFICATION OF BIOLOGICALLY ACTIVE COMPOUNDS IN EXTRACTS FROM PINE SAWFLIES, AFRICAN BUTTERFLIES AND ORCHID BEES

Joakim Bång  

 

©  Joakim  Bång,  2011    

   

Department  of  Natural  Sciences,  Engineering  and  Mathematics   Mid  Sweden  University,  SE-­‐‑851  70  Sundsvall  

Sweden    

Telephone:   +46  (0)771-­‐‑975  000    

Printed  by  Kopieringen  Mid  Sweden  University,  Sundsvall,  Sweden,  2011  

(4)

PURIFICATION, STEREOISOMERIC ANALYSIS AND

QUANTIFICATION OF BIOLOGICALLY ACTIVE COMPOUNDS IN EXTRACTS FROM PINE SAWFLIES, AFRICAN BUTTERFLIES AND ORCHID BEES

Joakim Bång  

Department  of  Natural  Sciences,  Engineering  and  Mathematics   Mid  Sweden  University,  SE-­‐‑851  70  Sundsvall,  Sweden  

ISSN  1652-­‐‑893X,  Mid  Sweden  University  Doctoral  Thesis  116;  ISBN  978-­‐‑91-­‐‑86694-­‐‑

58-­‐‑6      

ABSTRACT

Stereochemistry   plays   an   important   role   in   nature   because   biologically   important   molecules   such   as   amino   acids,   nucleotides   and   sugars,   only   exist   in   enantiomerically   pure   forms.   Semiochemicals   carry   messages,   between   the   same   species   (pheromones)   and   between   different   species   (allelochemicals).   Both   pheromones   and   allelochemicals   can   be   used   as   environmentally   friendly   pest   management.  Many  semiochemicals,  i.e.  behaviour  modifying  chemicals,  consist  of   pure   or   well-­‐‑defined   mixtures   of   stereoisomers,   where   some   of   the   other   stereoisomers  can  be  repellent.  It  is  therefore  important  to  be  able  to  separate  them   to  produce  a  synthetic  pheromone  in  a  mixture  that  is  attractive.  

Pine  sawflies  are  a  family  of  insects  that  in  some  cases  can  be  severe  defoliators   of  conifer  trees.  Diprion  pini,  Diprion  similis  and  Neodiprion  sertifer  are  severe  pests   for  these  trees  and  have  got  the  most  attention  in  pine  sawfly  pheromone  studies.  

The  pheromone  precursors  are  stored  in  the  female  body  as  long-­‐‑chain  secondary   alcohols,   which,   when   released,   are   esterified   to   acetates   or   propionates.   The   alcohols  are  chiral,  and  normally  one  of  the  stereoisomer  is  the  main  pheromone   component,   sometimes   possible   together   with   other   stereoisomers   as   essential   minor  components.  

Bicyclus   is   a   genus   of   African   butterflies,   and   especially   Bicyclus   anynana   has  

become   a   popular   model   for   the   study   of   life   history   evolution,   morphology,  

mating  choice  and  genetics.  The  wing  pattern  of  Bicyclus  differs  depending  on  the  

season,   with   large   eyespots   during   the   rain-­‐‑season   and   small   or   absent   spots  

during  the  dry  season.  

(5)

 Euglossa  is  one  of  the  genera  among  the  orchid  bees  in  the  Neotropics  that  does   not  produce  its  own  pheromone.  Instead,  the  males  collect  fragrances  from  orchids   and  other  sources  and  store  them  in  a  pocket  in  their  hind  legs.  Both  Bicyclus  and   Euglossa  use  semiochemicals  similar  to  pine  sawflies,  and  thus  can  be  analysed  by   the  same  methods.  

Pheromones   and   other   semiochemicals   in   insects   are   often   present   in   low   amounts   in   a   complex   matrix,   and   purification   of   the   sample   before   chemical   analysis  is  often  required.  A  common  method  is  gradient  elution  on  a  solid  phase   silica   column.   Separation   of   stereoisomers   can   be   achieved   either   by   using   a   column   with   a   chiral   stationary   phase   (CSP)   or   with   pre-­‐‑column   derivatisation   using  a  column  with  an  achiral  stationary  phase  (ASP)  or  a  combination  of  both,   with  mass  detection  as  the  dominant  detection  method.  The  purpose  of  this  work   has  been  to  improve  the  purification  method,  find  suitable  methods  to  separate  the   stereoisomers  of  secondary  alcohols,  and  to  apply  this  on  extracts  of  insects.  

By  selecting  the  right  fractions  to  collect  during  gradient  elution  the  purification   method   was   optimised.   To   reduce   plasticizer   contamination   from   ordinary   columns,   solid   phase   columns   of   Teflon   or   glass   were   used.   For   pre-­‐‑column   derivatisation   of   different   chiral   alcohols   various   acid   chlorides   were   tested.   For   the   pine   sawfly   pheromone   precursors   enantiopure   (2S)-­‐‑2-­‐‑acetoxypropionyl   chloride   was   the   best   choice.   To   separate   some   of   the   stereoisomers   achiral   2-­‐‑

naphthoyl  chloride  was  used.  For  derivatisation  of  6,10,14-­‐‑trimethylpentadecan-­‐‑2-­‐‑

ol  (R)-­‐‑trans-­‐‑chrysanthemoyl  chloride  was  the  best  choice.  The  derivatised  alcohols   were  separated  on  different  columns,  both  chiral  and  non-­‐‑chiral.  Varian  FactorFour   VF-­‐‑23ms  was  chosen  as  a  general-­‐‑purpose  column,  the  Agilent  HP-­‐‑88  column  was   the  best  column  with  an  ASP  of  those  tested,  and  the  Chiraldex  B-­‐‑PA  column  (CSP)   was   the   only   one   that   could   separate   all   eight   stereoisomers   of   derivatised   3,7-­‐‑

dimethylundecan-­‐‑2-­‐‑ol,  3,7-­‐‑dimethyldodecan-­‐‑2-­‐‑ol,  and  3,7-­‐‑dimethyltridecan-­‐‑2-­‐‑ol.  

To   determine   the   stereoisomeric   purity   of   standard   solutions   used   in   field   experiments   and   extracts   of   different   species   of   insects   the   optimised   methods   were   applied.   For   extracts   from   B.   anynana,   Euglossa   and   Neodiprion   lecontei   this   work   describe   the   first   determination   of   the   stereochemistry   of   some   of   their   semiochemicals.  

   

(6)

For   the   determination   of   the   stereochemistry   of   chiral   semiochemicals   the   methods   for   purification   and   separation   presented   herein   have   shown   to   be   of   great  value.  The  results  will  hopefully  contribute  to  a  better  understanding  of  the   communication  among  insects,  and  ultimately  to  a  more  environmentally  friendly   pest  control.  

 

Keywords:  Semiochemicals,  sex  pheromone,  pine  sawflies,  Bicyclus,  Euglossa,  chiral  

separation,  derivatisation,  GC-­‐‑MS.  

(7)

SAMMANDRAG  

Många  naturligt  förekommande  kemiska  ämnen  finns  som  två  spegelbilder  av   varandra,  ungefär  som  höger  och  vänster  hand.  Dessa  kan  ha  helt  olika  egenskaper   och  det  är  därför  viktigt  att  kunna  separera  dem.  Insekter  och  andra  djur  använder   olika  doftämnen  för  att  kommunicera  med  varandra,  om  det  är  inom  samma  art   kallas  de  för  feromoner.  De  kan  bestå  av  ett  ämne  eller  en  blandning  av  flera.  Dessa   doftämnen   kan   man   även   använda   för   att   på   ett   miljövänligt   sätt   bekämpa   skadeinsekter.  En  fälla  med  syntetiskt  feromon  för  en  viss  insekt  lockar  endast  till   sig  den  arten,  medan  alla  andra  är  opåverkade.  Eftersom  dessa  ämnen  ofta  finns   som   spegelbilder   där   kanske   bara   den   ena   är   aktiv   och   den   andra   rent   av   frånstötande,   måste   man   kunna   separera   dem   för   att   framställa   ett   syntetiskt   feromon  som  är  attraktivt.  

Målet   med   detta   arbete   har   varit   att   bestämma   feromonet   hos   olika   arter   av   tallsteklar  som  kan  vara  svåra  skadedjur  på  tallskog.  De  metoder  som  tagits  fram   har   även   tillämpats   på   några   arter   av   afrikanska   fjärilar   samt   orkidébin   från   Centralamerika  eftersom  de  använder  snarlika  doftämnen.  

Att  få  fram  feromonet  från  en  insekt  är  lite  som  att  leta  efter  in  nål  i  en  höstack  

eftersom   de   ofta   bara   innehåller   några   miljarddels   gram   per   individ.   Provet  

behöver  först  renas,  och  en  del  av  arbetet  i  det  här  projektet  har  gått  ut  på  att  ta  

fram  en  lämplig  reningsmetod.  Huvudfokus  har  dock  varit  på  att  ta  fram  metoder  

som   kan   separera   och   identifiera   det   eller   de   ämnen,   och   spegelbilder   av   dessa,  

som  doftämnena  består  av.  När  lämpliga  metoder  tagits  fram  har  extrakt  av  olika  

insektsarter   analyserats.   I   några   fall   är   det   första   gången   som   deras   feromon  

bestämts   i   detalj.   Resultaten   kan   förhoppningsvis   bidra   till   en   ökad   kunskap   om  

insekters  sätt  att  kommunicera,  och  i  slutändan  till  miljövänligare  bekämpning  av  

skadeinsekter.  

(8)

TABLE OF CONTENTS

 

ABSTRACT  ...  II   SAMMANDRAG  ...  V   LIST  OF  PAPERS  ...  VIII   LIST  OF  ABBREVATIONS  ...  IX  

1.  INTRODUCTION  ...  1  

1.1. Stereochemistry ... 1

1.2. Semiochemicals ... 4

1.2.1. Pheromones ... 5

1.2.2. Allelochemicals ... 6

1.2.3. Semiochemicals in pest management ... 6

1.3. Olfactory system of insects ... 8

1.4. Pine sawflies ... 9

1.4.1. Pine sawfly pheromone ... 9

1.5. Bicyclus anynana (Squinting Bush Brown) ... 16

1.6. Euglossa (Orchid bees) ... 17

2.  ANALYTICAL  METHODS  ...  18  

2.1. Antennal response ... 18

2.2. Collection of volatiles ... 18

2.3. Extraction and purification ... 19

2.4. Separation of stereoisomers using GC ... 21

2.4.1. GC columns with a chiral stationary phase ... 21

2.4.2. Pre-column derivatisation ... 23

2.5. Detection and identification ... 25

3.  OBJECTIVES  ...  28  

4.  RESULTS  ...  29  

4.1. Method development ... 29

(9)

4.1.1. Purification ... 29

4.1.2. Derivatisation ... 31

4.1.3 GC separation ... 36

4.2. Application of methods ... 45

4.2.1. Purity of synthetic references ... 45

4.2.2. Pine sawflies ... 47

4.2.3. Bicyclus ... 50

4.2.4. Euglossa ... 52

5.  CONCLUDING  REMARKS  ...  54  

ACKNOWLEDGEMENTS  ...  56  

REFERENCES  ...  57    

 

 

(10)

LIST OF PAPERS

This  thesis  is  mainly  based  on  the  following  six  papers,  herein  referred  to  by  their   Roman  numerals:  

Paper  I   The  Male  Sex  pheromone  of  the  Butterfly  Bicyclus  anynana:  Towards   an   Evolutionary   Analysis.   C.   M.   Nieberding,   H.   de   Vos,   M.   V.  

Schneider,   J.-­‐‑M.   Lassance,   N.   Estramil,   J.   Andersson,   J.   Bång,   E.  

Hedenström,   C.   Löfstedt   and   P.   M.   Brakefield.   PLoS   ONE,   3   (2008),   e2751.  

Paper  II   Field   Response   of   Male   Pine   Sawflies,   Neodiprion   sertifer   (Diprionidae),   to   Sex   Pheromone   Analogs   in   Japan   and   Sweden.   O.  

Anderbrant,   J.   Löfqvist,   E.   Hedenström,   J.   Bång,   A.   Tai   and   H-­‐‑E.  

Högberg.  Journal  of  Chemical  Ecology,  36  (2010),  969-­‐‑977.  

Paper  III   (6R,10R)-­‐‑6,10,14-­‐‑Trimethylpentadecan-­‐‑2-­‐‑one,   a   Dominant   and   Behaviorally   Active   Component   in   Male   Orchid   Bee   Fragrances.   T.  

Eltz,  E.  Hedenström,  J.  Bång,  E.  A.  Wallin  and  J.  Andersson.  Journal  of   Chemical  Ecology,  36  (2010),  1322–1326.  

Paper  IV   Purification,   Stereoisomeric   Analysis   and   Quantification   of   Sex   Pheromone   Precursors   in   Female   Whole   Body   Extracts   from   Pine   Sawfly   Species.   J.   Bång,   E.   Hedenström   and   K.   Sjödin.   Journal   of   Chemical  Ecology,  32  (2011),  125-­‐‑133.  

Paper  V   Sex   Pheromone   of   the   Intruduced   Pine   Sawfly,   Diprion   Similis   (Diprionidae),   Revisited:   no   Activity   of   Earlier   Reported   Synergists.  

O.   Anderbrant,   B.   Lyons,   J.   Bång,   E.   Hedenström   and   H-­‐‑E.   Högberg.  

Submitted.  

Paper  VI   Stereoisomeric   separation   of   derivatised   2-­‐‑alkanols   using   GC-­‐‑MS:  

Sex   pheromone   precursors   found   in   pine   sawfly   species.   J.   Bång,   E.  

Hedenström  and  O.  Anderbrant.  Submitted.  

Not  incl.   Chemical   ecology   and   insect   conservation:   optimising   pheromone-­‐‑

based   monitoring   of   the   threatened   saproxylic   click   beetle   Elater   ferrugineus.   G.   P.   Svensson,   C.   Liedke,   E.   Hedenström,   P.   Breistein,   J.  

Bång,  and  M.  C.  Larsson.  Journal  of  Insect  Conservation  (in  press).  

Paper   II-­‐‑IV   were   reprinted   with   kind   permission   from   Springer   Science+Business  

Media.      

(11)

LIST OF ABBREVATIONS

ASP   Achiral  stationary  phase   CI   Chemical  ionization   CSP   Chiral  stationary  phase  

EAD   Electroantennographic  detection  

EAG   Electroantennogram  

ECD   Electron  capture  detection  

EI   Electron  impact  

FID   Flame  ionization  detection  

GC   Gas  chromatography  

GC-­‐‑FTIR   Gas  chromatography  -­‐‑  Fourier  transform  infrared  spectroscopy   GC-­‐‑MS   Gas  chromatography  -­‐‑  mass  spectrometry  

Gk.   Greek  

IUPAC   International  Union  of  Pure  and  Applied  Chemistry  

MS   Mass  spectrometry  

m/z   Mass-­‐‑to-­‐‑charge  ratio  

NMR   Nuclear  magnetic  resonance   NPD   Nitrogen  phosphorus  detection   OBP   Odorant-­‐‑binding  protein   ORN   Olfactory  receptor  neurons   SCR   Single  cell  recording   SIM   Selected  ion  monitoring   SPE   Solid  phase  extraction   SPME   Solid  phase  microextraction   SSR   Single  sensillum  recording  

(2R*,3S*,7R/S)  =  (2R,3S,7R),  (2S,3R,7R),  (2R,3S,7S)  and  (2S,3R,7S),  previously  called   threo.  

(2R*,3R*,7R/S)  =  (2R,3R,7R),  (2R,3R,7S),  (2S,3S,7R)  and  (2S,3S,7S),  previously  called   erythro.  

 

(12)
(13)

1. INTRODUCTION 1.1. Stereochemistry

Stereochemistry   is   the   study   of   the   three-­‐‑dimensional   shapes   of   molecules.  

Many  molecules  exists  as  different  isomers,  which  is  defined  by  IUPAC  as  “One  of   several  chemical  species  (or  molecular  entities)  that  have  the  same  stoichiometric  molecular   formula   but   different   constitutional   formulae   or   different   stereochemical   formulae   and   hence  potentially  different  physical  and/or  chemical  properties”  (Moss  1996).  

Isomers  are  divided  into  constitutional  isomers  and  stereoisomers.  

Constitutional  isomers  have  different  connectivity  between  the  atoms:  

Positional  isomers:  different  position  of  functional  groups  (Figure  1A).  

Skeletal  isomers:  different  carbon  skeleton  (Figure  1B).  

Functional-­‐‑group  isomers:  different  functional  groups  (Figure  1C).  

 

  Figure 1. Constitutional isomers.

 

Stereoisomers  have  the  same  connectivity  but  differ  in  the  arrangement  in  space:  

Enantiomers:  a  pair  of  molecules  which  are  nonsuperposable  mirror  images   of  each  other  (Figure  2A).  

Diastereomers:  stereoisomers  that  are  not  mirror  images  of  each  other  (Figure   2B).   They   have   different   physical   properties   and   differ   to   some   extent   in   chemical  behaviour.  One  form  of  diastereomers  is  the  E/Z  isomers  of  alkenes.  

If   the   groups   with   the   highest   priority   are   on   opposite   sides   of   the   double  

H3C

H3C

CH3 OH

OH

H3C OH

H3C O

CH3 H3C

CH3

H3C CH3 CH3

Hexan-1-ol Butane

A. Positional isomers: B. Skeletal isomers: C. Functional group isomers:

Hexan-2-ol Isobutane

Ethanol

Methoxymethane

(14)

bond,  the  alkene  is  designated  E  (from  the  German  entegen),  and  if  they  are  on   the  same  side  it  is  designated  Z  (from  the  German  zuzammen)  (Figure  2C).  

 

  Figure 2. Stereoisomers.

 

Enantiomers  and  diastereomers  have  normally  one  or  more  stereogenic  centres,   normally  a  carbon  bonded  to  four  different  substituents.  If  a  molecule  has  a  plane   of  symmetry  it  must  be  superposable  on  its  mirror  image,  and  is  hence  achiral.  

The  stereogenic  centres  are  assigned  the  letter  R  or  S,  depending  of  the  order  of   the   groups   attached   to   it.   With   the   group   of   the   lowest   priority   (lowest   atomic   number)  pointing  back,  the  rest  of  the  groups  are  counted  from  highest  to  lowest   priority.  If  the  order  is  clockwise  the  centre  is  named  R  (rectus)  and  S  (sinister)  if  it   is  counted  clockwise  (Figure  3).  

 

  Figure 3. (R)- and (S)-configuration.

 

Cl

CH3 H3C

H

CH3

Cl H3C

H E

Z COOH

HO

CH3 H

HOOC OH

CH3 H

H COOH

CH3 HO

H2N H

HO COOH

CH3 H NH2 H

C. E/Z isomers (diastereomers)

A. Enantiomers B. Diastereomers

(High)

(High)

(High) (High)

(Low)

(Low)

(Low) (Low)

COOH HO

CH

3

H HOOC OH

CH

3

H

(R)-2-hydroxypropanoic acid (S)-2-hydroxypropanoic acid

1 2

3 4 2 1

3 4

(R) (S)

(15)

Stereochemistry,  and  the  ability  to  separate  and  detect  stereoisomers,  is  of  great   importance   for   several   reasons.   The   molecules   that   build   up   life   (amino   acids,   nucleotides,   sugars)   are   chiral   and   only   exist   in   nature   in   enatiomerically   pure   forms.   Semiochemicals   (see   Section   1.2.),   used   by   organisms   for   communication,   are  often  stereoisomers  (Mori  2007).  Many  of  the  active  components  in  drugs  are   chiral,   and   it   is   often   crucial   to   produce   them   in   enatiomerically   pure   forms   and   test  both  enantiomers  for  toxicity  (Gübitz  and  Schmid  2001;  Anslyn  and  Dougherty   2005).  

   

(16)

1.2. Semiochemicals

Chemicals   that   mediate   interactions   between   organisms   are   defined   as   semiochemicals  (Gk.  semeon  =  mark  or  signal).  They  are  subdivided  in  two  groups,   pheromones   and   allelochemicals   (Nordlund   and   Lewis   1976;   Nordlund   1981).  

Pheromones   mediate   chemical   communication   between   individuals   of   the   same   species   and   allelochemicals   between   individuals   belonging   to   different   species.  

They  are  further  divided  in  subgroups  based  on  the  purpose  or  benefits  (Figure  4).  

 

  Figure 4. The different groups and subgroups of semiochemicals.

Semiochemicals

Chemical substances carrying messages

Pheromones

Between individuals of the same species

Alarm

Repellent

Aggregation

Trail

Sex

Allelochemicals

Between individuals of different species

Allomones

Kairomones

Synomones

Apneumones

(17)

1.2.1. Pheromones

In  1959  Karlsson  and  Lüscher  suggested  the  term  pheromone  (Gk.  phereum  =  to   carry,  horman  =  to  excite)  to  define  a  substance  released  by  an  animal  that  trigger  a   specific  reaction  in  a  member  or  members  of  the  same  specie  (Karlson  and  Lüscher   1959;   Nordlund   and   Lewis   1976).   The   existence   of   pheromones   was,   however,   known   long   before   that.   The   fact   that   male   dogs   are   attracted   to   secretions   from   female  dogs  in  heat  were  known  already  to  the  ancient  Greeks,  and  in  1609  Charles   Butler  described  how  a  single  bee  sting  attracts  other  bees  to  attack  (Wyatt  2009).  

Jacentkovski   discovered   in   1932   that   a   trap   containing   a   female   gypsy   moth   attracted  a  large  amount  of  males  (Nandagopal  et  al.  2008).  

The   word   pheromone   was   launched   at   the   right   time.   That   same   year   (1959)   Butenandt   et   al.   reported   the   first   isolation   and   identification   of   a   pheromone,   (10E,12Z)-­‐‑hexadeca-­‐‑10,12-­‐‑dien-­‐‑1-­‐‑ol   (bombykol),   the   sex   pheromone   of   the   silkworm   moth   Bombyx   mori   (Wyatt   2009).   Since   then   hundreds   of   pheromones   have   been   discovered,   ranging   from   small   molecules   as   formic   acid   to   polypeptides.  The  early  beliefs  that  pheromones  were  single  compounds  have  been   revised.   In   many   cases,   they   are   mixtures   of   different   compounds   in   very   exact   ratios.   Also,   the   stereochemistry   of   the   pheromone   can   be   of   crucial   importance   (see  Section  1.4.1.).  

Examples  of  some  pheromone  subgroups:  

Alarm:   Dispersion   or   aggressive   behaviour   as   a   response   to   predators.   The   workers  of  the  honeybee  Aplis  mellifera  release  a  mixture  of  isopentyl  acetate   and   more   than   20   other   substances   to   coordinate   an   attack   when   they   feel   threatened  (Slessor  et  al.  2005).  

Repellent:   A   warning   signal   to   avoid   sources   unsuitable   for   food   or   colonisation.   Used   by   bark   beetles   to   warn   other   individuals   from   attacking   healthy  trees  with  high  amounts  of  poisonous  substances  (Francke  et  al.  1995).  

Aggregation:   Congregation   for   feeding   or   mating.   Bark   beetles   use   aggregation   pheromone   to   coordinate   feeding   and   mating   when   a   suitable   tree  has  been  found  (Seybold  et  al.  2006).  

Trail:  Path  marking,  common  among  social  insects.  Ants  use  trail  pheromone   to  guide  other  workers  to  a  food  source  (Morgan  2009).  

Sex:  Usually  emitted  from  females  to  attract  males  for  mating.  Females  of  the  

Asian   elephant   Elephas   maximus   uses   (Z)-­‐‑7-­‐‑dodecen-­‐‑1-­‐‑yl   acetate   to   attract  

males.   The   same   substance   is   also   used   as   one   of   the   components   in   the  

pheromone  blend  of  some  140  moth  species  (Rasmussen  et  al.  1997).  

(18)

1.2.2. Allelochemicals

Substances  that  mediate  interaction  between  individuals  of  different  species  are   defined  as  allelochemicals.  They  are  divided  into  four  groups  (Nordlund  1981):  

Allomones   (Gk.   allo   =   different):   beneficial   to   the   emitter.   Plants   release   allomones  as  defence  against  herbivores  by  attracting  their  enemies.  

Kairomones   (Gk.   kairos   =   opportunistic):   beneficial   to   the   receiver.   Parasites   use  kairomones  to  detect  hosts.  

Synomones   (Gk.   syn   =   with   or   jointly):   beneficial   to   both   the   emitter   and   receiver.  Flowers  attract  pollinators,  which  receive  nectar  as  reward.  

Apneumones   (Gk.   a-­‐‑pneum   =   breathless   or   lifeless):   chemicals   from   a   non-­‐‑

living  source  that  are  favourable  to  a  receiving  organism  but  unfavourable  to   another  species  that  are  found  on  the  non-­‐‑living  material.  

In   combination   with   plant   volatiles   from   the   host   tree,   the   aggregation   pheromone  of  bark  beetles  is  used  by  predators  to  locate  them.  In  this  case  the  bark   beetle   pheromone   is   a   kairomone   and   the   plant   volatiles   a   synomone   to   the   predator  (Mumm  and  Hilker  2006).  

 

1.2.3. Semiochemicals in pest management

An  increased  environmental  awareness,  resulting  in  the  ban  of  many  synthetic   pesticides,  has  made  it  important  to  develop  alternative  and  more  environmental-­‐‑

friendly   methods   to   fight   pests.   A   growing   world   population,   resulting   in   an   increased  demand  for  food,  and  an  on-­‐‑going  change  in  climate  has  made  this  even   more  important  and  challenging.  

A  problem  with  pesticides  is  the  development  of  resistance  after  long-­‐‑term  use,   and  many  times  the  natural  enemies  to  the  pest  are  more  affected  than  the  target   species   (Witzgall   et   al.   2010).   The   optimal   solution   would   be   methods   that   only   affect  the  pest  and  leaves  the  rest  of  the  ecosystem  unaltered.  This  must,  of  course,   also  be  economically  viable.  

Both   allelochemicals   and   pheromones   can   be   used   for   control   of   pest   insects.  

Especially  sex  pheromones  have  several  advantages:  they  are  species-­‐‑specific,  very  

small   amounts   are   needed,   and   they   are   almost   all   non-­‐‑toxic   to   other   animals  

(Witzgall   et   al.   2010).   Although   sex   pheromones   often   consist   of   a   mixture   of  

different  substances  (or  stereoisomers)  in  very  exact  ratios,  it  is  sometimes  effective  

even   in   incomplete   blends.   This   reduces   the   costs   to   produce   synthetic  

(19)

pheromones.  Sometimes  host  volatiles,  used  for  aggregation  of  many  insects,  are   combined   with   pheromones   for   control   of   pests,   e.g.   the   apple   fruit   moth   Argyresthia  conjugella  (Norin  2007).  The  use  of  semiochemicals  instead  of  pesticides   does  not  affect  predators,  which  thus  can  reduce  secondary  pests.  

Monitoring  

The   most   common   use   of   semiochemicals   in   pest   management   is   for   monitoring.  Traps  with  synthetic  sex  pheromone  are  used  to  detect  the  presence  of   a  certain  pest  or  if  a  larger  outbreak  is  imminent.  This  is  often  used  in  combination   with  pesticides,  which  thereby  reduces  the  amount  of  chemicals  needed.  Otherwise   pesticides  are  often  used  “just  in  case”  (Witzgall  et  al.  2010).  

Mass  trapping  

Mass  trapping  is  mainly  used  for  species  that  use  aggregation  pheromones  and   thereby  captures  both  males  and  females.  This  method  has  been  used  sucessfully   against  the  bark  beetle  Ips  duplicatus  in  China,  where  a  synthetic  pheromone  blend   of  ipsdienol  and  E-­‐‑myrcenol  strongly  reduced  tree  mortality  by  bark  beetle  attacks   in  a  spruce  forest  (Schlyter  et  al.  2001).  

Attract  and  kill  

This   technique   combines   an   attractive   semiochemical   with   an   insecticide.   It   reduces  the  need  of  chemicals  to  a  minimum.  The  house  fly   Musca  domestica  can   effectively  be  caught  with  commercial  traps  containing  the  female  sex  pheromone   (Z)-­‐‑9-­‐‑tricosene  and  the  insecticide  imidacloprid  (Butler  et  al.  2007).  

Mating  disruption  

Sex  pheromones  are  normally  released  from  females  to  attract  males  for  mating.  

By  saturating  an  area  with  synthetic  sex  pheromone,  the  male  will  not  be  able  to   find   the   female   and   thus   mating   is   prevented.   This   method   is   more   efficient   in   large  areas,  where  the  movement  of  females  in  and  out  of  the  treated  area  (border   effect)  is  insignificant  (Östrand  et  al.  1999;  Witzgall  et  al.  2010),  and/or  with  females   that  show  limited  movement  after  mating  (Martini  et  al.  2002).  Mating  disruption   has  now  become  the  most  common  method  to  control  pests  with  semiochemicals,   and  is  used  in  vineyards,  orchards,  forests,  and  can  also  be  used  for  indoor  pests   (Ryne  et  al.  2006;  Witzgall  et  al.  2010).    

Repelling  

Compounds   from   non-­‐‑host-­‐‑plants   that   a   pest   avoids   can   be   used   to   prevent  

feeding.  The  pine  weevil  Hylobius  abietis,  although  polyphagous,  avoids  feeding  on  

certain  plants  even  when  no  choice  is  given.  An  example  of  such  a  compound  is  

nonanoic  acid  from  linden  bark  (Månsson  et  al.  2005).  

(20)

Push  and  pull  

“Push  and  pull”  is  a  method  that  uses  an  attractive  stimuli  in  combination  with   a  repellent.  An  example  of  a  successful  application  is  the  control  of  the  cereal  stem   borers  Chilo  partellus  and  Busseola  fusca  on  cereal  crops  in  Africa  (Khan  et  al.  2008).  

A   repellent   plant   is   planted   inside   the   fields   and   an   attractive   trap   plant   at   the   borders.   For   this   method   to   work,   the   attractive   plant   has   to   be   more   appealing   than  the  crop.  

 

1.3. Olfactory system of insects

The  olfactory  system  of  insects  is  very  selective  and  can  discriminate  between  a   pheromone  and  other  molecules  with  minimal  structural  difference,  even  between   different   stereoisomers.   The   discrimination   is   made   by   odorant-­‐‑binding   proteins   (OBP),   that   transport   the   pheromone   across   an   aqueous   barrier,   and   odorant   receptors  (Leal  2005).  Many  male  insect  species  have  large  and  strongly  branched   antennas  to  be  able  to  detect  low  amounts  of  sex  pheromone  emitted  by  the  female,   sometimes   hundreds   of   meters   away.   The   chemical   signal   is   picked   up   by   hair-­‐‑

liked   sensilla   on   the   surface   of   the   antenna,   transported   by   OBP   to   the   olfactory   receptor  neurons  (ORN),  which  are  in  contact  with  the  antennal  lobes  in  the  brain   by  their  axons.  The  signal  is  processed  in  the  brain  and  instructions  are  given  to  the   motor  system.  This  results  in  the  male  navigating  towards  the  female  in  a  zigzag   pattern  to  pinpoint  the  source  of  the  pheromone  (Leal  2005).  

The  number  of  ORN  in  most  sensilla  are  normally  between  two  and  five,  but   can  be  as  many  as  140  in  wasps  (Leal  2005).  In  the  pine  sawfly  specie  Neodiprion   sertifer  all  but  one  of  its  8  to  12  ORN  are  specialized  for  reception  of  the  chiral  sex   pheromone,  and  the  last  one  is  tuned  to  an  inhibiting  stereoisomer  (Hansson  et  al.  

1991).  For  the  closely  related  Diprion  pini,  all  of  the  8  to  9  ORN  are  specialized  for   the   attractive   stereoisomer   of   the   sex   pheromone   (Anderbrant   et   al.   1995).   Co-­‐‑

localization   of   the   ORN   for   the   pheromone   and   a   behavioural   antagonist   is   common   among   male   moths   (Baker   et   al.   1998).   The   moth   detects   the   time   difference  (milliseconds)  in  the  arrival  of  the  different  odour  molecules.  This  makes   it  possible  for  them  to  discriminate  between  plumes  of  a  mixture  of  the  pheromone   and  antagonist  from  the  same  source,  or  plumes  of  each  from  different  sources  that   have  been  mixed  in  the  air  (Hansson  2002).  The  sensilla  of  Japanese  beetle  Popillia   japonica  have  two  ORN,  one  tuned  to  the  pheromone  (R)-­‐‑japonilure  and  the  other   to  the  antagonist  (S)-­‐‑japonilure,  which  is  the  pheromone  of  another  beetle,  living  in   the  same  habitat  (Nikonov  and  Leal  2002).  This  shows  the  importance  of  the  ORN  

to  discriminate  between  different  stereoisomers.    

(21)

1.4. Pine sawflies

The   family   of   pine   or   conifer   sawflies   (Diprionidae)   belongs   to   the   order   Hymenoptera,   with   two   suborders,   Symphyta   (sawflies   and   horntails)   and   Apocrita   (wasps,   ants   and   bees).   Diprionidae   is   one   of   14   families   of   Symphyta.  

The   name   pine   sawflies   comes   from   its   main   host,   Pinus   spp.   and   the   sawlike   ovipositor  of  the  females  (Smith  1993;  Anderbrant  1999).  

Although   a   small   family   with   about   130   species   in   11   genera,   it   has   received   great   attention   from   scientists.   This   is   due   to   its   harmful   defoliation   of   conifers,   causing   damages   with   great   economical   consequences.   Pine   sawflies   are   widespread   over   the   Holarctic   region,   with   a   southern   limit   in   Central   America,   Thailand,  northern  India,  and  northern  Africa.  The  species  considered  as  the  most   severe  pests  are  those  that  have  been  introduced  from  Europe  to  North  America,   such   as   Diprion   similis   and   Neodiprion   sertifer   (Smith   1993).   Two   of   the   worst   outbreak  species  (and  also  most  studied)  in  Europe  are  D.  pini,  and  N.  sertifer.  An   outbreak  species  is  defined  as  having  a  population  eruption  two  or  more  times  per   100   years,   a   host   defoliation   of   >50%,   lasting   for   at   least   two   years   per   eruption,   and  affecting  an  area  of  more  than  1000  ha  (Larsson  et  al.  1993).  

Pinus  sylvestris  can  release  volatiles  that  attract  egg  parasitoids  when  they  are   attacked  by  the  two  common  pine  sawfly  species  D.  pini  and  N.  sertifer,  but  does   not  do  so  against  the  less  common  Gilpinia  pallida  (Mumm  and  Hilker  2006).  

The  female  uses  the  saw-­‐‑like  ovipositor  to  slice  a  slit  in  the  needles  of  conifers,   where   she   lays   one   or   several   eggs,   depending   on   species.   Many   pine   sawflies   oviposit  on  the  needles  from  the  previous  year,  although  the  second  generation  can   be  laid  on  needles  of  the  current  year  (Géri  et  al.  1993).  Depending  on  species,  the   sawfly  passes  the  winter  either  as  an  egg  or  as  a  prepupal  cocoon  on  the  ground.  

Depending   on   the   climate   and   species,   one   or   more   generations   can   occur   each   year.  Normally,  only  fertilized  eggs  evolve  into  females,  but  for  some  species  (e.g.  

Gilpinia  hercyniae)  females  are  produced  from  unfertilized  eggs  and  males  are  very   rare   (Knerer   1993;   Anderbrant   1999).   Larvae   of   Diprionidae   has   developed   a   defence   mechanism   where   they   store   resin   from   the   tree   in   foregut   pouches   and   regurgitate  it  when  they  are  disturbed  (Mumm  and  Hilker  2006).  

 

1.4.1. Pine sawfly pheromone

Coppel  et  al.  (1960)  were  the  first  to  study  the  female  pine  sawfly  pheromone.  

They  discovered  that  a  caged  female  of  D.  similis  could  attract  thousands  of  males,  

(22)

although   they   were   not   able   to   isolate   and   identify   the   attractant   (Coppel   et   al.  

1960).  It  was  not  until  1976  that  the  sex  pheromone  of  a  pine  sawfly  species  was   identified,   when   Jewett   et   al.   identified   3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol   (Figure   5),   later  named  diprionol,  as  an  inactive  pheromone  precursor  of  N.  lecontei,  N.  sertifer   and  D.  similis  (Jewett  et  al.  1976).  They  also  found  that  diprionol  is  stored  in  the   female   body   and   just   prior   to   release   it   is   esterified   to   the   active   pheromone.   N.  

lecontei  and  N.  sertifer  are  attracted  to  the  acetate  and  D.  similis  to  the  propionate.  

No   production   site   for   the   pheromone   precursor   has   been   found   in   female   pine   sawflies.  The  alcohol  is  distributed  equally  over  the  whole  body,  indicating  that  the   biosynthesis  is  not  concentrated  to  a  specific  part  of  the  body  (Anderbrant  1993).  

Diprionol   has   three   stereogenic   centres   and   thus   can   exist   as   eight   different   stereoisomers.  Each  of  these  have  been  synthesised  in  isomerically  pure  forms,  and   this,   in   combination   with   improved   analytical   methods,   have   allowed   for   more   reliable   pheromone   identification   as   well   as   field-­‐‑testing   of   the   different   stereoisomers  (Högberg  et  al.  1990).  

 

  Figure 5. 3,7-Dimethylpentadecan-2-ol (diprionol).

 

Since  the  first  sex  pheromone  precursor  was  identified,  several  more  have  been   found   in   other   pine   sawfly   species.   They   all   have   a   very   similar   structure:   a   secondary  alcohol  with  a  chain  of  11,  13,  14  or  15  carbons,  substituted  with  one  to   three  methyl  groups  (Figure  6).  The  alcohols  can  exist  as  4  to  16  stereoisomers,  with   normally   one   of   the   isomers   (as   esters)   as   the   major   pheromone   component   and   sometimes  other  isomers  with  synergistic  or  antagonistic  effect  (Anderbrant  1999;  

Hedenström   and   Andersson   2002;   Keeling   et   al.   2004).   Almost   every   alcohol   precursor   have   the   (2S)-­‐‑configuration,   although   Hedenström   et   al.   identified   several  alcohols  with  (2R)-­‐‑configuration  in  extracts  of  Gilpinia  pallida  (Hedenström   et   al.   2006).   In   one   field   study   D.   similis   was   trapped   with   the   propionate   of   (2R,3R,7R)-­‐‑diprionol,  being  significantly  more  attractive  than  the  (2S,3S,7S)-­‐‑isomer,   and   with   increasing   catches   with   increasing   dose.   (Longhurst   et   al.   1980).   These   results   have   not   been   able   to   reproduce   in   later   studies   (Kikukawa   et   al.   1982;  

Olaifa  et  al.  1988;  Anderbrant  et  al.  2011).  

CH3

OH

CH3 CH3

(23)

  Figure 6. Sex pheromone precursors of pine sawflies that have been identified in female

extracts (*stereogenic centre).

 

The   following   list   includes   all   pine   sawfly   species   that   have   been   studied   by   field-­‐‑testing,  EAG/EAD-­‐‑experiments,  or  analysis  of  pheromone  precursor  content   in  female  extract.  

Diprion  jingyuanensis  

The  propionate  of  (2S,3R,7R)-­‐‑3,7-­‐‑dimethyltridecan-­‐‑2-­‐‑ol  is  the  main  component   of  the  sex  pheromone  (Zhang  et  al.  2005).  Anderbrant  et  al.  (unpublished  results)   found  that  a  mixture  of  (2S,3R,7R)  and  (2S,3R,7S)  caught  significantly  more  than   the  isomers  alone,  and  these  two  isomers  gave  also  the  strongest  response  in  EAG.  

In   extracts   they   found   both   threo   [(2S,3R,7R)   or   (2S,3R,7S)]   and   erythro   [(2S,3S,7S)/(2S,3S,7R)  or  (2R,3R,7R)/(2R,3R,7S)]  at  a  ratio  of  3:1.  

Diprion  nipponica  

The  propionate  of  (2S,3R,9S)-­‐‑3,7-­‐‑dimethylundecan-­‐‑2-­‐‑ol  is  the  main  component   of   the   sex   pheromone,   confirmed   by   field   studies   and   analysis   of   female   body   extracts  (Tai  et  al.  2002).  Propionates  of  (2S,3R,7S)-­‐‑  (2S,3R,8S)-­‐‑  and  (2S,3R,9R)-­‐‑3,7-­‐‑

CH3 OH

CH3 CH3

CH3 OH

CH3 CH3

13 7

7

3 2

15 3

2

* *

*

* *

*

CH3 OH

CH3

15 3

2

* CH3 *

OH

CH3 CH3

3 2

* 14 *

7*

CH3 OH

CH3 CH3

CH3

13 7 3

2

* *

*

9* CH3

OH

CH3 CH3

CH3

13 7 3

2

* *

* 11*

CH3 OH

CH3 CH3

3 2

*

* 9*

11

Diprion spp (2S,3R,7R)

Diprion spp, Gilpinia spp and Neodiprion spp (2S,3S,7S) and (2S,3R,7R)

Gilpinia pallida (2S,3R,7R) Macrodiprion nemoralis

(2S,3R,7R,9S)

Microdiprion pallipes (2S,3S,7S,11S) and (2S,3S,7S,11R) Diprion nipponica

(2S,3R,7S)

Gilpinia frutetorum and Gilpinia socia (2S,3R)

(24)

dimethylundecan-­‐‑2-­‐‑ol  were  also  attractive  in  field  studies  (Tai  et  al.  1998;  Tai  et  al.  

2002).  

Diprion  pini  

The   acetate   or   the   propionate   of   (2S,3R,7R)-­‐‑3,7-­‐‑dimethyltridecan-­‐‑2-­‐‑ol   is   the   main  component  of  the  sex  pheromone  (Figure  7),  with  an  amount  of  the  precursor   alcohol  of  about  8  ng/female  (Bergström  et  al.  1995;  Bång  et  al.  2011).  Bergström  et   al.  also  found  minor  amounts  (0.5-­‐‑4%)  of  the  alcohol  analogues  with  a  carbon  chain   length  of  12,  14,  15  and  16,  with  the  first  three  giving  EAG  response.  None  of  the   minor  component  resulted  in  any  effect  in  field  test.  Anderbrant  et  al.  discovered   that   3,7-­‐‑dimethyltridecan-­‐‑2-­‐‑ol,   acetic,   propionic,   butyric,   and,   isobutyric   acid,   together  with  the  acetate,  propionate  and  butyrate  esters  of  3,7-­‐‑dimethyltridecan-­‐‑2-­‐‑

ol  are  released  from  the  female  (Anderbrant  et  al.  2005).  Both  EAG  and  field  tests   showed  a  reaction  and  attraction  to  different  esters  (acetate,  propionate,  butyrate,   isobutyrate)  of  the  alcohol.  

  Figure 7. The pheromone of Diprion pini.

 

Diprion  similis  

The   propionate   of   (2S,3R,7R)-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol   is   the   main   component   of   the   sex   pheromone,   and   Anderbrant   et   al.   showed   that   it   alone   caught  most  males,  with  no  synergistic  effect  by  the  other  isomers  or  any  attraction   at   all   by   the   acetate   (Kikukawa   et   al.   1982;   Olaifa   et   al.   1988;   Anderbrant   et   al.  

2011).   Female   body   extract   contained   about   15   ng   of   (2S,3R,7R)-­‐‑3,7-­‐‑

dimethylpentadecan-­‐‑2-­‐‑ol,   with   minor   amounts   of   (2R,3S,7S),   (2R,3R,7S)   and   (2R,3R,7R),  1%,  0.4%  and  0.3%,  respectively,  of  the  main  component  (Anderbrant  et   al.  2011).  

CH3 O

CH3 CH3

CH3 O

CH3 O

CH3 CH3

O

CH3

Propionate of (2S,3R,7R)-3,7-dimethyltridecan-2-ol Acetate of (2S,3R,7R)-3,7-dimethyltridecan-2-ol

(25)

Gilpinia  frutetorum  

The   acetate   of   (2S,3R,7(R/S))-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol   was   most   attractive   in  field  test  (Kikukawa  1982).  EAG  recordings  gave  the  strongest  response  for  the   acetates   of   (2S,3R,7R)-­‐‑   and   (2S,3R,7S)-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol,   and   the   following   alcohols   were   found   in   female   body   extracts:   (2S,3R,7R)-­‐‑3,7-­‐‑

dimethylpentadecan-­‐‑2-­‐‑ol   (1-­‐‑2   ng/female),   (2S,3R)-­‐‑3-­‐‑methylpentadecan-­‐‑2-­‐‑ol   (1-­‐‑2   ng/female),   and   (2R*,3R*)-­‐‑3-­‐‑methylpentadecan-­‐‑2-­‐‑ol   (0.1-­‐‑0.2   ng/female)   (Hedenström  et  al.  2009).  

Gilpinia  pallida  

The  propionate  of  (2S,3R,7R)-­‐‑3,7-­‐‑dimethyltetradecan-­‐‑2-­‐‑ol  was  most  attractive  in   field   test,   followed   by   the   propionate   of   (2S,3R,7R)-­‐‑3,7-­‐‑dimethyltridecan-­‐‑2-­‐‑ol   (Hedenström   et   al.   2006).   Several   isomers   of   3,7-­‐‑dimethyltridecan-­‐‑2-­‐‑ol,   3,7-­‐‑

dimethyltetradecan-­‐‑2-­‐‑ol   and   3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol   were   found   in   female   body  extracts  in  amounts  from  analytical  trace  levels  to  750  pg,  some  of  them  with   2R  configuration,  the  first  observation  of  this  in  a  pine  sawfly  species.  

Gilpinia  socia  

The  acetate  of  (2S,3R)-­‐‑3-­‐‑methylpentadecan-­‐‑2-­‐‑ol  gave  the  strongest  response  in   EAG  recordings,  followed  by  the  acetate  of  (2S,3R,7R)-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑

ol,   the   propionate   of   (2S,3R)-­‐‑3-­‐‑methylpentadecan-­‐‑2-­‐‑ol,   and   the   acetate   of   (2S,3R,7S)-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol   (Hedenström   et   al.   2009).   The   following   alcohols   were   found   in   female   body   extracts:   (2R*,3S*,7R/S)-­‐‑3,7-­‐‑dimethyl-­‐‑

pentadecan-­‐‑2-­‐‑ol   (1-­‐‑8   ng/female),   (2R*,3R*,7R/S)-­‐‑3,7-­‐‑dimethyl-­‐‑pentadecan-­‐‑2-­‐‑ol   (2   ng/female)   (2R*,3S*)-­‐‑3-­‐‑methylpentadecan-­‐‑2-­‐‑ol   (0.7-­‐‑4   ng/female),   and   (2R*,3R*)-­‐‑3-­‐‑

methylpentadecan-­‐‑2-­‐‑ol  (1  ng/female).  

Macrodiprion  nemoralis  

The  acetate  of  (2S,3R,7R,9S)-­‐‑3,7,9-­‐‑trimethyltridecan-­‐‑2-­‐‑ol  is  the  main  component   of  the  sex  pheromone  (Wassgren  et  al.  2000).  About  0.8  ng  per  female  of  the  alcohol   precursor   was   found   in   body   extract.   A   mixture   of   all   16   stereoisomers   of   the   acetate   caught   a   large   amount   of   males,   indicating   no   antagonistic   effect   of   any   isomer.  

Microdiprion  pallipes  

Field  tests  and  EAG  recordings  indicate  that  the  propionate  of  (2S,3S,7S,11R)-­‐‑

3,7,11-­‐‑trimethyltridecan-­‐‑2-­‐‑ol  is  the  main  sex  pheromone  component  (Bergström  et   al.  1998;  Östrand  et  al.  2003).  About  1.5  ng/female  of  the  isomer  has  been  found  in   female  body  extract  (Bergström  et  al.  1998).  

 

(26)

Neodiprion  abbotti  

The  propionate  of  3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol  obtained  from  an  extract  of  N.  

sertifer   gave   the   strongest   EAG   response,   when   compared   with   the   acetylated   extract   from   of   N.   sertifer,   the   acetate   and   propionate   of   D.   similis   extract,   and   synthetic   acetate   and   propionate   of   3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol   (Jewett   et   al.  

1976).  

Neodiprion  abietis  

The  propionate  of  3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol  gave  a  stronger  EAG  response   than  the  acetate  (Jewett  et  al.  1976).  

Neodiprion  dailingensis  

Both   the   acetate   and   propionate   of   (2S,3R,7R)-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol   were   highly   attractive   to   males,   the   propionate   caught   a   little   more,   but   with   no   significant  difference  (Anderbrant  et  al.  1997).  

Neodiprion  dubiosus  

A   1:1   mixture   of   the   propionates   of   (2S,3R,7R)-­‐‑   and   (2S,3R,7S)-­‐‑3,7-­‐‑

dimethylpentadecan-­‐‑2-­‐‑ol   caught   most   males,   pure   (2S,3R,7R)   was   also   attractive   but  pure  (2S,3R,7S)  showed  very  little  attraction  (Kraemer  et  al.  1984).  Propionates   containing  (2S,3R,7S)  gave  the  strongest  EAG  response.  

Neodiprion  lecontei  

The  acetate  of  (2S,3S,7S)-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol  is  the  main  component  of   the   sex   pheromone   (Kraemer   et   al.   1981).   In   field   test   by   Matsumura   et   al.   the   acetate   of   (2S,3S,7S/R)-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol   was   the   only   active   isomer   blend,   and   was   shown   to   be   equally   effective   as   females   in   trap   experiments   by   Wilkinson  et  al.  (Matsumura  et  al.  1979;  Wilkinson  et  al.  1982).  About  7  ng/female   of  (2S,3S,7S)-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol  was  found  in  extract  (Paper  VI).  

Neodiprion  nanulus  nanulus  

The  acetate  of  (2S,3S,7S)-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol  is  the  main  component  of   the   sex   pheromone,   with   about   2   ng/female   of   the   alcohol   precursor   found   in   extract   (Olaifa   1987).   In   field   test   Kraemer   et   al.   found   that   the   propionate   of   (2S,3S,7S)   and   acetate   of   (2S,3S,7R)   were   just   as   attractive   as   the   acetate   of   (2S,3S,7S)  (Kraemer  et  al.  1983).  

Neodiprion  nigroscutum  

Samples   containing   the   propionate   of   (2S,3R,7S)-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol   gave  the  strongest  response  in  EAG-­‐‑recordings  (Kraemer  et  al.  1984).  

 

(27)

Neodiprion  pinetum  

The  acetate  of  (2S,3S,7S)-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol  is  the  main  component  of   the   sex   pheromone   (Kraemer   et   al.   1979;   Kraemer   et   al.   1981),   with   (2S,3R,7R)   acting   as   a   synergist   (Olaifa   et   al.   1988).   A   1:2   ratio   of   the   isomers   was   the   most   attractive  blend  i  field  test.  About  10  ng/female  was  found  of  the  alcohol  precursor   in  extract,  with  a  major  peak  of  (2S,3S,7S)  and  a  minor  of  (2S,3R,7R/S)  (Olaifa  et  al.  

1988).  

Neodiprion  pratti  banksianae  

A  mixture  of  the  acetates  of  (2S,3S,7S)-­‐‑  and  (2S,3R,7R)-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑

2-­‐‑ol   in   an   ratio   of   5:1   attracted   most   males   in   field   test   (Olaifa   et   al.   1984).  

According   to   Kraemer   et   al.   it   was   instead   a   1:1   mixture   of   the   propionates   of   (2S,3R,7R)  and  (2S,3R,7S)  that  was  most  attractive  in  field  test  (Kraemer  et  al.  1983).  

Neodiprion  pratti  paradoxicus  

A   1:1   mixture   of   the   propionates   of   (2S,3R,7R)-­‐‑   and   (2S,3R,7S)-­‐‑3,7-­‐‑

dimethylpentadecan-­‐‑2-­‐‑ol  attracted  most  males  in  field  test  (Kraemer  et  al.  1983).  

Neodiprion  pratti  pratti  

The  propionate  of  (2S,3R,7R)-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol  attracted  most  males   in  field  test  (Kraemer  et  al.  1983).  A  1:1  mixture  of  the  propionates  of  (2S,3R,7R)   and  (2S,3R,7S)  gave  the  strongest  respons  in  EAG-­‐‑recording.  

Neodiprion  rugifrons  

A   1:1   mixture   of   the   propionates   of   (2S,3R,7R)-­‐‑   and   (2S,3R,7S)-­‐‑3,7-­‐‑

dimethylpentadecan-­‐‑2-­‐‑ol   caught   most   males   (Kraemer   et   al.   1984).   Propionates   containing  (2S,3R,7S)  gave  the  strongest  EAG  response.  

Neodiprion  sertifer  

The   acetate   or   the   propionate   of   (2S,3S,7S)-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol   is   the   main  component  of  the  sex  pheromone  (Figure  8)  (Kikukawa  et  al.  1983;  Olaifa  et   al.   1987;   Tai   et   al.   1992).   Both   field   tests   and   EAG-­‐‑recordings   showed   equal   attractiveness   and   response   for   the   two   esters   (Kraemer   et   al.   1983).   Field   tests   showed   an   antagonistic   effect   of   (2S,3R,7R)   (Anderbrant   et   al.   1992),   increasing   from  Japan  to  Europe  and  Canada,  but  in  Siberia  it  was  synergistic  (Anderbrant  et   al.  2000;  Anderbrant  et  al.  2010).  Tests  with  (2S,3R,7S)  gave  results  with  a  similar   pattern.   Female   body   extracts   contained   5-­‐‑20   ng/female   of   (2S,3S,7S)-­‐‑3,7-­‐‑

dimethylpentadecan-­‐‑2-­‐‑ol  (Wassgren  et  al.  1992;  Bång  et  al.  2011).  Wassgren  et  al.  

also   found   minor   amounts   (2-­‐‑5%)   of   the   alcohol   analogues   with   a   carbon   chain  

length  of  13,  14,  and  16,  with  the  first  two  giving  EAG  response.  None  of  the  minor  

component  showed  any  effect  in  field  test  (Wassgren  et  al.  1992).  

(28)

  Figure 8. The pheromone of Neodiprion sertifer.

 

Neodiprion  swainei  

The  propionate  of  (2S,3S,7S)-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol  attracted  most  males   in  field  test  (Kraemer  et  al.  1984).  EAG-­‐‑recordings  showed  the  strongest  response   to  the  propionate  of  (2S,3S,7S)  and  propionates  containing  (2S,3R,7S).  

Neodiprion  taedae  linearis  

The   acetate   and   the   propionate   of   (2S,3S,7S)-­‐‑3,7-­‐‑dimethylpentadecan-­‐‑2-­‐‑ol   attracted   most   males   in   field   test   (Kraemer   et   al.   1983).   These   gave   also   the   strongest  response  in  EAG-­‐‑recordings.  

 

1.5. Bicyclus anynana (Squinting Bush Brown)

The   genus   Bicyclus   (“bush-­‐‑browns”)   belongs   to   the   order   Lepidoptera,   family   Nymphalidae   and   subfamily   Satyrinae.   It   is   an   endemic   African   (sub-­‐‑Sahara)   genus   with   about   80   species   (Nieberding   et   al.   2008).   The   Bicyclus   species   are   known   for   the   seasonal   polyphenism   of   their   wing   pattern,   with   large   eyespots   during  the  rain-­‐‑season  and  small  or  absent  spots  during  the  dry  season.  The  size  of   the  eyespots  is  determined  by  the  temperature  during  the  larvae  period.  Bicyclus   anynana   has   been   a   popular   model   for   the   study   of   life   history   evolution,   morphology,  mating  choice  and  genetics.  It  has  a  suitable  size  and  is  readily  reared   in   captivity   (Robertson   and   Monteiro   2005;   Costanzo   and   Monteiro   2007;  

Brakefield  et  al.  2009).  

CH3 O

CH3 CH3

CH3 O

CH3 O

CH3 CH3

O CH3

Propionate of (2S,3S,7S)-3,7-dimethylpentadecan-2-ol Acetate of (2S,3S,7S)-3,7-dimethylpentadecan-2-ol

(29)

Not   only   the   eyespots   differ   between   the   dry   and   wet   seasons,   the   mating   behaviour  also  changes.  During  the  dry  period  it  is  mostly  the  female  courting  the   male,  but  in  the  wet  season  it  is  the  opposite  (Prudic  et  al.  2011).  

In  Bicyclus  anynana,  the  sex  pheromone  is  produced  by  the  male  in  its  fore-­‐‑  and   hind   wing   androconia.   The   pheromone   is   a   mixture   of   (Z)-­‐‑9-­‐‑tetradecenol,   hexadecanal  and  (2R,6R,10R)-­‐‑6,10,14-­‐‑trimethylpentadecan-­‐‑2-­‐‑ol,  see  more  in  Section   4.2.3.   (Nieberding   et   al.   2008).   The   tetradecenol   is   mainly   produced   in   the   fore   wings,  hexadecenal  in  the  hind  wings,  and  pentadecan-­‐‑2-­‐‑ol  in  both  the  fore-­‐‑  and   hind  wings.  

 

1.6. Euglossa (Orchid bees)

The   genus   Euglossa   belongs   to   the   group   Euglossini,   orchid   bees   (order   Hymenoptera,   family   Apidae).   It   is   a   group   of   more   than   200   brightly   coloured   species   occurring   in   lowland   forests   of   the   Neotropics.   They   are   important   pollinators,  responsible  for  10%  of  the  pollination  of  the  Neotropical  orchid  flora   (Eltz  et  al.  2005;  Ramírez  2009).  

The   male   bees   are   unique   in   that   they   collect   fragrances   from   orchid   flowers   and   other   sources,   like   decaying   wood   and   fungi.   The   fragrances,   mostly   sesquiterpenes,   monoterpenes   and   aromatics,   are   stored   in   hair-­‐‑filled   pouches   in   their  enlarged  hind  tibiae.  The  pouches  will  over  time  become  large  and  contain  a   complex  mixture  of  volatile  substances  (Eltz  et  al.  2003;  Ramírez  2009;  Ramírez  et   al.  2010).  The  mixture  can  be  stored  for  a  long  time  and  is  finally  released  during   courtship   at   special   display   territories.   Although   there   is   no   proof,   it   is   believed   that   this   blend   of   fragrances   is   used   for   mate   recognition   and   choice   (Eltz   et   al.  

2005;  Zimmermann  et  al.  2009).  These  blends  are  species-­‐‑specific  and  surprisingly   independent  of  the  type  of  habitat.  Different  populations  of  a  species  in  different   environments  will  contain  the  same  major  compounds  (Zimmermann  et  al.  2006;  

Ramírez  et  al.  2010).  One  of  the  largest  fragrance  molecules  found  in  the  tibiae  of   orchid   bees   is   (6R,10R)-­‐‑6,10,14-­‐‑trimethylpentadecan-­‐‑2-­‐‑one   (Eltz   et   al.   2010).   It   is   believed  that  this  kind  of  low-­‐‑volatile  compounds  functions  as  “base-­‐‑notes”  in  the  

complex  mixture  of  fragrances.    

References

Related documents

Tillväxtanalys har haft i uppdrag av rege- ringen att under år 2013 göra en fortsatt och fördjupad analys av följande index: Ekono- miskt frihetsindex (EFW), som

Evaluation of volatile organic compounds related to board based packaging by use of instrumental and

Re-examination of the actual 2 ♀♀ (ZML) revealed that they are Andrena labialis (det.. Andrena jacobi Perkins: Paxton & al. -Species synonymy- Schwarz & al. scotica while

The molar ratio of mercury to thiol and equilibrium time seemed to have no effect on the signal intensity of Hg(Cys) 2.. Further, the signal intensity obtained from samples

The statistical analysis software JMP-14 (SAS Institute Inc., Cary, NC, USA) was used to make Pearson correlation test, which measure the linear relationship of the process

if Kährs in Nybro can take an active role in the treatment of stormwater and process water by on-site reduction of the concentrations of COD, phenol, tannin and

This first trial regarding protection of spruce seedlings against pine weevil attack via seed treatment or watering only covers the first season in the field, a time which is

Additionally, purity was determined gravimetrically by quantifying betulin by UV/vis and relating the amount (mass) to the total mass of the extract. One of the extraction methods