• No results found

Test method for high acceleration: A concept study of methods for testing electrical and mechanical components under high loads

N/A
N/A
Protected

Academic year: 2022

Share "Test method for high acceleration: A concept study of methods for testing electrical and mechanical components under high loads"

Copied!
55
0
0

Loading.... (view fulltext now)

Full text

(1)

Test method for high acceleration

A concept study of methods for testing electrical and mechanical components under high loads

Provmetod för hög accelerationstestning

En konceptstudie av testmetoder för elektriska och mekaniska komponenter som utsätts för höga påkänningar

Jonathan Fenelius

Faculty of Health, Science and Technology

Bachelor thesis: Engineering in innovation and deisgn 22.5 ECTS

Supervisor: Anders Biel Examiner: Leo De Vin 2019-06-10

1

(2)

This page is intentionally left blank.

(3)

Abstract

This thesis objective is to present a suitable high acceleration test method for SAAB Dynamics. SAAB is in need for an easy to use and cheaper way to test components such as the fuze and electrical components embedded in the fuze system. SAAB Dynamics develops ground combat weapon

systems for the global market as well as civilian products. Products produced by SAAB are being used in armed combat, making this thesis project somewhat controversial. However, the concept

produced by this work can be used in civilian applications such as aeronautics, space and material science.

This thesis focused on using systematical methods and research to gain as much knowledge about the needs and demands of the customer, in this thesis SAAB. The project presents its own concepts as a valid option instead of buying one from a supplier. The concept is based on the needs of SAAB and is generated through creative brainstorming sessions and a morphological matrix. The concept was benchmarked together with similar test methods and test benches on the market.

In order to be able to present a suitable concept the project conducted a large feasibility study of the fuze system and the products in need of testing as well as how other industries test similar

acceleration and impacts.

The concept consists of a high-grade industrial compressor in order to generate high air pressure inside a pressure chamber. The built up pressure breaks a sensitive disc and releases the air into the launch chamber. In the launch chamber, the projectile accelerates through a rifled pipe and then travels freely in a wider pipe. The projectile then deaccelerates when impact occurs with an energy absorption material such as aluminum honeycomb or foam.

(4)

Sammanfattning

Den här examensrapporten handlar om att presentera en passande hög accelerations testmetod för SAAB Dynamics. SAAB är i behov av en lätthanterlig och billigare metod för att testa tändrör och elektriska komponenter som är inbyggda i tändröret. SAAB Dynamics utvecklar vapensystem för strid åt en global marknad. Produkter som SAAB utvecklar används i väpnad strid vilket gör att det här arbete kan vara kontroversiellt. Konceptet som genomförts i det här arbetet har dock även civila tillämpningar inom bl.a. flyg-, rymd- och materialindustrin.

Arbetet har fokuserat på att använda systematiska metoder och undersökningar för att generera kunskap om produkterna som är i behov av testning samt vilka krav och behov som SAAB har.

Projektet presenterade ett koncept baserat på krav och behov från kunden. Brainstorming användes för att på ett kreativt sätt generera så många lösningar på kundens behov som möjligt. Det slutgiltiga konceptet benchmarkades mot andra testmetoder som finns på marknaden.

Under projektet har en gedigen förstudie om tändrör och vilka typer av provmetoder andra industrier använder sig av för att testa både acceleration och kollision.

Det slutgiltiga konceptet består av en industrikompressor för att generera högt lufttryck i en tryckkammare. Det uppbyggda trycket knäcker ett tryckkänsligt bläck. När bläcket knäcks släpps luften ut i avfyrningskammaren och accelerera projektilen. Projektilen forceras genom ett räfflat rör för att generera rotation. Efter det räfflade röret flyger projektilen fritt i ett något vidare rör innan den bromsas genom att krocka med ett material med hög energiabsorptionsförmåga.

(5)

Table of Content

1 Introduction ... 5

1.1 Background ... 5

1.2 Purpose ... 6

1.3 Objective... 6

1.4 Delimitations ... 6

2 Method ... 8

2.1 Project Planning and Structure ... 8

2.2 Feasibility Study ... 9

2.2.1 Internal Product Study... 9

2.2.2 Interviews ... 9

2.3 Market Analysis ... 10

2.4 Product specification ... 11

2.4.1 Dimension ... 11

2.4.2 Kano’s Model ... 11

2.4.3 Criteria Matrix ... 12

2.4.4 Quality Function Deployment ... 14

2.5 Design ... 15

2.5.1 Idea Generation ... 15

2.5.2 Concept Evaluation and Selection ... 16

2.6 Product Overview ... 16

3 Results ... 17

3.1 Project Planning and Structure ... 17

3.2 Feasibility Study ... 17

3.3 Market Analysis ... 19

3.3.1 Gas and Powder Guns ... 20

3.3.2 Drop test ... 21

(6)

3.4 Product Specification ... 21

3.5 Design ... 22

3.5.1 Idea generation ... 22

3.5.2 Concept Evaluation and Selection ... 24

3.5.3 Final Concept ... 26

3.6 Product Overview ... 28

4 Discussion ... 29

5 Conclusion ... 31

6 Future work ... 32

7 Acknowledgments ... 33

8 Bibliography ... 34

(7)

5

1 Introduction

The goal for this project is to present a suitable test method for high acceleration and present it for SAAB Dynamics. The project is the bachelor’s thesis for the university program, Innovation and Design Engineering, at Karlstad University. The course of the bachelor’s thesis was done during the spring of 2019 and the course extent is 22.5 ETSC. Michael Carlsson and Diana Gill at SAAB Dynamics guided the project. The supervisor from Karlstad University was Anders Biel and the examiner was Leo De Vin.

1.1 Background

SAAB provides services and solutions for both military defence and civil security. SAAB Dynamics develops ground combat systems, missile systems among others. The systems mostly related to this project are AT4 and Carl-Gustaf. Both AT4 and Carl-Gustaf are handheld anti-armor, anti-personal weapon systems. The products produced by SAAB are being used in combat, making this project controversial. However, the concept developed by this project is relevant to civilian applications as well. High acceleration testing is common in aeronautic, space and material science to characterize and develop products.

To study and develop new mechanisms, components, and products at SAAB Dynamics requires great knowledge and understanding of the products and components. The components, the embedment of components and the mechanisms of the products are affected in a complex way during the launch process. To gain deep level of knowledge regarding SAAB’s products there is a need for large amount of testing. Due to this, SAAB Dynamics have a need for an easy to use test rig in order to conduct their tests.

The components used in SAAB’s products are usually not specified for the high loads that they are being exposed to. This applies particularly to electronic components. To ensure the use of the right components and embedding of said component, there is a need to conduct testing.

Most of the companies in this line of work are struggling with the same problem. Due to the constant evolution of electrical components in this modern time, the electrical components on the market are constantly changing. The increase of electrical-driven products is also occurring at SAAB and with this; the demand for a rapid development phase is ever increasing.

(8)

6

The current methods of testing components rely on explosives. The test projectile is launched into, for example, a sand pile. These types of test require much preparatory work to ensure that it is conducted in a safe way. The test can be both time-consuming and expensive.

The current test methods can in some cases be conducted at SAABs own facility but in other cases at a test center. With an increasing competition for the opportunity to book the test center, wait times can range up to several months. SAAB wants to decrease time spent in development by conducting tests earlier in the development phase and increase the flexibility by having an easier and faster way of testing their components. By decreasing the need for tests that rely on explosives, SAAB Dynamics will also be able to decrease their environmental impact on the world.

The thesis work is a part of the course Degree Project for Degree of Bachelor of Science in Innovation and Design Engineering at Karlstad University. The aim of the course is to carry out a product

development project with the tools and methods learned from previous courses. This thesis work will be carried out at SAAB Dynamics, Karlskoga, at the Warhead and Fuze department.

1.2 Purpose

To be able to increase quality, reduce time needed for development, and test new components SAAB Dynamics is in need of an in-house test method. The test method should be able to handle high acceleration. The test method must be able to slow down the projectile smoothly and not driven by gunpowder. The purpose of the thesis work is also to use the design process and independently run a large project, using the tools provided during previous courses.

1.3 Objective

The objective for the project is to produce a basis for high acceleration test methods. This involves;

gathering information regarding what products are in need of testing, what methods and test benches are currently on the market, what can SAAB develop on their own, and what future work is needed to acquire a suitable test method. The project will present this information and a concept for further development to the company inform of an oral presentation and this paper.

1.4 Delimitations

Due to the magnitude of a product like this, the project will only produce a concept for future work to continue. The project will not include detailed calculation for acceleration or deceleration. It will also not include technical drawings or a detailed design.

(9)

7

(10)

8

2 Method

The description and plan of how the project will take form is presented in this section. It will describe what stages the project contains and what methods have been chosen in order to fulfill the purpose of the thesis-work.

2.1 Project Planning and Structure

The project plan will act as a foundation for the whole project. It helps specify the objective, goals and tasks of a project (Johannesson, et al., 2013). The project plan helps guarantee that all parties are satisfied with the work before it will be carried out (Eriksson & Lillesköld, 2004).

To determine which tasks are needed in a project a WBS (Work Breakdown Structure) (see figure 1) should be created. To create a WBS Eriksson & Lillesköld (2004) suggest following these seven steps:

1. Divide the project into smaller and more manageable chunks.

2. Identify tasks.

3. Identify dependencies.

4. Make a time estimate.

5. Identify critical path.

6. Divide resources.

7. Create Gantt-schedule, resource-diagram and time schedule.

Project

Stage 1

Method used in Stage 1

...

Stage 2

Method used in Stage 2

...

Stage 3

...

Figure 1. An example of work breakdown structure (WBS).

(11)

9

With the workload divide into smaller chunks, the scheduling of the project begins. To divide the projects resources, in this case time, a time plan is a key to ensure that the limited resources are routed to the most demanding task. A Gantt chart is a good way to get an overview of the tasks, time need for each task, and the dependencies of each task. The tasks are lined up on the Y-axis and the time with dates is on the X-axis of the Gantt chart (Johannesson, et al., 2013).

Risk assessment is a tool to help tackle problems that may affect the project. First off, one has to identify what problems might happen during the project. After that, evaluate the probability (P), the consequence (C), and the risk value (R = C∙P). A greater risk value means a larger risk (Eriksson &

Lillesköld, 2004).

2.2 Feasibility Study

As both Johannesson, et al, (2013) and Eriksson & Lillesköld (2004) describes, a good place to start of a project is with a feasibility study. The feasibility study for this project revolves around three main stages: Internal product study, interviews and Kano’s Model. More detail regarding each stage follows bellow.

2.2.1 Internal Product Study

Fuzes and other internal components of a weapon system is often sensitive information that a company will not share to the public. In order to gain a base knowledge to have as a foundation for the interviews were a necessity. To gain this information a study of SAAB’s internal product catalogue and fuze units was conducted. As the fuze and internal components vary from different munition, the study grasped the overall concepts and differences between the fuzes.

2.2.2 Interviews

The complexity and specifications of the products SAAB Dynamics is developing is not something that is being published. As Gillham (2008) suggests, a good way to gain as much deeper information as possible are interviews. During the feasibility study a total of 17 interviews were conducted. The interviewees were from different sections of the company and with different expertise and backgrounds.

The purposes of the interviews were to gain more insight in; relevant components that need testing, what loads the components are exposed to, current test methods and what use the proposed test method would have to the interviewee.

(12)

10

The interviews were one-on-one and face-to-face. The interviews were semi-structured. Meaning that each interview had a few specific questions but room to explore deeper into expertise and knowledge each interviewee possess (Gillham, 2008).

2.3 Market Analysis

In parallel with the feasibility study different areas such as aeronautics, space and material science were analyzed to find out more about what test methods exists on the market. To gain relevant information on cost, reliability and use, the suppliers for the different test methods were contacted.

The information from the market study was used in making the product specification and the concept evaluation.

(13)

11

2.4 Product specification

The product specification is a tool to help define the problem and ensure that all stakeholders, life- cycle stages, and other aspects are taken into consideration. It also acts as a guideline when working with the concepts and selecting which concepts to move forward with (Johannesson, et al., 2013).

2.4.1 Dimension

The components that were in need of testing were exposed to extreme loads. Both acceleration and the pressure on the internal components of a shell are very high.

This stage began in the product specification in order to answer the questions of how high acceleration is required and how much energy is required to slow down the projectile.

2.4.2 Kano’s Model

Kano’s model was used to systematically weight the demands and desires for the test method.

Kano’s model helps determine in what way the customer requirements correlate with customer satisfaction. The information gained from the Kano questionnaire (see figure 2) gave an insight on what features to include in the product and the importance of said feature (Berger, et al., 1993). The survey was sent out to seven of the experts that had been interviewed.

1a. If the test method can …, what is your opinion?

☐ 1. I like it that way.

☐ 2. It must be that way.

☐ 3. I am neutral.

☐ 4. I can live with it that way.

☐ 5. I dislike it that way.

1b. If the test method cannot …, what is your opinion?

☐ 1. I like it that way.

☐ 2. It must be that way.

☐ 3. I am neutral.

☐ 4. I can live with it that way.

☐ 5. I dislike it that way.

Figure 2. An example of a Kano questionnaire.

(14)

12

The answers from the questioner are then evaluated (see table 1). A stands for attractive, M is a must-be, R is a reverse, O is one-dimensional, Q is a questionable result and I is indifferent. A one- dimensional requirement means that the satisfaction correlates linear with the functionality, as the product provides better functionality for the requirement, the customer satisfaction increase (see figure 3). A reverse answer means that the prior judgment done by the questionnaire of what was functional and dysfunctional was the opposite of what the customer wanted (Berger, et al., 1993).

Table 1. Evaluation matrix for Kano questioner (Berger, et al., 1993).

Customer Requirements

Dysfunctional

1. 2. 3. 4. 5.

Like Must-be Neutral Live with Dislike

Functional

1. Like Q A A A O

2. Must-be R I I I M

3. Neutral R I I I M

4. Live with R I I I M

5. Dislike R R R R Q

The most common and second most common answer will be used as a guideline for the importance of what feature and performance the test method needs (Berger, et al., 1993).

2.4.3 Criteria Matrix

The criteria matrix from Olsson (see table 2) is a tool to help broaden the view and ensure all aspects of the product is taken into consideration (Johannesson, et al., 2013). This is a systematical way to work through each life-cycle stage and aspect that affects the product and categorized each criterion by 1.1-5.4. The original matrix proposed by Johannesson (et al., 2013) was modified to better suit the needs for this project. The test bench was not intended to be distributed so the life-cycle stage was

Figure 3. The Kano Diagram.

(15)

13

not taken in consideration. The choices of relevant aspects were; function, geometry, safety, economics, and performance.

Life-cycle stages Aspects

Process Environment Human Economy Creating (Development, construction, etc.) 1.1 1.2 1.3 1.4 Production (Manufacturing, assembly, control,

stockpiling, etc.)

2.1 2.2 2.3 2.4

Distribution (Sales, etc.) 3.1 3.2 3.3 3.4

Usage (Installation, maintenance, etc.) 4.1 4.2 4.3 4.4

Disposal (Removal, recycling, destroying, etc.) 5.1 5.2 5.3 5.4

Table 2. A products life-cycle stages and aspects that have an effect on the product according to Olsson (Johannesson, et al., 2013).

(16)

14

2.4.4 Quality Function Deployment

The Quality Function Deployment (QFD) (see figure 4) also called House of Quality is a tool to optimize the design process by giving an oversight of the importance and achievability of the demands. The House of Quality “translates” customer demands into technical demands

(Johannesson, et al., 2013). In this project, it was used to specify the demands for the test method and the importance of the demands. It was also used to benchmark the proposed test method and the test methods on the market. The competitive analysis gave a graphical profile and easy to understand view of the benchmark. The House of Quality helped determine what the customer wanted, how important the different functions were and the specific values needed to be reached for each function.

Figure 4. An illustration of a QFD.

(17)

15

2.5 Design

This project revolved around what test methods were currently on the market and what SAAB could construct on their own. The design phase was where the concepts for their own construction take form.

2.5.1 Idea Generation

The first stage in the design phase was to generate many ideas. The method of choice was brainstorming. Brainstorming is an easy and quick way to generate concepts. The test bench was divided into different sub-functions. Each sub-function was subjected to brainstorming to generate more concepts for each part of the test bench. In total two idea generation sessions were arranged, one session at SAAB and one session at the university. According to Dhillon (2006), a group of 8-12 individuals generates the best results of a brainstorm session. At Karlstad University, a group of 8 students from different engineering programs attended the university session and at SAAB a total of 4 attended. As suggested by Kelley (2016), each session has clear rules and a goal. The rules for both sessions were:

• No critique or debate

• Go for quantity

• Encourage wild ideas

For the session at SAAB, the goal was to generate 50 ideas in total and for the session at the university the goal was 100 ideas in total. The goal was set-up based on the number of people who could attend the session.

The concepts for each sub-function were put in to a morphologic matrix to create as many concepts for the whole test bench as possible (Johannesson, et al., 2013). The concepts will then be taken to the next stage of concept evaluation and selection.

(18)

16

2.5.2 Concept Evaluation and Selection

The concepts were evaluated in an elimination matrix (Johannesson, et al., 2013). The concepts are screened by the product specification and if they are practical and within the limits of investment.

The remaining concepts were evaluated in a relative decision matrix (see table 3). In the relative decision matrix, the concepts are compared to a reference test bench that already exists on the market (Johannesson, et al., 2013). The screening process is then iterated two times in the same way.

The final time the concepts are compared with weighted wishes and demands.

Table 3. An example of a relative decision matrix by Pugh (Johannesson, et al., 2013).

Criteria Alternatives

1 (Ref) 2 3 4 5

Desire 1

Datum

0 + 0 -

Desire 2 + + + +

Desire 3 0 0 - -

Demand A 0 - 0 0

Desire 4 - + - -

Sum + 1 3 1 1

Sum 0 3 1 2 1

Sum - 1 1 2 3

Net value 0 0 2 -1 -2

Ranking 2 2 1 4 5

Procced Yes Yes Yes No No

2.6 Product Overview

To act as a basis for investment or further development of the presented concept, all the relevant information was presented to SAAB in form of this report as well as a presentation at the company.

This gave an overview of what SAAB’s options are if they choose to continue the project.

(19)

17

3 Results

In this section the results of each stage of the project is presented.

3.1 Project Planning and Structure

The project plan contains the objective, purpose, time schedule, methods, delimitations and background for the project. The entirety of the Project Plan can be found in appendix 1.

3.2 Feasibility Study

The components of the fuze system (see figure 5) were in need for an easier and cheaper test method. The fuze function is to detonate the explosives in the ammunition and contains the arming mechanism. Most fuzes in use for SAAB’s Carl-Gustaf and AT4 systems have at least 2 environmental conditions that must be fulfilled before the ammunition is armed. The conditions relevant to this project are acceleration and rotation. The mechanisms of the fuze are similar to what is inside a mechanical watch. Due to the rough nature of a launch, the mechanisms are under high loads. To guarantee the functionality of the arming system there is need for testing. The way testing is done today is by firing an inert round without the detonation explosives into a pile of sand. The tests are both expensive and time-consuming. Another problem with the sand pile tests are that there are difficulties in determining whether the loads and damages on the fuze happened due to the launch or the collision into the sand.

Figure 5. 3D render of a fuze.

(20)

18

The interviews gave insight in what components were in need for more testing and the

specifications, such as weight and dimensions for said component were. They also acted as a way to gather information about how the fuze system works.

The Kano survey gained 5 answers from the experts (see table 4). The most common and the second most common answer are used as a guide for weighting the features and performance of the test method. The Kano survey can be found in appendix 2.

Table 4. Kano Survey answers.

Question: Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 TOT:

1 A M A R A A

2 A A A R A A

3 R I I R I I

4 A A A A A A

5 A M O A O A/O

6 A I A A A A

The questions (translated from Swedish) asked in the survey were:

1a. If the test method can both accelerate and rotate the projectile, how do you feel?

1b. If the test method can only accelerate the projectile, how do you feel?

2a. If the test method can handle a total weight of over X grams with an acceleration of X g’s, how do you feel?

2b. If the test method cannot handle a total weight of over X grams with an acceleration of X g’s, how do you feel?

3a. If the test method can handle a total weight of over Y kilograms with and acceleration of Y g’s, how do you feel?

3b. If the test method cannot handle a total weight of over Y kilograms with and acceleration of Y g’s, how do you feel?

4a. If the test method have the possibility to test collision with different materials before braking, how do you feel?

4b. If the test method do not have the possibility to test collision with different materials before braking, how do you feel?

5a. If the test method have the possibility to deaccelerate the projectile softly, how do you feel?

5b. If the test method do not have the possibility to deaccelerate the projectile softly, how do you feel?

(21)

19

6a. If the test method have the possibility to test different travel lengths before braking, how do you feel?

6b. If the test method do not have the possibility to test different travel lengths before braking, how do you feel?

3.3 Market Analysis

The defence industry is generally restrictive with what they publish in regards to their own research and development, this lead the search for information on high acceleration testing to industries.

Industries like vehicle, aeronautics, space, packaging, and material science were looked into. Two suppliers of test benches were more contacted, Fraunhofer Institute and Thiot Ingenierie.

Fraunhofer have developed a similar test bench for activatable batteries. The method generates an impact as the acceleration and has the capability of rotating the projectile. The acceleration of this specific test bench is lower to what SAAB requires (Hess, et al., 2017).

Thiot Ingenierie delivers a wide range of acceleration and impact test methods. Almost all their products can generate a high enough acceleration to be suitable for SAAB but none of their products currently has the capability of rotating and accelerating the projectile at the same time (Thiot Ingenierie, 2017).

One of the common ways of generating and acceleration is through collision and impact. Instead of generating a high acceleration you generate a high deceleration. The relevant high acceleration test equipment’s found on the market were Gas/powder guns and drop test.

(22)

20

3.3.1 Gas and Powder Guns

Most gas and powder guns work in a similar ways. There is a chamber where the gas is pressurized or the powder is deflagrated. The increased pressure in the chamber comes to a critical point and a pressure sensitive disc is broken, releasing the gas into the pipe and accelerating the projectile. This method is commonly used in high velocity impact testing in development of armor, aeronautics, and space (NASA, 2017). An example of a gas gun can be seen in figure 6.

Figure 6. ”JASPER-DOUBLE-STAGE-GAS-GUN” by Lau-Gc (CC BY-SA 4.0).

(23)

21

3.3.2 Drop test

The drop test works by having the test attached to a solid block. The block and the test are then accelerated downwards and hitting a stop. The acceleration tested in these benches is often the deceleration during the impact. Drop tests are a common way of testing collision for cellphones, packaging and much more. These types of test benches are more affordable and comes in a variety of performance from below 100 g up to 30 000 g’s (𝑔 = 9,8 𝑚/𝑠2) in acceleration (Toptester, u.d.).

3.4 Product Specification

The QFD contains the functionality and performance for the test bench and benchmark of the test bench together with the test benches that were currently on the market (see figure 7). The information for the benchmark was gathered through contact with the companies as well as

presentation materials acquired from the companies. A larger scale QFD with a legend can be found in appendix 4.

The functionality and criterion for the test bench was assembled in a criteria matrix (see appendix 3).

The weights of the desires are produced from the Kano survey.

Figure 7. The QFD for the project.

(24)

22

3.5 Design

Under this section the result of the projects own design for a test bench is presented and how the design was produced.

3.5.1 Idea generation

A total of 8 students attended the session arranged at the university. The 3 statements for the students to brainstorm on were:

• Accelerate an object

• Slow down an object

• Keep an object on the right course

The session generated 168 concepts in total across all questions. The results can be seen in appendix 5.

The session at SAAB had 4 people attending and generated at total of 102 concepts and can be seen in appendix 6. The 3 questions at the SAAB session were:

• How can one generate a high acceleration?

• How can one rotate a projectile with a high acceleration?

• How can one slow down a projectile?

After both sessions the ideas were screened. A few concepts appeared in both sessions and some were not realizable.

The first step to start generating concepts for the whole test method was to take the different concepts to act as sub-solutions for the sub-functions of the test method in a morphological matrix (see table 5). The sub-solution powder gun came in as a late contender after information regarding the development and use of a powder gun at a different office at SAAB. SAAB Aeronautics uses a powder gun for impact testing of their fighter jet development. The gun is developed in-house and could therefore be a good starting point for future work.

Sub-function

Accelerate the

projectile “Rail Gun” Gas gun Air gun Collision Drop Powder gun*

Rotate the

projectile Rifling Wings Electromagnetic

s Contain the high-

speed projectile Pipe Magnets Rails

Slow down the

projectile Solid object Air pressure Honeycomb Magnets Friction Spring Coned pipe Ballistic gel Plastic

deformation Sub-solution

Table 5. The morphological matrix for the test bench.

(25)

23

The matrix generated 9 concepts for the test bench that moved to the evaluation and selection. The concepts were:

➢ Concept 1.1: Air gun – Rifling – Pipe – Air Pressure/Honeycomb

➢ Concept 1.2: Air gun – Rifling – Pipe – Coned Pipe/Plastic deformation/Friction

➢ Concept 2.1: Gas gun – Rifling – Pipe - Air Pressure/Honeycomb

➢ Concept 2.2: Gas gun – Rifling – Pipe - Coned Pipe/Plastic deformation/Friction

➢ Concept 3.1: Air gun – Rifling – Pipe – Collision/Solid object (Measure the acceleration as retardation)

➢ Concept 3.2: Gas gun – Rifling – Pipe – Collision/Solid object (Measure the acceleration as retardation)

➢ Concept 4: “Rail Gun” – Electromagnets – Magnets – Magnets

➢ Concept 5: Drop – No rotation – Rails – Solid object (Measure the acceleration as retardation)

➢ Concept 6: Powder Gun – Rifling – Pipe – Air Pressure/Honeycomb

(26)

24

3.5.2 Concept Evaluation and Selection

The concepts were analyzed in an elimination matrix where concept 3.2, 4, and 5 were discontinued due to not holding up to the demands and needs (see table 6).

Table 6. Elimination matrix.

The next step was to compare the concepts with a product that could be used as a base for

comparison. Thiot Ingenierie, 2017, develops high acceleration test benches as well as methods for impact testing. Their acceleration generator was used as the base for comparison. As seen in table 7 the concepts which in theory could deliver better results gains a +, equal results a 0 and worse results -. In this first iteration concept 1.2 and 2.2 were discontinued.

Comments Decision

1.1 + + + + + + + + + +

1.2 + + + + + + + + + +

2.1 + - + ? + + + + + Grey zone, Gas=Explosive? +

2.2 + - + ? + + + + + Grey zone, Gas=Explosive? +

3.1 + + - + + + + + + Retardation instead of acceleration +

3.2 + - - ? + + + + + Grey zone, Gas=Explosive? -

4 + + + ? - - ? - - -

5 + + - - + + + + + Good option, but no rotation -

Safisfies all demands Practicable Within the limits of investment Safe and ergonomic Suits the company (+) Proceed with concept (-) Eliminate the concept (?) Research more

(!) Check product specification Elimination matrix for: High Acceleration Test Method

(+) Yes (-) No

(?) More info required (!) Check product specification Decision:

Elimination criteria:

Concept Sufficient info

No explosives Simulate a real launch

Solves the main problem

Thiot Acceleration Generator

1.1 1.2 2.1 2.2 3.1

Low cost per round + 0 + 0 +

Low investment cost + + + + +

Option for higher acceleration - - - - -

Smooth retardation + 0 + 0 0

Rotation of projectile + + + + +

Sum + 4 2 4 2 3

Sum 0 0 2 0 2 1

Sum - 1 1 1 1 1

Net value 0 3 1 3 1 2

Ranking 4 1 3 1 3 2

Procced Yes Yes No Yes No Yes

Criteria

D A T U M

Alternatives

Table 7. First iteration of the decision matrix.

(27)

25

The second iteration (see table 8) used one of the best concepts as the base for comparison. It also features a new concept that uses a powder gun. The result shows that the new concept would be better for SAAB as it would have a lower investment cost and ease of use as SAAB already have developed a similar product for in-house use.

1.1 2.1 3.1 New

6

Low cost per round - 0 0

Low investment cost - 0 +

Ease of use - 0 +

Standard consumables + - +

Work to be done before test - 0 -

Sum + 1 0 3

Sum 0 0 4 1

Sum - 4 1 1

Net value 0 -3 -1 2

Ranking 2 4 3 1

Procced Yes No No Yes

Criteria

Alternatives

D A T U M

Table 8. Second iteration of the decision matrix.

(28)

26

3.5.3 Final Concept

The final concept was 1.1 due to concept 6 relying on explosives, but concept 1.1 is based on a remodeling of the powder cannon in concept 6 to an air pressure cannon. The projects concept for a high acceleration test method (see figure 8) contains these elements:

1. The first stage is a high-grade industrial compressor. A recommendation is having a

compressor capable of up to 300 bars to ensure that the force is enough to drive the test for both rifling and smooth-bored pipe and to be able to tackle future tasks if the need for high acceleration arises.

2. A pressure chamber. Preferably a remodel of the one SAAB Aeronautics have developed but modifying it to work with air and a compressor instead of gunpowder. The chamber is currently used for launching heavier projectiles into wings and front-facing components of their jets. The chamber might need some remodeling to suit the needs of SAAB dynamics and this will be researched in future work.

3. The way that the gas cannon, already developed by SAAB Aeronautics, works is by having a pressure sensitive disc that breaks at a specific pressure in the chamber. The idea for the concept is having the same method for releasing the pressure into the launch chamber. The disc releases the pressure fast and the disc can be modified to suit different pressures and launch accelerations depending on the weight of the test projectile.

4. The launch chamber holds the test container. The length between the pressure disc and the test container should have the possibility to change in order to tune the acceleration curve to the real launch from a handheld gun.

5. The test container will hold the cargo, which is in need of testing. It will be able to hold a fuze or single components such as PCBs or glue tests. To measure the arming sequences of the fuze the container will also be able to contain a tachograph to log data. The test container will have a heel to generate rotation through the rifle pipe.

6. The first section of the pipe will be rifled in order to generate rotation and keep the pressure from launch behind the test container to increase efficiency. This part of the pipe could be changeable to try different rifling and smoothbore. The barrel should preferably be made of steel with high hardness, as it is cheap, easy to machine and will last long through wear of launch.

7. The second part of the rifle will have a slightly larger diameter for the test container to fly in freely. The total length of both pipes can be upwards to 15 meters. Both the first rifled pipe and the second part must be balanced. The stands that hold the pipe will have to be able to

(29)

27

tune the height and direction of the pipe. The length of the pipe adds to the precision in the manufacturing of the pipe.

8. The braking material will be of foam or honeycomb structure. The material and length of material will be researched in future work. Together with the shape of the test container, the breaking power can be tuned.

9. At the end of the pipe there will be a removable end to be able to reload the breaking material and removing the test container after a test. The end will be locked by a flange with high-grade screws.

This concepts answer to the needs of SAAB Dynamics and it will cost less per test than the test at the test centers.

A few problems or risks that might cause problems when used and need to be further studied before the final concept can be executed:

- The straightness of the pipe.

- The weight balance of the projectile.

- The synchronization of measuring equipment and how to gather data from the test bench.

- The pressure disc not breaking at the right pressure.

Figure 8. The concept developed by the project.

(30)

28

3.6 Product Overview

The relevant products for SAAB to choose from are presented by benchmark in the QFD in appendix 4. The benchmark was based on information gained in presentations and contact with the suppliers.

The products are:

- The own concept developed by the project.

- Acceleration generator by Thiot Ingenierie

- A test bench similar to what Fraunhofer Institute have developed - A drop test

(31)

29

4 Discussion

Information on components and testing from weapons manufacturers are not usually published. The project has therefore been done on site at SAAB. This has greatly helped with verifying information and in gaining more insight in the products that are in need of testing. Much of the feasibility study was conducted through conversation and interviews with the employees of SAAB.

A problem from the start of the project was the delimitations. Both the goal and delimitations for the project took form while working. As the total needs for the test bench were unclear at the start so were the delimitations and goal.

A wish from SAAB was that more sections of the company could benefit from the test method and not just the section on which the project was conducted. This demanded a more thorough

investigation into the needs of other sections of the company. The interviews and the Kano survey were good tools to understand what the possibilities of a high acceleration test bench were. One thing that could increase the accuracy of the survey could be if more people were asked to fill the survey.

Even though this project developed the concept for a defence company the test method can be suitable for civilian applications as well, such as aeronautics, space or other industries were collisions and high impacts are in need for testing.

The Kano survey have functional and dysfunctional question which the survey taker response to. The answers to choose from are listed 1-5, the first one is “I” like it that way, and the second is “It must be that way”. The answers of the survey did not always correlate with the information gained from the interviews. The problem might be that the survey takers thought that the they answered by rating how important the statement was 1-5 instead valuing the statement related to each number.

So they choose 1 because they valued it as the most important, a must-be, but in the questionnaire the must-be were number 2.

The QFD was the key tool for this project. It helped with understanding the test bench and what was needed but also to benchmark the competitors. The QFD contains much of the information gathered from the feasibility study and the information gained from meetings and contact with suppliers of test benches. Unfortunately some of the companies that were contacted to gain more information did not respond.

The project chose to conduct two different sessions for idea generation, one session at the company and one session at the university. The hope of arranging two different sessions were to gain the

(32)

30

professional knowledge from SAAB and the “out-of-the-box” thinking from the students at the University. Most of the students who attended the session at the university are studying innovation and design engineering. These students are familiar with sessions like these and everyone has attended similar sessions before. The project hoped to analyze the difference between the session at SAAB and the university to see if there was any clear difference between experiences in the field of brainstorming. Unfortunately only four people could attend the SAAB session. This would make an unfair comparison between the two groups.

As Kelly (2016) writes, a good statement of the problem can increase the productivity and result of the brainstorm session. The statements for both sessions were on the fuzzy side and could be sharper to be able to keep ideas more relevant. Both sessions generated a good amount of ideas, stuck to the rules and were fun and overall good sessions.

The project plan had an initial method for the project to work with. The project carried on with the initial method for almost the entirety of the project. The difference being that the project did not carry out the calculations it initially sought to do. This was due to the complexity of the concept.

The complexity of the product demands a good and thorough preparatory work. This project will act as a good foundation for future work in developing a test method suitable for SAAB.

(33)

31

5 Conclusion

The project has reached a point where more research is needed for future development. At this point, the concept presented should fulfill the needs for SAAB. The concept is based on knowledge and parts already developed and in use at SAAB. The cannon will be a remodeled version of the powder cannon developed by SAAB Aeronautics and the rifling will be similar to what is currently in use on the AT4 and Carl-Gustaf weapon systems.

The project have utilized the tools and methods learnt from previous courses to develop and deliver the concept. The project has followed the design process and has had an emphasis on customer satisfaction and suiting to the needs of SAAB.

The goal for the project was to present a suitable test method for SAAB and the project has delivered that together with what will need to be further developed. With implementation of this concept, SAAB can reduce their time spent on the development phase and increase the quality of their products.

(34)

32

6 Future work

Before SAAB can develop the proposed test method there is some work needed to be done. Here is a proposal for future work needed to be done.

• Due to the difficulty of calculating the energy absorption and braking power of honeycomb and foam materials, a good thesis work could be material testing and selection of the braking material through testing.

• More research of SAAB Aeronautics gas cannon is needed. Future work for remodeling of the cannon to work on air pressure rather than gunpowder is needed.

• The integration of each element of the concept needs more work. For example, what type of locking mechanisms are needed between the pipe and launch chamber, how to keep the pipe leveled, and how the test container should be modeled to increase the effectiveness of breaking and launch.

(35)

33

7 Acknowledgments

I would like to thank SAAB Dynamics and everyone who participated in my interviews and brainstorm sessions. I want to thank my supervisors at SAAB Michael Carlsson and Diana Gill. A special thanks to all the colleagues on SAAB for helping and supporting me throughout the project and giving me a few good laughs.

I would also like to thank Karlstad University for preparing me for this project, for supplying me with the right tools and knowledge to make this happen. Lastly, I want to thank my supervisor Anders Biel for helping and guiding me through this project.

(36)

34

8 Bibliography

Berger, C., Blauth, R., Boger, D., Bolster, C., Burchill, G., DuMouchel, W., Pouliot, F., Richter, R., Rubinoff, A., Shen, D., Timko, M. and Walden, D. 1993. Kano's Methods for Understanding Customer-defined Quality. Center for Quality of Management Journal, 2(4).

Dhillon, B. S., 2006. Creativity for Engineers. Singapore: World Scientific.

Eriksson, M. & Lillesköld, J., 2004. Handbok för mindre projekt. Stockholm: Liber.

Gillham, B., 2008. Forskningsintervjun Tekniker och genomförande. Lund: Studentlitteratur.

Hess, S., Glößner, C., Nau, S. & Lang, V. T., 2017. Test Bench for Activatable Batteries. [Online]

Available at: https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2017/fuze/Hess19335.pdf [Accessed 23 May 2019].

Johannesson, H., Persson, J.-G. & Dennis, P., 2013. Produktutveckling - effektiva metoder för konstruktion och design. 2nd red. Stockholm: Liber.

Kelley, T., 2016. The Art Of Innovation: Lessons in Creativity From IDEO, America's Leading Design Firm. London:

PROFILE BOOKS LTD.

Lau-Gc, 2000. JASPER-DOUBLE-STAGE-GAS-GUN [photography]. [Online]

Available at: https://commons.wikimedia.org/wiki/File:JASPER-DOUBLE-STAGE-GAS-GUN.jpg [Accessed 22 May 2019].

NASA, 2017. Two Stage Light Gas Guns. [Online]

Available at:

https://www.nasa.gov/centers/wstf/site_tour/remote_hypervelocity_test_laboratory/two_stage_light_gas_gun s.html

[Accessed 9 May 2019].

Thiot Ingenierie, 2017. Thiot Ingenierie. [Online]

Available at: http://www.thiot-ingenierie.com/

[Accessed 22 May 2019].

Toptester, n.d. Board level component drop tests of up to 30 000 g acceleration. [Online]

Available at: https://www.toptester.com/services/drop-test/

[Accessed 25 April 2019].

(37)

This page is intentionally left blank.

(38)

I

Appendix I: Project Plan

Projektplan

Provningsmetoder av mekaniska mekanismer och komponenter som utsätts för höga påkänningar

Project plan

Test methods of mechanical mechanisms and components under high loads Fenelius Jonathan

Fakulteten för hälsa, natur- och teknikvetenskap

Högskoleingenjörsprogrammet i innovationsteknik och design Examensarbete, 22.5 hp

Handledare: Anders Biel Examinator: Leo De Vin 2019-02-07

(39)

II

Bakgrund

För att studera och utveckla mekanismer hos SAAB:s produkter krävs förståelse hur de i grunden fungerar.

Utskjutningsförloppen påverkar mekanismer, komponenter och inbyggnaden i produkter på ett komplext vis. För att hitta förståelsen krävs mycket provning och då är behovet av en lättillgänglig provutrustning ett måste.

Komponenter är sällan specificerade för de höga belastningarna som SAAB:s produkter utsätts för. Detta gäller i synnerhet elektroniska komponenter. För att säkerställa att rätt komponenter och inbyggnadssätt väljs krävs provning.

De flesta i branschen brottas med liknande utmaningar när komponenter och mekanismer ska provas. Inom elektroniken lever inte komponenter så länge på grund av att de försvinner från marknaden och ersätts med nya. SAAB:s produkter förses med mer elektroniska funktioner så det finns det ett ständigt behov av att testa nya komponenter.

Idag används oftast utskjutningsanordningar som drivs med krut och där projektiler fångas upp i till exempel sandhögar. Krutdrivna anordningar kräver ett relativt stort säkerhetsarbete som ibland kan vara tidskrävande.

Examensarbetet kommer att utföras på sektionen stridsdelsteknik och tändrör hos SAAB Dynamics i Karlskoga.

Problemformulering

De nuvarande provmetoderna är oftast en kostsam och tidskrävande aktivitet och huvudsyftet med

examensarbetet är att föreslå för SAAB lämplig provutrustning för deras produkter. Provutrustningen ska gå att användas på ett effektivt sätt i SAAB:s egna lokaler vilket ställer krav på säkerhet och storlek. Provmetoden ska vara oberoende av krutdrift.

Syfte

Examensarbetet kommer att mynna ut i ett underlag för SAAB till tillverkning och inköp för en komplett provmetod. Det innefattar en analys över vilka delar som ska köpas samt vilka delar som kan tillverkas.

Avgränsningar

Provmetoden ska gå att använda i SAAB:s lokaler, det betyder då att hela utrustningen ska rymmas i deras laborationsrum. Den maximala massan för provet som ska testas ska inte överstiga 200 gram, det är inräknat både komponenterna som ska testas och fixtur för komponenterna. Accelerationssträckan ska vara samma längd som ett Carl-Gustaf M4 granatgevär som är på under 1 meter. Arbetet kommer inte innefatta detaljerade CAD- konstruktioner eller ritningar.

(40)

III

Metodbeskrivning

Här beskrivs det planerade upplägget för arbetet, vilka faser som ingår och vad som kommer att genomföras i respektive fas. Detta ska agera som stöd under hela arbetet och kommer fungera som en överenskommelse mellan uppdragstagaren och SAAB för att säkerställa att arbetet kommer utföras på ett sätt som uppfyller det resultat SAAB önskar.

Genom att formulera arbetets delar i en WBS (Work Breakdown Structure) får man en övergripande bild över arbetets olika delar.

Figur 1. WBS (Work Breakdown Structure) över examensarbetet.

De huvudsakliga faserna som arbetet kommer delas in i är:

- Projektplanering och struktur - Förstudie

- Dimensionering - Kravspecifikation - Design

- Omvärldsbevakning - Produktsammanställning - Rapport och redovisning

Projektplanering och struktur

För att säkerställa att examensarbetet kommer att genomföras på ett sådant sätt att det tillfredsställer Karlstads universitet likväl SAAB kommer första delen av arbetet dediceras till att formulera mål och riktning för arbetet.

1. Provmetod

1.1 Förstudie

1.1.1 Produktförstudie

1.1.2 Förstudie kring provmetoder

1.1.3 Behovsanalys

1.2 Dimensionering

1.2.1 Sammanställning av

beräkningar

1.3 Kravspecifikation

1.3.1 Sammanställning av

krav och önskemål

1.3.2 Kriteriematris

1.4 Design

1.4.1 Idégenerering

1.4.2 Konceptutvärdering

1.4.3 Konceptval

1.5 Omvärldsbevakning

1.6 Produktsammanställn

ing

1.6.1 FMEA + SAAB:s riskbedömning

1.6.2 Köpa/göra- analys

1.7 Rapport och redovisning

1.7.1 Delredovisning

1.7.2 Tekniskrapport

1.7.3 Rapport till SAAB

1.7.4 Slutredovisning

(41)

IV

För att effektivt kunna distributera tiden sköts tidsplaneringen med hjälp av Gantt-schema (Johannesson, et al., 2013). Då arbetet utförs hos ett företag med sträng sekretess ställer det krav på hur arbetet skall genomföras med avseende på dokumenthantering och rapportskrivning. Det kommer göras en riskanalys av arbetet för att kunna tackla eventuella problem som kan uppstå under arbetets gång.

Förstudie

Produktförstudie

För att få en djupare förståelse för typen av produkter som kommer komma i kontakt med provutrustningen kommer det genomföras förstudier med SAAB:s egen produktkatalog och dokumentation som grund.

Behovsanalys och produktinventering

För att säkerställa att behovet av provutrustningen finns samt för att ge en förståelse för vilka typer av produkter som kan komma i kontakt med provutrustningen kommer det att genomföras intervjuer med

intressenter på företaget. Tillsammans med information som samlats in under intervjuerna kommer det göras en produktinventering där mekanismer och komponenter som är relevanta för testningen sammanställas.

Förstudie kring provmetoder

För att få en bild av vilka möjligheter som finns inom acceleration och inbromsning av projektiler kommer det göras informationssökning i forskningsavhandlingar och studier för att få in den senaste forskningen inom området.

Dimensionering

För att möta kraven som ställs på provutrustningen behövs beräkningar på vilka krafter som verkar på komponenterna för att kunna dimensionera provutrustningen. Beräkningar kommer göras på bl.a. energi för inbromsning, kraft vid acceleration och impuls. Beräkningarna kommer att sammanställas i Excel eller liknande program för att enkelt kunna byta värden för att göra beräkningar för de olika koncepten.

Kravspecifikation

När behovet och vilka produkter som berörs har analyserats blir nästa steg i processen att samla in data kring de olika produkterna. Data som samlas in kommer bl.a. vara dimension, massa, användning samt vilken typ av påkänning som behöver testas. Med data insamlad finns material för att upprätta en kravspecifikation av provutrustningen. I kravspecifikationen kommer kraven och önskemålen på konstruktion att sammanställas (Johannesson, et al., 2013). Kraven kommer handla om produkterna och komponenterna som ska testas men kommer även innefatta krav på säkerhet vid användning av provutrustningen samt krav på kostnad hos provutrustningen. I kravspecifikation kommer det tas upp vilka krav som ställs på gränssnittet mellan produkt

(42)

V

och provutrustning samt användargränssnitt för själva provutrustningen. I dokumentet kommer även övriga önskemål som företaget har på produkten att tas upp.

För att på ett systematiskt sätt få en överskådlig bild av alla krav och önskemål och samtidigt kvantifiera vikten av varje krav och önskemål kommer Kanos modell att användas. Genom ett fråge formulär med funktionella och dysfunktionella frågor får man ett värde för vikten av varje mål och krav.

För att göra kraven och mål överskådliga och säkerställa att inget glöms kommer det användas en kriteriematris (Johannesson, et al., 2013). I matrisen kommer alla intressenter, livscykelfaser och aspekter specificeras.

Intressenter är då de som kommer att ha nytta av provutrustningen. Aspekterna som tas i beaktande är bl.a.

funktion, säkerhet, ekonomi och geometri.

Med kraven och önskemålen specificerade kommer all data matas in i en QFD för att garantera att SAAB får den provutrustningen de vill ha.

Till en början kommer kravspecifikationen fastlägga de funktionella kraven, vad provutrustningen kommer att uträtta. Efter det kommer arbetet med kravspecifikationen ske kontinuerligt med design och

omvärldsbevakningen för att kunna bestämma hur kraven ska uppfyllas.

Design

Idégenerering

För att generera vida koncept så kommer idégenereringssessioner genomföras både på företaget och med utomstående på universitet. För att genomföra sessionerna på ett strukturerat vis så kommer verktyg som Lotusblomman och Brainstorming att användas. Idégenerering ska ge provutrustningens delfunktioner. Genom breddning och abstrahering av provutrustningens delfunktioner som exempelvis kan vara accelerera och montera fast ett prov kommer båda sessionerna kunna generera så många dellösningar som möjligt.

Dellösningarna kommer att föras in i morfologisk matris för att komma fram med flera möjliga totallösningar som kan tas vidare till konceptutvärdering och konceptval (Johannesson, et al., 2013).

Konceptutvärdering och konceptval

Totallösningarna kommer att ställas upp i en elimineringsmatris där lösningarna synas mot krav, kriterier och andra aspekter som realiserbar samt om lösningen är inom kostnadsramen.

Lösningarna som är kvar ställs upp i en relativ beslutsmatris. I den matrisen jämförs lösningarna med en referenslösning, i det här fallet kommer referenslösningen vara något som kanske redan finns på marknaden alternativt en lösning som utnyttjar metoder som är kända (Johannesson, et al., 2013). Processen itereras på samma sätt en gång till för att sen itereras ytterligare en gång till med viktade urvalskriterier. Det vinnande konceptet i den sista iterationen blir det slutgiltiga konceptvalet.

(43)

VI

För att enklare förstå och kunna förklara de olika koncepten så kommer det att behövas skisser på provmetoderna inför det slutgiltiga konceptvalet.

Omvärldsbevakning

I slutskedet av konceptvalsprocessen kommer en omvärldsbevakning utföras för att se hur andra branscher och företag utför liknande provningar. Det ska ge en bild över vilka koncept som är realiserbara, om något koncept finns på marknaden idag men även idéer för nya/kombinerade koncept. De olika koncepten och metoderna som hittas på marknaden kommer också analyseras för ge så mycket kunskap som möjligt inför ett slutgiltigt val av provmetod. Med kunskapen och mer realiserbara koncept kommer beräkningar göras för att bekräfta de dimensioneringskrav som finns på utrustningen. Detta för att säkerställa att metoderna klarar de kraven som ställs på utrustningen.

Produktsammanställning

Efter konceptvalet kommer arbetet med att se över vilka delar som kan köpas och vilka delar som kommer behöva konstrueras. För att överlämningen ska bli så tydlig som möjligt kommer alla komponenter som kommer antingen köpas eller behöva konstrueras samlas i en köpa/göra-analys.

Det slutgiltiga konceptet kommer behöva bekräftas med beräkningar och de beräkningar som gjorts under omvärldsbevakningen granskas. För den slutgiltiga provmetoden kommer en FMEA (Johannesson, et al., 2013) och en riskanalys enligt SAAB:s arbetssätt genomföras för att säkerställa säker hantering av provutrustningen.

Rapport och redovisning

Arbetet med rapporten kommer ske kontinuerligt men med mer avsatt tid i slutskedet av arbetet för att hinna samla ihop och sammanställa rapporterna. Arbetet kommer att bli en tekniskrapport i två versioner, en till SAAB där detaljer kring mått och specifika laster kommer vara med och en som kommer publiceras offentligt med normerade värden istället för specifika värden.

Material

För att kunna genomföra arbetet kommer uppdragstagaren behöva ha tillgång till SAAB:s lokaler, CAD-program och information om produkterna som ska testas. Då känsliga data kan förekomma i arbetet kommer det även vara krav på att använda SAAB:s datorer för arbetet. För eventuell prototyp och testning av delar till

provutrustningen kommer SAAB:s verkstad att andvändas.

(44)

VII

Tidsplan/Resursplan

Som verktyg för att skapa en överskådlig planering används ett Gantt-schema. Den totala arbetstiden som ska distribueras ut under kursen är på 600 timmar med riktmärket att ungefär 200 av dessa timmar bör avsättas för dokumentation och administrativa uppgifter. Tidsräknaren i figur 1 är en grov uppskattning av hur mycket tid det kommer ta att skriva rapport och dokumentera arbetet. I Gantt-schemat ser man det planerade

arbetsuppgifterna med vilka datum och hur lång tid uppgifterna kommer att kräva för att genomföra. Arbetet med rapportskrivningen kommer även att ske fortlöpande från arbetets start.

Figur 2. Gantt-schema och planering.

(45)

VIII

Redovisning

Arbetet kommer att delredovisas den 21/3-2019. Vid den presentation redovisar uppdragstagaren vad som gjorts dittills och den planerade vägen framåt.

Arbetet kommer att slutredovisas i två omgångar. En slutredovisning på Universitet den 28/5 samt en redovisning hos företag i närliggande tid till ordinarie slutredovisning.

Utöver detta kommer även projektet presenteras på en offentlig utställning på universitet tillsammans med andra examensarbetare.

Organisation

Relevanta personer för examensarbetet presenteras i figur 2 tillsammans med kontaktuppgifter och roll. Kontakt med handledare på universitet sker genom överenskommelse mellan uppdragstagaren och handledare på universitet. Handledarkontakt med företaget sker kontinuerligt i arbetet.

Roll: Namn: Telefonnummer: Mail:

Uppdragstagare Jonathan Fenelius Handledare, universitetet Anders Biel

Handledare, SAAB Michael Carlsson Handledare, SAAB Diana Gill

Examinator Leo De Vin

Sektionschef, SAAB Petri Hiltunen

Figur 3. Kontaktuppgifter till personer kring examensarbetet.

(46)

IX

Riskbedömning

För att kunna möta eventuella problem som kan uppkomma under arbetets gång upprättas en riskanalys. I figur 3 presenteras eventuella risker som kan uppkomma, vilka förebyggande åtgärder som kommer göras samt vilka åtgärder som kommer göras vid uppkomst av risk. I figur 3 är riskvärdet det multiplicerade värdet av troligheten och konsekvensen. För trolighet betyder 1 att det inte är troligt och 5 är mycket troligt. För konsvekvens är 1 att det inte spelar så stor roll och 5 innebär mycket stora problem för projektet.

Num. Riskbeskrivning Trolighet (1-5)

Konsekvens (1-5)

Riskvärde Förebyggande åtgärd

Konsekvensens åtgärd

1 Dålig närvaro på idégenerering vilket ger färre koncept

2 3 6 Bjud in i god tid till

sessionen och påminn innan

Sätt in ett extra möte och genomför en till session

2 Brist i

kommunikation till företaget

2 4 8 Utför en stor del

av arbetet hos företaget

Kalla till möte för diskussion om arbetet och dess riktning 3 Brist i

kommunikation med skolan

3 4 12 Kontinuerlig

kontakt med handledare och se över kurssidan kontinuerligt

Kalla till möte med handledare för att reda ut problematik

4 Förlust av dokumentation

3 5 15 Använd den lokala

hårddisken och nätverkshårdisken på arbetsdatorn samt skriva ut dokument kontinuerligt

Försöka återskapa dokument.

5 Sjukdom/skada 2 2 4 Arbeta för en god

hälsa, tänk på ergonomi och säkerhet vid arbete

Arbeta igen missad tid.

Figur 4. Riskanalys av arbetet.

(47)

X

Dokumenthantering

Då arbetet hantera uppgifter som kan vara under sekretess så kommer all dokumentation skötas på en dator som tillhandahålls av SAAB samt deras nätvärkslagring. Versionshantering av dokument kommer att ske med suffixen _v1.0 för varje dokument.

(48)

XI

Appendix II:

Kano Survey

Tack för att du har ställt upp på en intervju. Genom intervjuerna har jag fått mycket kvalitativ data om vad provutrustningen kan användas till. För att ge en tydligare bild av hur viktiga vissa önskemål och krav är så hoppas jag att du vill fylla i den här enkäten.

Enkäten följer en modell som heter Kanomodellen. Det är ett systematiskt sätt att arbeta mot kundnöjdhet.

Enkäten består av ett antal frågor med tillhörande påståenden. Varje fråga står i en funktionell och en

dysfunktionell form. Ni kommer fylla i ett alternativ per fråga (ett alternativ för den funktionella och ett för den dysfunktionella frågan). I enkäten räcker det med att trycka på en av rutorna vid det påståendet som du tycker passar bäst ihop med frågan.

Figur 5. Exempel på hur en Kano-enkät kan se ut.

References

Related documents

In the process of developing the Albano Resilient Campus, a transdisciplinary group of ecologists, design scholars, and architects pioneered a conceptual innovation, and a new

Linköping Studies in Arts and Science No.457 Linköping Dissertations on Health and Society No.. THE

The fatigue crack growth behavior of case 1 has a strong dependence on the compressive strain level, while a change in ∆t gives a smaller effect on the crack growth rate, as shown

Clearly, Polish students highly value the financial aspects, which was proven by all of the researches the author about the students’ housing preferences in

The third research question about how is study motivation linked to various aspects of education according to teachers and students, is highlighted both in the theoretical

The majority of all breast tumors are hormone receptor positive, where tamoxifen is one of the predominant anti hormonal treatment options.. Tamoxifen blocks the estrogen receptor,

Therefore this could be seen as a future prospect of research that could be conducted at VTEC. As there are project-teams at VTEC that have employed exploratory testing with

Since recruiters are not allowed (by discrimination legislation) to use or to make assumptions about group differences in characteristics not included in the