• No results found

Recap: The Standard Model particles and forces

N/A
N/A
Protected

Academic year: 2022

Share "Recap: The Standard Model particles and forces"

Copied!
24
0
0

Loading.... (view fulltext now)

Full text

(1)

Recap: The Standard Model particles and forces

4  known  Fundamental  Interac2ons  

*  

Electromagne2c  interac2on  

Weak  interac2on  

Strong  interac2ons  

Gravity   GNm2P ∼ 10−36

(2)

Recap: Listed the SM particles and forces

4  known  Fundamental  Interac2ons  

*  

Electromagne2c  interac2on  

Weak  interac2on  

Strong  interac2ons  

Derived  scalar  quantum  electrodynamics  :    

i.e.  we  derived  the  masslessness  and  interac3ons  of  photons  (spin-­‐1  U(1)  gauge  boson)     with  maDer(scalar  field  for  simplicity)    in  QFT  from  gauge  symmetry!      

(3)

The SM, the Higgs and beyond

Lecture 3 - Goldstone model, Abelian Higgs model,

the Higgs Mechanism of the Standard Model

(4)

We began by considering the Klein-Gordon Lagrangian

( "

µ

! ( ) x )

"

µ

! ( ) x # m

2

! ( ) ( ) x

! x

L =

invariant under

! (x) ! ! '(x) = e

i!

" (x)

Free (only quadratic terms in ϕ) massive m2 ≠0

Complex scalar field

! (x) = !

1

(x) + i !

2

(x)

� φ

1

φ

2

� φ

1

φ

2

=

� cos α sin α

− sin α cos α

� � φ

1

φ

2

In  terms  of  the  real  components  

Note,  global  rota2on,  nothing  to  do  with  space-­‐2me  transforma2ons     (argument  x  is  unchanged)  

} }  

T V

(5)

Lets generalize the potential by considering the theory

Still invariant under

! (x) ! ! '(x) = e

i!

" (x)

This is now the Goldstone Model – similar to our

example of spontaneous symmetry breaking in first lecture but now ϕ is complex:

} }  

T V

L = ∂

µ

φ

µ

φ − 1

2 µ

2

| φ |

2

− 1

2 λ

2

| φ |

4

µ

2

< 0

Now  we  have  a  circle  of  minima   given  by      

|φ| =

φ

21

+ φ

22

= µ

λ ≡ v

(6)

Goldstone model

Now lets choose one minima to do pertubation theory around

} }  

T V

L = ∂

µ

φ

µ

φ − 1

2 µ

2

| φ |

2

− 1

2 λ

2

| φ |

4

φ

1

= v + χ

1

, φ

2

= 0 + χ

2

µ

2

< 0

(7)

Goldstone model

Now vacuum no longer invariant invariant under rotations – how does L look in these Field observables?

Lets choose one minima to do pertubation theory around

} }  

T V

L = ∂

µ

φ

µ

φ − 1

2 µ

2

| φ |

2

− 1

2 λ

2

| φ |

4

φ

1

= v + χ

1

, φ

2

= 0 + χ

2

What  par2cles  is  it  describing?  

L = ( 1

2 ∂

µ

χ

1

µ

χ

1

− 1

2 µ

2

χ

21

) + 1

2 ∂

µ

χ

2

µ

χ

2

+ ... µ

2

< 0

(8)

Goldstone model

Now vacuum no longer invariant invariant under rotations – how does L look in these field observables?

Lets choose one minima to do pertubation theory around

} }  

T V

L = ∂

µ

φ

µ

φ − 1

2 µ

2

| φ |

2

− 1

2 λ

2

| φ |

4

φ

1

= v + χ

1

, φ

2

= 0 + χ

2

What  par2cles  is  it  describing?  

 

We  get  a  massless,  spin-­‐0  Goldstone  Boson  from     spontaneous  breaking  of  a  global  symmetry  

 

L = ( 1

2 ∂

µ

χ

1

µ

χ

1

− 1

2 µ

2

χ

21

) + 1

2 ∂

µ

χ

2

µ

χ

2

+ ... µ

2

< 0

(9)

Goldstone model

Now vacuum no longer invariant invariant under rotations – how does L look in these field observables?

Now lets choose one minima to do pertubation theory around

} }  

T V

L = ∂

µ

φ

µ

φ − 1

2 µ

2

| φ |

2

− 1

2 λ

2

| φ |

4

φ

1

= v + χ

1

, φ

2

= 0 + χ

2

What  par2cles  is  it  describing?  

 

We  get  a  massless,  spin-­‐0  Goldstone  Boson  from     spontaneous  breaking  of  a  global  symmetry  

 We  got  a  massless  spin-­‐1  field  from  gauge  symmetry  

L = ( 1

2 ∂

µ

χ

1

µ

χ

1

− 1

2 µ

2

χ

21

) + 1

2 ∂

µ

χ

2

µ

χ

2

+ ... µ

2

< 0

(10)

! (x) ! e

ie! ( x)

! (x)

D

µ

! ! e

i"( x)e

D

µ

! A

µ

" A

µ

+ #

µ

!

( D

µ

! ( ) x )

D

µ

! ( ) x " m

2

! ( ) ( ) x

! x

L =

is invariant under local U(1)

Note :

!

µ

" D

µ

= !

µ

" i eA

µ is equivalent to

p

µ

! p

µ

+ eA

µ

universal coupling of electromagnetism follows from local gauge invariance

( )

KG

"

µ

! ( ) x "

µ

! ( ) x # m

2

! ( ) ( ) x

! x # j A

µKG µ

+ O e ( )

2

i.e. L = L =

Gauging the Klein-Gordon model

Recall  from  last  lecture  that  we  gauged  the   free  (Klein-­‐Gordon)  theory  by  :  

!

µ

! " D

µ

! = !

µ

! " i eA

µ

!

(

* *

)

j

µKG

= " ie ! #

µ

! ! ! " #

µ

(11)

! (x) ! e

ie! ( x)

! (x)

D

µ

! ! e

ie"( x)

D

µ

! A

µ

" A

µ

+ #

µ

!

is invariant under local U(1) phase rotations

Abelian Higgs model

Can  do  exactly  the  same  for  the     Goldstone  model    

(poten2al  explicitly  gauge  invariant):  

L = [(∂

µ

+ ieA

µ

)φ]

[(∂

µ

+ ieA

µ

)φ] − 1

2 µ

2

| φ |

2

− 1

2 λ

2

| φ |

4

− 1

4 F

µν

F

µν

φ = 1

√ 2 (v + ρ(x)) e

iθ(x)/v

This  2me  lets  describe  the  theory  in  ‘polar  field  coordinates’    

What  are  gauge  transforma2on    in  terms  of  these  fields?  

µ

2

< 0

(12)

! (x) ! e

ie! ( x)

! (x)

D

µ

! ! e

ie"( x)

D

µ

! A

µ

" A

µ

+ #

µ

!

is invariant under local U(1) phase rotations

Abelian Higgs model

Can  do  exactly  the  same  for  the     Goldstone  model    

(poten2al  explicitly  gauge  invariant):  

L = [(∂

µ

+ ieA

µ

)φ]

[(∂

µ

+ ieA

µ

)φ] − 1

2 µ

2

| φ |

2

− 1

2 λ

2

| φ |

4

− 1

4 F

µν

F

µν

φ = 1

√ 2 (v + ρ(x)) e

iθ(x)/v

This  2me  lets  describe  the  theory  in  ‘polar  field  coordinates’    

ρ(x) → ρ(x)

θ(x) → θ(x) − e v α(x)

Gauge  transforma2on  in  terms  of  these  fields  

µ

2

< 0

(13)

A

µ

" A

µ

+ #

µ

!

Abelian Higgs model

Can  do  exactly  the  same  for  the    

Goldstone  model  (poten2al  explicitly  invariant):  

We  can  again  tranform  to  same  minimum  (ϕ2=0),  corresponding  to  Θ=0  by  choosing    

ρ(x) → ρ(x)

θ(x) → θ(x) − e v α(x)

α(x) = θ(x) ev

A

µ

→ A

µ

= A

µ

+ 1

ev ∂

µ

θ(x)

φ → φ

= 1

√ 2 (v + ρ(x))

:  

(14)

A

µ

" A

µ

+ #

µ

!

Abelian Higgs model

Can  do  exactly  the  same  for  the    

Goldstone  model  (poten2al  explicitly  invariant):  

We  can  again  tranform  to  same  minimum  (ϕ2=0),  corresponding  to  Θ=0  by  choosing    

ρ(x) → ρ(x)

θ(x) → θ(x) − e v α(x)

But  this  adds  a  ‘contribu2on’  to  the  gauge  field  –  whats  the  Lagrangian  in  these  fields   α(x) = θ(x)

ev

L(φ

, A

µ

) = ( 1

2 ∂

µ

ρ ∂

µ

ρ − 1

2 µ

2

ρ

2

) − 1

4 F

µν

F

�µν

+ 1

2 e

2

v

2

A

µ

A

�µ

+ ...

A

µ

→ A

µ

= A

µ

+ 1

ev ∂

µ

θ(x)

φ → φ

= 1

√ 2 (v + ρ(x))

:  

(15)

A

µ

" A

µ

+ #

µ

!

Abelian Higgs model

Can  do  exactly  the  same  for  the    

Goldstone  model  (poten2al  explicitly  invariant):  

We  can  again  tranform  to  same  minimum  (ϕ2=0),  corresponding  to  Θ=0  by  choosing    

ρ(x) → ρ(x)

θ(x) → θ(x) − e v α(x)

But  this  adds  a  ‘contribu2on’  to  the  gauge  field  –  whats  the  Lagrangian  in  these  fields   α(x) = θ(x)

ev

L(φ

, A

µ

) = ( 1

2 ∂

µ

ρ ∂

µ

ρ − 1

2 µ

2

ρ

2

) − 1

4 F

µν

F

�µν

+ 1

2 e

2

v

2

A

µ

A

�µ

+ ...

A

µ

→ A

µ

= A

µ

+ 1

ev ∂

µ

θ(x)

φ → φ

= 1

√ 2 (v + ρ(x)) :  

What  is  this  Lagrangian  describing?  

(16)

A

µ

" A

µ

+ #

µ

!

Abelian Higgs model

Can  do  exactly  the  same  for  the    

Goldstone  model  (poten2al  explicitly  invariant):  

We  can  again  tranform  to  same  minimum,  corresponding  to  Θ=0  by  choosing    

ρ(x) → ρ(x)

θ(x) → θ(x) − e v α(x)

But  this  adds  a  ‘contribu2on’  to  the  gauge  field  –  whats  the  Lagrangian  in  these  fields  

φ → 1

√ 2 (v + ρ(x))

α(x) = θ(x) ev

A

µ

→ A

µ

+ 1

ev ∂

µ

θ(x)

L(φ

, A

µ

) = ( 1

2 ∂

µ

ρ ∂

µ

ρ − 1

2 µ

2

ρ

2

) − 1

4 F

µν

F

�µν

+ 1

2 e

2

v

2

A

µ

A

�µ

+ ...

The  gauge  field  has  become  massive!  

The  Goldstone  boson  has  been  absorbed  and    

become  the  longitudinal  mode  of  the  massive  gauge  field    

(17)

A

µ

" A

µ

+ #

µ

!

Abelian Higgs model

Can  do  exactly  the  same  for  the    

Goldstone  model  (poten2al  explicitly  invariant):  

We  can  again  tranform  to  same  minimum,  corresponding  to  Θ=0  by  choosing    

ρ(x) → ρ(x)

θ(x) → θ(x) − e v α(x)

But  this  adds  a  ‘contribu2on’  to  the  gauge  field  –  whats  the  Lagrangian  in  these  fields  

φ → 1

√ 2 (v + ρ(x))

α(x) = θ(x) ev

A

µ

→ A

µ

+ 1

ev ∂

µ

θ(x)

L(φ

, A

µ

) = ( 1

2 ∂

µ

ρ ∂

µ

ρ − 1

2 µ

2

ρ

2

) − 1

4 F

µν

F

�µν

+ 1

2 e

2

v

2

A

µ

A

�µ

+ ...

The  gauge  field  has  become  massive!  

The  Goldstone  boson  has  been  absorbed  and    

Become  the  longitudinal  mode  of  the  massive  gauge  field    

ρ  is  the  accompanying  scalar  field  –  U(1)  Higgs  boson   includes  interac2ons  like    

vρA

µ

A

µ

(18)

Recall Scattering of massive W-bosons

!

W

L+

W

L!

W

L+

W

L!

M (W

L+

W

L!

" W

L+

W

L

) ~ const!

Feynman diagram

W

L+

W

L+

W

L!

W

L!

2 2 2

1 64

CM

d M

d E

!

"

# =

: Transition amplitude <final state|HI | initial state>

QM

M !<W

+

W

"

| H

I

|W

+

W

"

>

W

L+

W

L+

W

L!

W

L!

ρ  

The  Higgs  state  unitarizes  the  scaDering  process  of  massive  gauge  bosons  

(19)

SM Higgs mechanism

4  known  Fundamental  Interac2ons  

*  

Electromagne2c  interac2on  

Weak  interac2on  

Strong  interac2ons  

Gravity   GNm2P ∼ 10−36

Of  course  the  photon  of  the  SM  is  massless!  it  is  the  W  and  Z  bosons  which  are  massive   So  how  many  gauge  fields  and  how  many  Goldstone  Bosons  do  we  need?    

(20)

(The Standard Model SU (3) ! SU (2) !U (1))

(2) local gauge invariance SU

!1 = 0 1 1 0

!

"

## $

%&& !2 = 0 i 'i 0

!

"

## $

%&& !3 = 1 0 0 '1

!

"

## $

%&&

D

2

2

i i

ig W

µ µ µ

= " + !

,i ,i i 2 ijk j ,k

W

µ

# W

µ

$ %

µ

! $ g " ! W

µ

where

2 2 , 2

i j k

i

ijk

! ! !

"

# % & $

' ) * = (

+ ,

- .

Extension to non-Abelian symmetry

Yang-Mills (+Shaw)

Φ

1

= φ

1

+ iφ

2

Φ

2

= φ

3

+ iφ

4

Φ =

� Φ

1

Φ

2

2  complex   4  real  scalars  

Φ → Φ

= e

ig2α(x) σ2

Φ

D

µ

Φ → D

µ

Φ

= e

ig2α(x) σ2

D

µ

Φ Need 3 gauge bosons

3

, ,

W W W

+ !

L

H

= D

µ

Φ

D

µ

Φ − V (Φ)

(21)

SM Higgs mechanism – first consider global symmetries L = ∂

µ

Φ

µ

Φ − 1

2 µ

2

| Φ |

2

− 1

2 λ

2

| Φ |

4

| Φ |=

φ

21

+ φ

22

+ φ

23

+ φ

24

,  φ3,  φ4    

| Φ |

min

= µ

λ ≡ v

Now  have  an  SO(4)  symmetry  before  gauging  

How  many  broken  symmetry  direc2on  at  the  minimum,  i.e.  how  many  masless   Goldstone  Bosons?  

(22)

SM Higgs mechanism – first consider global symmetries L = ∂

µ

Φ

µ

Φ − 1

2 µ

2

| Φ |

2

− 1

2 λ

2

| Φ |

4

| Φ |=

φ

21

+ φ

22

+ φ

23

+ φ

24

,  φ3,  φ4    

| Φ |

min

= µ

λ ≡ v

Now  have  an  SO(4)  symmetry  before  gauging  

How  many  broken  symmetry  direc2on  at  the  minimum,  i.e.  how  many  masless   Goldstone  Bosons?  

(23)

SM Higgs mechanism

L = D

µ

Φ

D

µ

Φ − 1

2 µ

2

| Φ |

2

− 1

2 λ

2

| Φ |

4

L = ∂

µ

Φ

µ

Φ − 1

2 µ

2

| Φ |

2

− 1

2 λ

2

| Φ |

4

| Φ |=

φ

21

+ φ

22

+ φ

23

+ φ

24

,  φ3,  φ4    

| Φ |

min

= µ

λ ≡ v

Now  have  an  SO(4)  symmetry  before  gauging  

3  broken  symmetry  direc2on  at  the  minimum,  i.e.  3   Goldstone  Bosons?  

 Now  gauge  Φ  under  the  SU(2)~SO(3)  symmetry  

If  you  write  out  L  you  now  see  

You  have  3  massive  spin-­‐1    par3cles,        0  Goldstone  bosons  anymore      1  spin-­‐0  massive  Higgs    

Φ(x) = 1

√ 2 e

i�θ(x)σ2

� 0

v + H(x)

� µ

2

< 0

(24)

SM Higgs mechanism

4  known  Fundamental  Interac2ons  

*  

Electromagne2c  interac2on  

Weak  interac2on  

Strong  interac2ons  

Gravity   GNm2P ∼ 10−36

This  is  the  structure  Nature  ordered  –  The  SM  Higgs  can  do  the  job,  but  does  it?    

References

Related documents

We show how transmission without channel state information can be done in massive mimo by using a fixed precoding matrix to reduce the pilot overhead and simultaneously apply

We have performed a Bayesian analysis of the LHC Higgs data and used an interim frame- work where the magnitude of the Higgs couplings are rescaled by coupling scale factors,

Just like in the parton level case, the cross sections, multiplied by the relevant coupling coefficients, will be used as the event weights in the training of the neural network..

We first estimated the parameters from the empirical data and then we obtained the characteristic functions under a risk- neutral probability measure for the Heston model for which µ

During this time the out- come from political interaction between geographically divided groups in society will be non-cooperative in nature, as groups try to grab as large a

After having described the nature and structure of NPD replicators, Section 4.6 focuses on their evolution, describing the mechanisms which allowed Alessi to keep

Gauge fields will then be added in section 4 Spontaneous Breaking of Gauge Symmetry where the higgs mechanism will be introduced as the pro- cess giving gauge particles masses..

The 2005 Report on the Health of Colorado’s Forests highlights the ecology and management of the state’s aspen forests and provides an expanded insect and disease update, with