• No results found

A Monte Carlo study of Ferrimagnetic Heisenberg models

N/A
N/A
Protected

Academic year: 2022

Share "A Monte Carlo study of Ferrimagnetic Heisenberg models"

Copied!
40
0
0

Loading.... (view fulltext now)

Full text

(1)

2008:054 CIV

E X A M E N S A R B E T E

A Monte Carlo study of

Ferrimagnetic Heisenberg models

Thomas Falk

Luleå tekniska universitet Civilingenjörsprogrammet

Teknisk fysik

Institutionen för Tillämpad fysik, maskin- och materialteknik Avdelningen för Fysik

(2)

Thisreportistoinvestigate,throughMonteCarlosimulations,theferri-

magneti behaviourof threedierent latti esonthe anisotropi Heisen-

bergmodel.

In the rstmodel, with a layered simple ubi stru ture, onditions

fortheexisten eof ompensationpointsareestablished.

The se ond and third models are set up to resemble the real sub-

stan es,with knownmaterial parameters, ofyttriumirongarnet (YIG)

andgadoliniumirongarnet(GdIG).Thesimulationsaimto he kthe or-

re tnessofthetwomodelsintermsofferrimagneti and riti albehaviour,

su hasthe ompensationpointTcompandthe riti altemperatureTc.

(3)

I Introdu tion 6

1 Earlier work in the eld 6

2 Ferrimagnetismand CompensationTemperatures 6

3 Te hnologi al Interestsin Ferrimagnets 7

3.1 Opti alisolators . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Magneto-Opti al(MO)re ording . . . . . . . . . . . . . . . . . . 8

II Basi s on Magnetism 9 4 Quantum theoryof Magneti Ordering 9 4.1 OriginoftheMagneti Moment. . . . . . . . . . . . . . . . . . . 9

4.2 TheEx hangeIntera tion . . . . . . . . . . . . . . . . . . . . . . 9

4.2.1 Antisymmetrizationofwavefun tions . . . . . . . . . . . 10

4.2.2 Two-ele tronwavefun tions. . . . . . . . . . . . . . . . . 11

4.2.3 TheHeisenbergHamiltonian . . . . . . . . . . . . . . . . 11

4.2.4 Superex hange . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Magnetismasa Colle tionof Atoms 13 5.1 EquilibriumstatesandtheBoltzmanndistribution . . . . . . . . 13

5.2 TheIronGarnets . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2.1 YttriumIronGarnet(YIG) . . . . . . . . . . . . . . . . . 14

5.2.2 GadoliniumIronGarnet(GdIG) . . . . . . . . . . . . . . 15

5.3 Mole ulareld modeloftheGarnets . . . . . . . . . . . . . . . . 15

III Latti e Representation & Simulational Methods 17 6 Modelling 17 6.1 SpinmodelsofFerrimagnetism . . . . . . . . . . . . . . . . . . . 17

6.2 TheAnisotropi Heisenbergmodel . . . . . . . . . . . . . . . . . 18

6.2.1 Model1: TheLayeredSimpleCubi latti e . . . . . . . . 18

6.3 TheGarnetlatti e . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.3.1 Model2: YttriumIronGarnet . . . . . . . . . . . . . . . 21

6.3.2 Model3: GadoliniumIronGarnet . . . . . . . . . . . . . 22

7 EquilibriumThermalMC-Simulations 22 7.1 Cal ulatingObservables . . . . . . . . . . . . . . . . . . . . . . . 22

7.2 TheMasterEquation. . . . . . . . . . . . . . . . . . . . . . . . . 23

7.3 DetailedBalan e andA eptan eRates . . . . . . . . . . . . . . 23

7.4 Importan e Sampling. . . . . . . . . . . . . . . . . . . . . . . . . 24

7.5 MarkovChains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.6 TheSingleSpin-FlipMetropolisAlgorithm . . . . . . . . . . . . 25

7.7 Te hniques atlowtemperatures. . . . . . . . . . . . . . . . . . . 26

(4)

8 MonteCarlo simulations 28

8.1 Model 1: TheLayeredSimpleCubi stru ture. . . . . . . . . . . 28

8.2 Model 2: YttriumIron Garnet . . . . . . . . . . . . . . . . . . . 30

8.3 Model 3: GadoliniumIronGarnet . . . . . . . . . . . . . . . . . 31

V Con luding remarks 35

9 Con lusions 35

10 Futuredire tions 36

11 A knowledgements 38

(5)

2.1 Demonstrationof ompensationtemperature . . . . . . . . . . . 7

4.1 Symmetri wavefun tion . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Antisymmetri wavefun tion. . . . . . . . . . . . . . . . . . . . . 10

4.3 Superex hange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6.1 Heisenbergintera tion . . . . . . . . . . . . . . . . . . . . . . . . 17

6.2 Latti egeometries: Honey omb andtriangular . . . . . . . . . . 18

6.3 MixedspinHeisenbergmodel . . . . . . . . . . . . . . . . . . . . 19

6.4 Numberings hemefor imple ubi latti e. . . . . . . . . . . . . 20

6.5 Thegarnetunit ell . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7.1 TheRedu ed onemethod. . . . . . . . . . . . . . . . . . . . . . 27

8.1 32x32x32versus8x8x8 . . . . . . . . . . . . . . . . . . . . . . . . 29

8.2 JA/JB phaseplane . . . . . . . . . . . . . . . . . . . . . . . . . 30

8.3 JAB/DA phaseplane . . . . . . . . . . . . . . . . . . . . . . . . 31

8.4 JAB/Tcomp phaseplane . . . . . . . . . . . . . . . . . . . . . . 32

8.5 YIGmagnetizationandspe i heat measurements. . . . . . . . 33

8.6 GdIGmagnetizationandspe i heatmeasurements . . . . . . . 33

8.7 YIGmagnetization urves . . . . . . . . . . . . . . . . . . . . . . 34

8.8 GdIGmagnetization urves . . . . . . . . . . . . . . . . . . . . . 34

(6)

Introdu tion

1 Earlier work in the eld

There hasbeenmu h eortonstudyingferrimagneti modelsre entlyandthe

rst model studied in this report is intended to go one step further from [1℄,

where alayeredmixed spin(12, 1)Ising model is studied. Ising models donot

realisti ally represent the ve tor spinsin real materials and this is why some

hangesaremadeas anattempt toimprovethemodel.

As for the garnets, extensive resear h has been arried out in the experi-

mental area. Themostinterestingpartseemstobethemagneto-opti al(MO)

ee tsofthevariousrare-earth(RE)andrare-earth-transition-metal(RE-TM)

garnetsandtheirpotentialappli ationsasmediumsinthin-lmmanufa turing.

Other kindsof magneti properties arestudied as well, usuallywith means of

Raman-,infrared-andphotolumines en espe tros opy,X-raydira tion,et .

IntheareaofMonteCarlosimulations,theinterestingarnetsis onsiderably

less. TherearesomeworkontheHeisenbergmodelonthegarnetlatti e,though,

su has in[2℄. Therearealsoa oupleofpapersontheIsingmodelwithgarnet

stru ture,[3℄and[4℄,butthese arefo usedondierentthings.

2 Ferrimagnetism and the on ept of a Compen-

sation Temperature

Aferrimagneti substan eisamaterialthat onsistsofmorethanonesublatti e

of ions with unequal net magneti moments, pointing in dierent dire tions

in spa e. In the simplest ase it is two anti-parallell sublatti es where the

numberofionsononeofthelatti esex eedstheother. Ferrimagnetsdierfrom

antiferromagnetsinthattheirtwoopposingsublatti esdonotexa tly an eland

thereforetheyexhibitaresultantmagnetization. Contrarytoferromagnetstheir

magnetization arises due to non-parallell alignment of their atomi magneti

moments.

Inthe groundstate aferrimagneti substan e hasa spontaneousmagneti-

zationdue to unequal an ellationof spins,as dis ussedabove. Thismagneti-

zation willde rease in magnitude within reasing temperaturedue to thermal

motion. Whenthe temperaturerea hesthe riti alCurie temperatureTc the

magnetizationdropsoveryrapidlytozero.

Sin etheopposingsublatti esinthematerialare,ingeneral,dierentfun -

tions of temperature there may be some point below the Curie temperature

wheretheyexa tly an el. Thisisknownas the ompensationpointTcomp and

hasimportantte hnologi alappli ations.

The two most ommon types of materials that exhibit ferrimagneti be-

haviourarethespinels andthegarnets. Thesegroupshaveafairly ompli ated

rystal stru ture with two and three magneti sublatti es, respe tively. The

ions in the spinel stru ture order into tetrahedraland o tahedral sites, where

the garnetshaveone further sublatti e in dode ahedral sites. The most om-

mon ompositionsforthespinelsandgarnetsarewhenironandoxygeno upy

(7)

thetetrahedralando tahedralsites,e.g. asin magnetite(Fe3O4)andtheiron

garnets.

Far from allthespinels and garnetshavea ompensationtemperature. Of

those thata tually haveone,themostnotablearesomeof therare-earthiron

garnets 1

(RIG). Two of them are of parti ular interest and will be studied

in some detail, the yttrium iron garnet (YIG) and Gadolinium Iron Garnet

(GdIG).

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Temperature

|Magnetization|

T comp M

M

A

B

Figure2.1:Thisishowthemagnetization urveswouldlooklikeifa ompensationtemper-

aturewaspresent. Sin ethe absolutevalue oftheBlatti emagnetizationisplottedrather than its realvalue the ompensationpointwillappearinthe interse tion between the two

graphs.

3 Te hnologi al Interests in Ferrimagnets

Yttriumandgadoliniumirongarnetshavenumerouste hnologi alappli ations,

su has in MO omponents. Thereare threepropertiesthat amaterialhasto

owetobesuitablefortheseappli ations;ithastoshowlowmagneti losses,low

opti al losses(absorbtion)and highMO ee t. TheRIGs (in ludingyttrium)

havethis.

3.1 Opti al isolators

Thepurposeofanopti alisolatoristo makesurethatlightonlygoesthrough

inonedire tion. Thisisessentialine.g. opti albreswherethelight anbere-

e tedba kandforthanddisturbthesignal. The ommon hoi eoflightsour e

used in ommuni ationsis 1.30µm and 1.55µm. Sin e YIG is transparentto wavelengthslongerthan1.10µmtherewill benoabsorbtionanditistherefore

suitableasanisolatormaterial 2

.

1

Wherethedode ahedralsitesinthegarnetsareo upiedbyarare-earthion.

2

Itisunusual,however,thatpuresubstan es,su hasYIG,areusedforanyappli ations.

Mu hbetterproperties anbea hievedifthe materialisdopedwithanotherelement. For

example, inthe YIG ase, the MOee t an beimprovedifdopedwithbismuthand the

temperaturedependen eofthesameee tisloweredifdopedwithterbium.

(8)

polarisedwiththeuseofapolariser,ledthroughtheYIG rystalandthrough

anotherpolariser(analyzer)whi h istilted45. Bygivingthe rystala ertain

length, the Faraday ee t 3

will rotate the angle of polarisation exa tly 45.

When entering the bre, some of the light will beree ted ba kthrough the

rystalandthereforerotatedanother45. Sin ethelightnowisperpendi ular to the original polarisation it will be blo ked and unable to disturb the laser

signal.

3.2 Magneto-Opti al (MO) re ording

Another use for theRIGs (and YIG) is as mediums in MO drivesbe ause of

their out-of-plane anisotropy and high MO ee ts. The prin iple works like

this. Thedata is storedin the(memory) material with theuseof alaser. To

re ordsomethingon thematerial thelaserheats aspot and an,with theaid

ofamagnet, ipbetweenupanddownstates(where,say up orrespondstoa

re orded mark). When theinformation is erased, the spot is heated to above

thematerialsCuriepointwhere nomagnetismexists.

Ifamaterial hasa ompensation point, however,it isadvantageousto use

this temperaturetogo betweentheup,downandzerostates. Sin e theGdIG

hasa ompensation pointjust belowroomtemperatureit haspotentialusein

thisarea. Thereasonwhythe ompensationpointisadvantageoustotheCurie

temperatureis that theinformation stored hereis morestable due to the low

temperature. Thereisalsoa onsiderablylessamountofenergythathastobe

suppliedtothematerialin ordertoraisethetemperature,whi hwilllowerthe

needoflaserpoweraswell.

Wheninformation is read one usesthe samelaser to shine on thesurfa e.

Some ofthelightisree ted from themagneti surfa ewitharotationof po-

larizationdue to the Kerr ee t (whi h is thesameas the Faradayee t but

nowreferto theree tedlight insteadofthetransmitted). Depending onthe

dire tionofrotationitispossibletode idethedire tion ofmagnetization,and

onsequentlywhi hareasthatarere ordedandwhi harenot.

TheMO re ordingis prefered to onventional re ording due to the longer

durabilityofthedis s. Sin emagnetizationreversaldoesnotinvolveanymove-

mentofatomsthedis swillnotdegradewiththenumberofreadingandwriting

pro esses. One analso a hieveahigherresolution. More detailsonthis wide

area anbefoundin [6℄.

3

Thelightwillintera twiththematerialsmagnetizationand anexternalmagneti eld,

whi hwill ausethepolarisationtorotate. Theangleofrotationwilldependonthemagneti

eld strengthB,the length of dof the rystal and the so alledVerdet onstant ν. This

onstantisveryhighfordopedYIGsubstan es. MoreonMOee ts anbefoundine.g. [5℄.

(9)

Basi s on Magnetism

Thispartwillgivesomeoverviewofthephenomenonofmagnetism. Itisnotin-

tendedtogivea ompletedes riptionofmagnetism,asitwouldbeverylengthy,

but rather somebasi understanding. Many books havebeen written on this

hugeareaofphysi s,su has [7℄or themorere ent[8℄.

Thereare twowaysof explainingmagnetism; Onthemi ros opi s ale us-

ingquantum me hani s or onthema ros opi s alewithstatisti al me hani s.

Thesetwoapproa heswillbe overedinsomedetailbutitwillbebene ialto

havesomeknowledgeonthesetwoareas.

4 Quantum theory of Magneti Ordering

Thisse tionwillgiveabriefba kgroundtothephenomenonofmagnetismfrom

a mi ros opi point of view. It is assumed that the reader has some basi

knowledge about quantum me hani s, su h as the S hrödinger equation, the

Pauli ex lusionprin iple, et . Seee.g. [9℄or [10℄.

4.1 Origin of the Magneti Moment

Atomi magneti momentsarise due toele tronsorbitingthenu leus (ele tri

urrents) and the ele tronsown built-in property, alled spin. The spingives

thebiggest ontributiontothemagneti momentofthetwoandisthereforethe

mostimportantsour e,at leastwhendis ussing magnetism.

Whentwo (or several) atoms are su iently lose to ea h other, like in a

solid,their orrespondingwavefun tionswilloverlapandamagneti statemight

be reated. Theele tronsmagneti momentswill eitheralignor anti-alignand

there is a ertain property of the wave fun tions that is responsible for this.

This isbrieywhat magnetismis about;A ooperativebehaviourof magneti

moments 4

.

Ifa solidis magneti or not depends on various things ( rystaltype, ele -

troni stru ture,interatomi separation,et .) anditisimpossibletoinvestigate

it in anydetailex ept for somesimple ases. There are howeversomesimple

prin iples tostartwith,andtheyareoutlinedin somedetailbelow.

4.2 The Ex hange Intera tion

An atomi magneti moment in a solid that is ae ted by the dipole eld of

aneighbouringatom isfar from enoughto ause any magneti ordering. The

largestmagneti intera tionand theoriginofthemagneti momentalignment

is something alled ex hange intera tion. It originates from the fa t that the

ele tronwavefun tionshavetobeantisymmetri withrespe ttoparti leinter-

hange. It isessentialformagnetismandisthereforereviewedbelow.

4

Thespinandorbitalmomentsalso oupleinternally,whi his alledspin-orbit oupling.

Thisisalsoimportantformagnetismbuthasnothingtodowithitintermsofalignedmagneti

moments.

(10)

Suppose that there is a system of two identi al ele trons with position oor-

dinates r1 and r2 and spin oordinates s1 and s2. The positions are mea-

sured in spheri al polar oordinates and the spinis along the z axis, so that r1= r2= (r, θ, φ) and s1= s2= (sz). There are four plausible forms of the

wavefun tionbut onlyone ofthemisphysi allyvalid, namely

Ψ(a, b) = 1

2α(a)ψβ(b) − ψα(b)ψβ(a)] . (4.1)

Here ψα(a), ψα(b), ψβ(a) and ψβ(b)are thewavefun tions of ele tron1 with

energy eigenvalue Eα, ele tron 2 with energy eigenvalue Eα, ele tron 1 with

energyeigenvalueEβ, ele tron2 with energyeigenvalueEβ, respe tively. The

(a, b)isashorthandfor(r1, s1; r2, s2)and1/

2 isjust theretogetthe orre t

normalization.

Eqn(4.1)istheonlyformtoobeythePauliex lusionprin iple. Ifthewave

fun tionwouldhavebeenneithersymmetri norantisymmetri ,theparti ledis-

tribution|ψ|2wouldbealteredduringinter hangeoftheparti les. Asymmetri wavefun tion,however,wouldsuggestthattheindividualwavefun tionsofthe

parti lesare identi al,whi h isnotaloud. Therefore,thewavefun tion hasto

beantisymmetri .

Figure4.1: Symmetri wavefun tion. Sour e: [7℄

Figure4.2: Antisymmetri wavefun tion.Sour e: [7℄

Theantisymmetrization of wavefun tions is easily extended to N parti le

systemsbytheSlaterdeterminant

References

Related documents

Stöden omfattar statliga lån och kreditgarantier; anstånd med skatter och avgifter; tillfälligt sänkta arbetsgivaravgifter under pandemins första fas; ökat statligt ansvar

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

Generally, a transition from primary raw materials to recycled materials, along with a change to renewable energy, are the most important actions to reduce greenhouse gas emissions

Both Brazil and Sweden have made bilateral cooperation in areas of technology and innovation a top priority. It has been formalized in a series of agreements and made explicit

För att uppskatta den totala effekten av reformerna måste dock hänsyn tas till såväl samt- liga priseffekter som sammansättningseffekter, till följd av ökad försäljningsandel

Generella styrmedel kan ha varit mindre verksamma än man har trott De generella styrmedlen, till skillnad från de specifika styrmedlen, har kommit att användas i större

The efficiency is the number of reconstructed events fulfilling all criteria, divided by the number of generated MC truth events of the reaction of interest. I obtained a

Several elements that contribute to value are considered, including objective elements such as waste reduction, quality, price and functionality, and more subjective