# Daily cost optimization in a utility network with renewable energy sources and energy storage

(1)

## Daily cost optimization in a utility network with renewable energy sources and energy storage

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

### 12

Table 1: Compare common battery features with power usage

(14)

"

\$"

\$"

\$"+

"

\$"

(15)

(16)

(17)

.

.,2

.,+

.,4

.

.,2

.,+

.,4

.

.

.

.

.

2

?@

.

+

C@

.

1

2

pb

(18)

gb

j

### The particle swarm optimization has the proper speed and the need for the length of each variable is less than the other. In summary, the benefits that came with this algorithm here are: simple instructions and rules, easy implementation, high speed computing, and high- power searching for a comprehensive response. The comparison of the performance of the three selected algorithms is shown in Table 2.

Table 2: Comparison of optimization algorithms

(19)

"

\$"

\$"

\$"+

4"I2

C"

4"I2

C"

(20)

O

C"

4

"I2

C" (PQR)

C"

C" (PTU)

Z[2

[ \]

^

c"

ce

c"

4e

4e

ce

(21)

2

c"

ce

h

4e

ce

i

### 𝑦 𝜆, 𝑘 = (

k

l m nopl |],Z 2[qk[qr

i

s t

+

+

u

+

v

+

2

u

u

u

+

(22)

+

v

u

+v

v

u

v

u

v+

i

+u•I2

"•

4?

"I2

"•

"

"•+

"

"•

"

ih

h

ih

p

(23)

"•

.•

Z•

ZI2 4@

.I2 4?

"I2

p

b

l

jh

kh

"•

.•

4@

.I2

.•

Z•

ZI2 4@

.I2 4?

"I2

"•

.•

.•

Z•

‡"4

.•

‡ˆ\

max

min

jh

(24)

‡"4

"•

‡ˆ\

"‡"4

"•

"‡ˆ\

"‡"4

"•

"‡ˆ\

ƒZ•

ƒZ.‡ˆ\

ƒZ•

ƒZ.‡ˆ\

(25)

+u

•I2 +u

•I2

(26)

st

(27)

+u•I2

4?"I2

"•

"•

"

"•+

"

"•

"

(28)

"•

.•

Z•

ZI2 4@

.I2 4?

"I2

"•

.•

4@

.I2

.•

Z•

ZI2 4@

.I2 4?

"I2

+u

•I2

‡"4

.•

‡ˆ\

‡"4

"•

‡ˆ\

(29)

"‡"4

"•

"‡ˆ\

"‡"4

"•

"‡ˆ\

Ž"•c•ˆ•C‘.‡ˆ\

c•ˆ•C‘.‡ˆ\

ƒZ•

ƒZ.‡ˆ\

(30)

st

Updating...

## References

Related subjects :