• No results found

sigma (mb)

N/A
N/A
Protected

Academic year: 2022

Share "sigma (mb)"

Copied!
40
0
0

Loading.... (view fulltext now)

Full text

(1)

Academic Training Lectures CERN 4, 5, 6, 7 April 2005

Monte Carlo Generators for the LHC

Torbj ¨orn Sj ¨ostrand

CERN and Lund University

1. (Monday) Introduction and Overview; Matrix Elements 2. (Tuesday) Parton Showers; Matching Issues

3. (today) Multiple Interactions and Beam Remnants

4. (Thursday) Hadronization and Decays; Summary and Outlook

(2)

Event Physics Overview

Repetition: from the “simple” to the “complex”,

or from “calculable” at large virtualities to “modelled” at small Matrix elements (ME):

1) Hard subprocess:

|M|2, Breit-Wigners, parton densities.

q

q Z0 Z0

h0

2) Resonance decays:

includes correlations.

Z0

µ+ µ

h0

W W+

ντ

τ s c

Parton Showers (PS):

3) Final-state parton showers.

q → qg g → gg g → qq q → qγ

4) Initial-state parton showers.

g q

Z0

(3)

5) Multiple parton–parton interactions.

6) Beam remnants, with colour connections.

p p

b b

ud ud

u u







5) + 6) = Underlying Event

7) Hadronization

c g g b

Ds Λ0

n η

π+ K∗−

φ K+ π B0

8) Ordinary decays:

hadronic, τ, charm, . . .

ρ+

π0

π+

γ γ

(4)

What is multiple interactions?

Cross section for 2 → 2 interactions is dominated by t-channel gluon exchange, so diverges like dσ/dp2 ≈ 1/p4 for p → 0.

integrate QCD 2 → 2

qq0 → qq0 qq → q0q0 qq → gg qg → qg gg → gg gg → qq

with CTEQ 5L PDF’s 0.01

0.1 1 10 100 1000 10000

0 5 10 15 20 25 30 35 40 45 50

sigma (mb)

pTmin (GeV)

Integrated cross section above pTmin for pp at 14 TeV jet cross section total cross section

(5)

So σ

int

(p

⊥min

) > σ

tot

for p

⊥min

∼ 5

<

GeV

Half a solution: many interactions per event σtot =

X

n=0

σn

σint =

X

n=0

n σn

σint > σtot ⇐⇒ hni > 1

n Pn

hni = 2

0 1 2 3 4 5 6 7

If interactions occur independently then Poissonian statistics

Pn = hnin

n! e−hni

but energy–momentum conservation

⇒ large n suppressed

(6)

Other half of solution:

perturbative QCD not valid at small p since q, g not asymptotic states (confinement!).

Naively breakdown at p⊥min ' ¯h

rp ≈ 0.2 GeV · fm

0.7 fm ≈ 0.3 GeV ' ΛQCD

. . . but better replace rp by (unknown) colour screening length d in hadron

r r

d resolved

r r

d

screened λ ∼ 1/p

(7)

so modify dˆσ

dp2 ∝ α2s(p2)

p4 → α2s(p2)

p4 θ (p − p⊥min) (simpler) or → α2s(p2⊥0 + p2)

(p2⊥0 + p2)2 (more physical)

p2 dˆσ/dp2

0

where p⊥min or p⊥0 are free parameters, empirically of order 2 GeV

Typically 2 – 3 interactions/event at the Tevatron, 4 – 5 at the LHC, but may be more

in “interesting” high-p ones.

(8)

Modelling multiple interactions

T. Sj ¨ostrand, M. van Zijl, PRD36 (1987) 2019: first model(s) for event properties based on perturbative multiple interactions

(1) Simple scenario:

• Sharp cut-off at p⊥min main free parameter

• Is only a model for nondiffractive events, i.e. for σnd ' (2/3)σtot

• Average number of interactions is hni = σint(p⊥min)/σnd

• Interactions occur almost independently, i.e.

Poissonian statistics Pn = hnine−hni/n!

with fraction P0 = e−hni pure low-p events

• Interactions generated in ordered sequence p⊥1 > p⊥2 > p⊥3 > . . . by “Sudakov” trick (what happens “first”?)

dP

dp⊥i = 1 σnd

dp exp

"

Z p

⊥(i−1)

p

1 σnd

dp0dp0

#

• Momentum conservation in PDF’s ⇒ Pn narrower than Poissonian

• Simplify after first interaction: only gg or qq outgoing, no showers, . . .

(9)

(2) More sophisticated scenario:

• Smooth turn-off at p⊥0 scale

• Require ≥ 1 interaction in an event

• Hadrons are extended,

e.g. double Gaussian (“hot spots”):

ρmatter(r) = N1 exp −r2 r12

!

+ N2 exp −r2 r22

!

where r2 6= r1 represents “hot spots”

• Events are distributed in impact parameter b

• Overlap of hadrons during collision O(b) =

Z

d3x dt ρboosted1,matter(x, t)ρboosted2,matter(x, t)

• Average activity at b proportional to O(b)

⇒ central collisions normally more active

⇒ Pn broader than Poissonian

• More time-consuming (b, p) generation

• Need for simplifications remains

0.01 0.1 1 10

0 0.5 1 1.5 2 2.5

ρ(r) total r1 = 1 r2 = 0.4

p

p

b

b hni

1

(10)

(3) HERWIG

Soft Underlying Event (SUE), based on UA5 Monte Carlo

l

y

v v

• Distribute a (∼ negative binomial) number of clusters independently in rapidity and transverse momentum according to parametrization/extrapolation of data

• modify for overall energy/momentum/flavour conservation

• no minijets; correlations only by cluster decays (4) Jimmy (HERWIG add-on)

• similar to PYTHIA (2) above; but details different

• matter profile by electromagnetic form factor

• no p-ordering of emissions, no rescaling of PDF:

abrupt stop when (if) run out of energy (5) Phojet/DTUjet

• comes from “historical” tradition of soft physics

of “cut Pomerons” ≈ p → 0 limit of multiple interactions

• extended also to “hard” interactions similarly to PYTHIA

(11)

without multiple interactions

(12)

with multiple interactions

(13)

Evidence for multiple interactions

• Width of multiplicity distribution: UA5, E735 (previous slides)

• Forward–backward correlations: UA5 (previous slides)

• Minijet rates: UA1

No. jets UA1 no MI simple double

(%) Gaussian

1 9.96 14.30 11.51 8.88

2 3.45 2.45 2.45 2.67

3 1.12 0.22 0.32 0.74

4 0.22 0.01 0.04 0.25

5 0.05 0.00 0.00 0.07

(14)

• Direct observation: AFS, (UA2,) CDF

Order 4 jets p⊥1 > p⊥2 > p⊥3 > p⊥4 and define ϕ as angle between p⊥1 p⊥2 and p⊥3 p⊥4

Double Parton Scattering

1 2

3

4

|p⊥1 + p⊥2| ≈ 0

|p⊥3 + p⊥4| ≈ 0 dσ/dϕ flat

Double BremsStrahlung

1 2

3 4

|p⊥1 + p⊥2|  0

|p⊥3 + p⊥4|  0 dσ/dϕ peaked at ϕ ≈ 0 AFS 4-jet analysis (pp at 63 GeV);

double bremsstrahlung subtracted:

observed 6 in arbitrary units

no MI 0

simple MI 1

double Gaussian 3.7

(15)

CDF 3-jet + prompt photon analysis Yellow region = double parton scattering (DPS) The rest =

PYTHIA showers

σDPS = σAσB

σeff for A 6= B =⇒ σeff = 14.5 ± 1.7+1.7−2.3 mb Strong enhancement relative to naive expectations!

(16)

• Jet pedestal effect: UA1, H1, CDF

Events with hard scale (jet, W/Z, . . . ) have more underlying activity!

Events with n interactions have n chances that one of them is hard, so “trigger bias”: hard scale ⇒ central collision

⇒ more interactions ⇒ larger underlying activity.

Centrality effect saturates at p⊥hard ∼ 10 GeV.

Studied in detail by Rick Field, comparing with CDF data:

Rick Field December 1, 2004

TeV4LHC Meeting Page 4 of 27

“MAX/MIN Transverse” Densities

x Define the MAX and MIN “transverse” regions on an event-by-event basis with MAX (MIN) having the largest (smallest) density.

x The “transMIN” region is very sensitive to the “beam-beam remnant” and multiple parton interaction components of the “underlying event”.

x The difference, “transMAX” minus “transMIN”, is very sensitive to the “hard scattering” component of the “underlying event” (i.e. hard initial and final- state radiation).

Jet #1 Direction 'I

“Toward”

“TransMAX” “TransMIN”

“Away”

Jet #1 Direction

'I

“TransMAX” “TransMIN”

“Toward”

“Away”

“Toward-Side” Jet

“Away-Side” Jet Jet #3

“TransMIN” very sensitive to the “beam-beam remnants”!

(17)

Run 2 Monte-Carlo Workshop April 20, 2001

Rick Field - Florida/CDF Page 7

“Transverse” Nchg

“Transverse” Nchg versus P

versus P

TT

(chgjet#1) (chgjet#1)

! Plot shows the “Transverse” <Nchg> versus PT(chgjet#1) compared to the the QCD hard scattering predictions of Herwig 5.9, Isajet 7.32, and Pythia 6.115 (default parameters with PT(hard)>3 GeV/c).

! Only charged particles with |ηηηη| < 1 and PT> 0.5 GeV are included and the QCD Monte- Carlo predictions have been corrected for efficiency.

Pythia 6.115

Herwig 5.9

Isajet 7.32

Charged Jet #1 Direction

∆φ

∆φ

∆φ

∆φ

“Toward”

“Transverse” “Transverse”

“Away”

"Transverse" Nchg versus PT(charged jet#1)

0 1 2 3 4 5

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)

"Transverse" <Nchg> in 1 GeV/c bin

Herwig Isajet Pythia 6.115 CDF Min-Bias CDF JET20

1.8 TeV |ηηηη|<1.0 PT>0.5 GeV

CDF Preliminary

data uncorrected theory corrected

(18)

MC Tools for the LHC CERN July 31, 2003

Rick Field - Florida/CDF Page 24

Old PYTHIA default (more initial-state radiation)

0.5 0.5

PARP(83)

0.4 0.4

PARP(84)

0.25 0.25

PARP(90)

0.95 1.0

PARP(86)

1.8 TeV 1.8 TeV

PARP(89)

4.0 0.9 2.0 GeV

4 1 Tune A

1.0 PARP(67)

1.0 PARP(85)

1.9 GeV PARP(82)

4 MSTP(82)

1 MSTP(81)

Tune B Parameter

Tuned PYTHIA 6.206 Tuned PYTHIA 6.206

¨ Plot shows the “Transverse” charged particle density versus PT(chgjet#1) compared to the QCD hard

scattering predictions of two tuned versions of

PYTHIA 6.206 (CTEQ5L, Set B (PARP(67)=1) and Set A (PARP(67)=4)).

"Transverse" Charged Particle Density: dN/dKdI

0.00 0.25 0.50 0.75 1.00

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)

"Transverse" Charged Density

1.8 TeV |K|<1.0 PT>0.5 GeV

CDF Preliminary

data uncorrected theory corrected

CTEQ5L

PYTHIA 6.206 (Set A) PARP(67)=4

PYTHIA 6.206 (Set B) PARP(67)=1

0.5 0.5

PARP(83)

0.4 0.4

PARP(84)

0.25 0.25

PARP(90)

0.95 1.0

PARP(86)

1.8 TeV 1.8 TeV

PARP(89)

4.0 0.9 2.0 GeV

4 1 Tune A

1.0 PARP(67)

1.0 PARP(85)

1.9 GeV PARP(82)

4 MSTP(82)

1 MSTP(81)

Tune B Parameter

PYTHIA 6.206 CTEQ5L

New PYTHIA default (less initial-state radiation)

New PYTHIA default (less initial-state radiation)

Double Gaussian

Old PYTHIA default (more initial-state radiation)

Tune A CDF Run 2 Default!

(19)

MC Tools for the LHC CERN July 31, 2003

Rick Field - Florida/CDF Page 28

Tuned PYTHIA 6.206 Tuned PYTHIA 6.206

“Transverse” P

“Transverse” P T T Distribution Distribution

"Transverse" Charged Particle Density: dN/dKdI

0.00 0.25 0.50 0.75 1.00

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)

"Transverse" Charged Density

1.8 TeV |K|<1.0 PT>0.5 GeV CDF Preliminary

data uncorrected theory corrected

CTEQ5L

PYTHIA 6.206 (Set A) PARP(67)=4

PYTHIA 6.206 (Set B) PARP(67)=1

PARP(67)=4.0 (old default) is favored over PARP(67)=1.0 (new default)!

PT(charged jet#1) > 30 GeV/c

"Transverse" Charged Particle Density

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00

0 2 4 6 8 10 12 14

PT(charged) (GeV/c) Charged Density dN/dKdIdPT (1/GeV/c)

CDF Data

data uncorrected theory corrected

1.8 TeV |K|<1 PT>0.5 GeV/c PT(chgjet#1) > 5 GeV/c

PT(chgjet#1) > 30 GeV/c

PYTHIA 6.206 Set A PARP(67)=4

PYTHIA 6.206 Set B PARP(67)=1

¨ Compares the average “transverse” charge particle density (|K|<1, PT>0.5 GeV) versus PT(charged jet#1) and the PT distribution of the “transverse” density, dNchg/dKdIdPT with the QCD Monte-Carlo predictions of two tuned versions of PYTHIA 6.206 (PT(hard) > 0, CTEQ5L, Set B (PARP(67)=1) and Set A (PARP(67)=4)).

(20)

Rick Field December 1, 2004

TeV4LHC Meeting Page 5 of 27

Leading Jet: “MAX & MIN Transverse” Densities

PYTHIA Tune A HERWIG

"MAX/MIN Transverse" Charge Density: dN/dKdI

0.0 0.4 0.8 1.2 1.6

0 50 100 150 200 250

ET(jet#1) (GeV)

"Transverse" Charge Density CDF Preliminary

data uncorrected theory + CDFSIM

PYTHIA Tune A 1.96 TeV

Charged Particles (|K|<1.0, PT>0.5 GeV/c)

"MAX"

"MIN"

"AVE"

Leading Jet

"MAX/MIN Transverse" Charge Density: dN/dKdI

0.0 0.4 0.8 1.2 1.6

0 50 100 150 200 250

ET(jet#1) (GeV)

"Transverse" Charge Density CDF Preliminary

data uncorrected theory + CDFSIM

HERWIG 1.96 TeV

Charged Particles (|K|<1.0, PT>0.5 GeV/c)

"MAX"

"MIN"

"AVE"

Leading Jet

"MAX/MIN Transverse" PTsum Density: dPT/dKdI

0.0 0.5 1.0 1.5 2.0 2.5

0 50 100 150 200 250

ET(jet#1) (GeV)

"Transverse" PTsum Density (GeV/c)

CDF Preliminary

data uncorrected theory + CDFSIM

PYTHIA Tune A 1.96 TeV

Charged Particles (|K|<1.0, PT>0.5 GeV/c)

"MAX"

"MIN"

"AVE"

Leading Jet

"MAX/MIN Transverse" PTsum Density: dPT/dKdI

0.0 0.5 1.0 1.5 2.0 2.5

0 50 100 150 200 250

ET(jet#1) (GeV)

"Transverse" PTsum Density (GeV/c)

CDF Preliminary

data uncorrected theory + CDFSIM

HERWIG 1.96 TeV

Charged Particles (|K|<1.0, PT>0.5 GeV/c)

"MAX"

"MIN"

"AVE"

Leading Jet

Charged particle density and PTsum density for “leading jet” events versus ET(jet#1) for PYTHIA Tune A and HERWIG.

(21)

KITP Collider Workshop February 17, 2004

Rick Field - Florida/CDF Page 11

“ “ Transverse” Charge Density Transverse” Charge Density

versus E

versus E T T (jet#1) (jet#1)

Jet #1 Direction 'I

“Toward”

“Transverse” “Transverse”

“Away”

Jet #1 Direction 'I

“Toward”

“Transverse” “Transverse”

“Away”

Jet #2 Direction

¨ Shows the average charged particle density, dNchg/dKdI, in the “transverse” region (pT

> 0.5 GeV/c, |K| < 1) versus ET(jet#1) for “Leading Jet” and “Back-to-Back” events.

“Leading Jet”

“Back-to-Back”

"AVE Transverse" Charge Density: dN/dKdI

0.0 0.2 0.4 0.6 0.8 1.0

0 50 100 150 200 250

ET(jet#1) (GeV)

"Transverse" Charge Density CDF Run 2 Preliminary

data uncorrected

1.96 TeV Charged Particles (|K|<1.0, PT>0.5 GeV/c) Leading Jet

Back-to-Back

Min-Bias 0.25 per unit K-I

¨ Compares the (uncorrected) data with PYTHIA Tune A and HERWIG after CDFSIM.

"AVE Transverse" Charge Density: dN/dKdI

0.0 0.2 0.4 0.6 0.8 1.0

0 50 100 150 200 250

ET(jet#1) (GeV)

"Transverse" Charge Density CDF Preliminary

data uncorrected theory + CDFSIM

1.96 TeV Charged Particles (|K|<1.0, PT>0.5 GeV/c) Leading Jet

Back-to-Back PY Tune A

HW

(22)

KITP Collider Workshop February 17, 2004

Rick Field - Florida/CDF Page 58

Back Back - - to to - - Back Back “Associated” “Associated”

Charged Particle Densities Charged Particle Densities

'I

Jet#1 Region

PTmaxT Direction

Jet#2 Region

¨ Shows the 'I dependence of the “associated” charged particle density, dNchg/dKdI, pT > 0.5 GeV/c, |K| < 1, PTmaxT > 2.0 GeV/c (not including PTmaxT) relative to PTmaxT (rotated to 180o) and the charged particle density, dNchg/dKdI, pT > 0.5 GeV/c, |K| < 1, relative to jet#1 (rotated to 270o) for “back-to-back events” with 30 < ET(jet#1) < 70 GeV.

Jet #1 Direction 'I

“Toward”

“Transverse” “Transverse”

“Away”

Jet #2 Direction

Charged Particle Density: dN/dKdI

2

6 10

14 18

22 26

30 34

38 42

46 50

54 58

62

66

70

74

78

82

86

90

94

98

102

106

110

114

118

122

126

130

134 138 142 146 150 154 158 162 166 170 178 174 182 190 186 194 198 202 206 210 214 218 222 226 230 234 238 242 246 250 254 258 262 266 270 274 278 282 286

290 294

298 302

306 310

314 318

322 326

330 334

338 342

346 350 354 358

CDF Preliminary

data uncorrected

30 < ET(jet#1) < 70 GeV Back-to-Back

Charged Particles (|K|<1.0, PT>0.5 GeV/c)

"Transverse"

Region "Transverse"

Region Jet#1

Associated Density PTmaxT > 2 GeV/c

(not included) PTmaxT

Polar Plot

“Back-to-Back”

“associated” density

“Back-to-Back”

charge density

0.5

1.0

1.5

2.0

(23)

KITP Collider Workshop February 17, 2004

Rick Field - Florida/CDF Page 71

“ “ Associated” Charge Density Associated” Charge Density PYTHIA Tune A

PYTHIA Tune A vs vs HERWIG HERWIG

Associated Particle Density: dN/dKdI

0.1 1.0 10.0

0 30 60 90 120 150 180 210 240 270 300 330 360

'I (degrees)

Associated Particle Density

PTmaxT > 2.0 GeV/c PY Tune A

Back-to-Back 30 < ET(jet#1) < 70 GeV Charged Particles

(|K|<1.0, PT>0.5 GeV/c)

PTmaxT

CDF Preliminary

data uncorrected

theory + CDFSIM PTmaxT not included

"Jet#1"

Region

Associated Particle Density: dN/dKdI

0.1 1.0 10.0

0 30 60 90 120 150 180 210 240 270 300 330 360

'I (degrees)

Associated Particle Density

PTmaxT > 2.0 GeV/c HERWIG

Back-to-Back 30 < ET(jet#1) < 70 GeV Charged Particles

(|K|<1.0, PT>0.5 GeV/c)

PTmaxT

CDF Preliminary

data uncorrected

theory + CDFSIM PTmaxT not included

"Jet#1"

Region

Data - Theory: Associated Particle Density dN/dKdI

-1.6 -0.8 0.0 0.8 1.6

0 30 60 90 120 150 180 210 240 270 300 330 360

'I (degrees)

Data - Theory

CDF Preliminary

data uncorrected theory + CDFSIM

Charged Particles (|K|<1.0, PT>0.5 GeV/c)

Back-to-Back 30 < ET(jet#1) < 70 GeV PYTHIA Tune A

PTmaxT "Jet#1"

Region PTmaxT > 2.0 GeV/c (not included)

Data - Theory: Associated Particle Density dN/dKdI

-1.0 -0.5 0.0 0.5 1.0

0 30 60 90 120 150 180 210 240 270 300 330 360

'I (degrees)

Data - Theory

CDF Preliminary

data uncorrected theory + CDFSIM

Charged Particles (|K|<1.0, PT>0.5 GeV/c)

Back-to-Back 30 < ET(jet#1) < 70 GeV HERWIG

PTmaxT "Jet#1"

Region PTmaxT > 2.0 GeV/c (not included)

For PTmaxT > 2.0 GeV both PYTHIA and HERWIG produce

slightly too many “associated”

particles in the direction of PTmaxT!

But HERWIG (without multiple parton interactions) produces

too few particles in the direction opposite of PTmaxT!

PTmaxT > 2 GeV/c

(24)

KITP Collider Workshop February 17, 2004

Rick Field - Florida/CDF Page 75

“ “ Transverse 1” Region Transverse 1” Region vs vs

“Transverse 2” Region

“Transverse 2” Region

"Transverse 1" vs "Transverse 2"

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0 2 4 6 8 10 12 14

"Transverse 1" Nchg

"Transverse 2" Nchg

CDF Run 2 Preliminary

data uncorrected theory + CDFSIM

Charged Particles (|K|<1.0, PT>0.5 GeV/c) 1.96 TeV

Leading Jet 30 < ET(jet#1) < 70 GeV

HW PY Tune A

"Transverse 1" vs "Transverse 2"

0.8 1.0 1.2 1.4 1.6 1.8

0 2 4 6 8 10 12 14

"Transverse 1" Nchg

"Transverse 2" <PT> (GeV/c)

Charged Particles (|K|<1.0, PT>0.5 GeV/c)

CDF Run 2 Preliminary

data uncorrected theory + CDFSIM

Leading Jet 30 < ET(jet#1) < 70 GeV

1.96 TeV PY Tune A

HW

"Transverse 1" vs "Transverse 2"

0.5 1.0 1.5 2.0 2.5 3.0

0 2 4 6 8 10 12

"Transverse 1" Nchg

"Transverse 2" Nchg

CDF Run 2 Preliminary

data uncorrected theory + CDFSIM

Charged Particles (|K|<1.0, PT>0.5 GeV/c) Back-to-Back

30 < ET(jet#1) < 70 GeV PY Tune A

HW

"Transverse 1" vs "Transverse 2"

0.50 0.75 1.00 1.25 1.50

0 2 4 6 8 10 12

"Transverse 1" Nchg

"Transverse 2" <PT> (GeV/c)

Charged Particles (|K|<1.0, PT>0.5 GeV/c)

CDF Run 2 Preliminary

data uncorrected theory + CDFSIM

Back-to-Back 30 < ET(jet#1) < 70 GeV

PY Tune A

HW

(25)

Rick Field December 1, 2004

TeV4LHC Meeting Page 24 of 27

PYTHIA Tune A vs JIMMY: “Transverse Region”

"MAX/MIN Transverse" PTsum Density: dPT/dKdI

0.0 0.5 1.0 1.5 2.0 2.5

0 50 100 150 200 250

ET(jet#1) (GeV)

"Transverse" PTsum Density (GeV/c)

CDF Preliminary

data uncorrected theory + CDFSIM

PYTHIA Tune A 1.96 TeV

Charged Particles (|K|<1.0, PT>0.5 GeV/c)

"MAX"

"MIN"

"AVE"

Leading Jet

"Transverse" PTsum Density: dPT/dKdI

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0 50 100 150 200 250 300 350 400 450 500

PT(jet#1) (GeV/c)

"Transverse" PTsum Density

RDF Preliminary

generator level

Charged Particles (|K|<1.0, PT>0.5 GeV/c) Max Transverse

Min Transverse

Average Transverse 1.96 TeV

PYA = dashed JM = solid

x (left) Run 2 data for charged scalar PTsum density (|K|<1, pT>0.5 GeV/c) in the MAX/MIN/AVE “transverse” region versus PT(jet#1) compared with PYTHIA Tune A (after CDFSIM).

x (right) Shows the generator level predictions of PYTHIA Tune A (dashed) and JIMMY (PTmin=1.8 GeV/c) for charged scalar PTsum density (|K|<1, pT>0.5 GeV/c) in the MAX/MIN/AVE “transverse” region versus PT(jet#1).

x The tuned JIMMY now agrees with PYTHIA for PT(jet#1) < 100 GeV but produces much more activity than PYTHIA Tune A (and the data?) in the

“transverse” region for PT(jet#1) > 100 GeV!

(26)

Colour correlations

hpi(nch) is very sensitive to colour flow

p p

long strings to remnants ⇒ much nch/interaction ⇒ hpi(nch) ∼ flat

p p

short strings (more central) ⇒ less nch/interaction ⇒ hpi(nch) rising

(27)

KITP Collider Workshop February 17, 2004

Rick Field - Florida/CDF Page 35

“ “ Transverse” < Transverse” < p p T T > versus > versus

“Transverse”

“Transverse” N N chg chg

Jet #1 Direction 'I

“Toward”

“Transverse” “Transverse”

“Away”

Jet #1 Direction 'I

“Toward”

“Transverse” “Transverse”

“Away”

Jet #2 Direction

¨ Shows <pT> versus Nchg in the “transverse” region (pT > 0.5 GeV/c, |K| < 1) for

“Leading Jet” and “Back-to-Back” events with 30 < ET(jet#1) < 70 GeV compared with

“min-bias” collisions.

“Leading Jet”

“Back-to-Back”

¨ Look at the <pT> of particles in the “transverse” region (pT > 0.5 GeV/c, |K| < 1) versus the number of particles in the “transverse” region: <pT> vs Nchg.

Min-Bias

"Transverse" Average PT versus Nchg

0.5 1.0 1.5 2.0

0 2 4 6 8 10 12 14 16 18 20 22

Number of Charged Particles

Average PT (GeV/c)

CDF Run 2 Preliminary

data uncorrected theory + CDFSIM

Charged Particles (|K|<1.0, PT>0.5 GeV/c) PYTHIA Tune A 1.96 TeV

Min-Bias

Leading Jet 30 < ET(jet#1) < 70 GeV

Back-to-Back 30 < ET(jet#1) < 70 GeV

(28)

Energy dependence of p ⊥min and p ⊥0

Larger collision energy

⇒ probe parton (≈ gluon) density at smaller x

⇒ smaller colour screening length d

⇒ larger p⊥min or p⊥0

Post-HERA PDF fits steeper at small x

⇒ stronger energy dependence

Current PYTHIA default (Tune A, old model), tied to CTEQ 5L, is

p⊥min(s) = 2.0 GeV s

(1.8 TeV)2

!0.08

(29)

paul.szczypka@cern.ch 9

Extrapolation of P T _min I

P

T Min

= 3.34 ± 0.13 İ = 0.079 ± 0.006

LHC Fitting to:

These values give:

<dNch/dȘ>LHCȘ=0 = 6.45 ± 0.25

Compared to the phenomenological extrapolation of:

<dNch/dȘ>LHCȘ=0 = 6.27 ± 0.50

ĺ Compatible

in Single-Diffractive Events

(30)

Run 2 Monte-Carlo Workshop April 20, 2001

Rick Field - Florida/CDF Page 11

DiJet vs

DiJet vs Z Z - - Jet Jet

“Transverse” Nchg

“Transverse” Nchg

! Comparison of the dijet and the Z-boson data on the average number of charged particles (PT> 0.5 GeV, |ηηηη| <1) for the “transverse” region.

! The plot shows the QCD Monte-Carlo predictions of PYTHIA 6.115 (default

parameters with PT(hard)>3 GeV/c)for dijet (dashed) and “Z-jet” (solid) production.

DiJet

Z-boson

PYTHIA

"Transverse" Nchg vs PT(charged jet#1 or Z-boson)

0 1 2 3 4 5

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1 or Z-boson) (GeV)

Pythia Z-jet Pythia DiJet CDF Z-boson CDF Min-Bias CDF JET20

<Nchg>

1.8 TeV |eta|<1.0 PT>0.5 GeV

CDF Preliminary

data uncorrected data corrected

Charged Jet #1 Z-bosonor Direction

∆φ

∆φ

∆φ

∆φ

“Toward”

“Transverse” “Transverse”

“Away”

(31)

Initiators and Remnants

p

g u s s u d

initiators:

in to hard interaction

beam remnants

Need to assign:

• correlated flavours

• correlated xi = pzi/pztot

• correlated primordial k⊥i

• correlated colours

• correlated showers

PDF after preceding MI/ISR activity:

0) Squeeze range 0 < x < 1 into 0 < x < 1 − P xi (ISR: i 6= icurrent) 1) Valence quarks: scale down by number already kicked out

2) Introduce companion quark q/q to each kicked-out sea quark q/q, with x based on assumed g → qq splitting

3) Gluon and other sea: rescale for total momentum conservation

(32)

Beam remnant physics

Colour flow connects hard scattering to beam remnants.

Can have consequences, e.g. in πp

A(xF) = #D − #D+

#D + #D+

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 A(xF)

xF Pair production (a)

All channels WA92, 350 GeV WA82, 340 GeV E791, 500 GeV E769, 250 GeV

(also B asymmetries at LHC, but small)

p+ π

u u

c c

ud d





If low-mass string e.g.:

cd: D, D∗−

cud: Λ+c , Σ+c , Σ∗+c

⇒ flavour asymmetries

d cs

ssssssssss sssssssssss ssssss sssssssssssssss ssssssssssssssss

sssssssssssss ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss

D

Can give D ‘drag’ to larger xF than c quark for any string mass

(33)

Interleaved Multiple Interactions

interaction number

p

hard int.

1

mult. int.

2

mult. int.

3

mult int.

4 p⊥max

p⊥min p⊥1

p⊥2

p⊥3

p⊥4 p⊥23

ISR

ISR

ISR

ISR p0⊥1

(34)

Competition

“Evolution” equation, only Multiple Interactions:

dP

dp = dPMI

dp exp −

Z p⊥i−1 p

dPMI

dp0 dp0

!

Evolution equation, only Initial State Radiation:

dP

dp = dPISR

dp exp −

Z p⊥i−1 p

dPISR

dp0 dp0

!

Evolution equation, MI + ISR, with competition for PDF and phase space:

dP

dp = dPMI

dp + X dPISR dp

!

exp −

Z p⊥i−1 p

dPMI

dp0 + X dPISR dp0

!

dp0

!

with ISR sum running over all previous MI

⇒ one interleaved sequence of MI and ISR

FSR: no competition so not required (but nice for ME merging)

(35)

Other issues

Regularization procedure:

αs(p2)dp2

p2 → αs(p2⊥0 + p2) dp2 p2⊥0 + p2

common for MI (quadratically) and ISR by colour neutralization p⊥0 ≈ 2–3 GeV energy-dependent

Intertwined interactions:

hard inter- actions

Not (yet) explicitly included, but estimated; shown not to be critical

Where does the baryon number go?

Junction “carries” baryon number!

Motion determined by colour flow attached to it.

Messy hadronization (but handled with model)

q q

q

junction

(36)

Data comparisons

usually comparable with Tune A (for better or worse), but still in need of good tuning and detailed tests, and . . . . . .hpi(nch) problematical (need very short string!)

0.3 0.4 0.5 0.6

50 100 150

nch

<p >

Tevatron Run II: <p>(nch) Tune A

Rap

Sharp ISR Low FSR High FSR

colour correlations not yet understood!

(37)

A. M. Moraes Tunings for min-bias and the UE ATLAS-SW, 18thFebruary 2004 PARP(67) = 4

MSTP(2) = 1 MSTP(33) = 0 PARP(85) = 0.9 PARP(86) = 0.95 40% of the hadron radius

(PARP(84) = 0.4) PARP(82) = 2.0 PARP(89) = 1.8 TeV

PARP(90) = 0.25 MSTP(81) = 1 MSTP(82) = 4

CTEQ 5L (MSTP(51)=7) Non-diffractive inelastic +

double diffraction (MSEL=0, ISUB 94

and 95)

CDF – Tune A (PYTHIA6.206)

Regulating initial state radiation

sand K-factors Gluon production

mechanism Core radius

pT min

Multiple interactions models

p.d.f.

Generated processes (QCD + low-pT)

Comments

PARP(67) = 1

PARP(67) = 4 PARP(67) = 1

MSTP(2) = 1 MSTP(33) = 0

MSTP(2) = 2 MSTP(33) = 3 MSTP(2) = 1

MSTP(33) = 0

PARP(85) = 0.33 PARP(86) = 0.66

PARP(85) = 0.33 PARP(86) = 0.66 PARP(85) = 0.33

PARP(86) = 0.66

50% of the hadron radius (PARP(84) = 0.5)

20% of the hadron radius (PARP(84) = 0.2) 20% of the hadron radius

(PARP(84) = 0.2)

PARP(82) = 1.8 PARP(89) = 1 TeV

PARP(90) = 0.16

PARP(82) = 1.55 no energy depend.

PARP(82) = 1.9 PARP(89) = 1 TeV

PARP(90) = 0.16

MSTP(81) = 1 MSTP(82) = 4

MSTP(81) = 1 MSTP(82) = 4 MSTP(81) = 1

MSTP(82) = 1

CTEQ 5L (MSTP(51)=7)

CTEQ 2L (MSTP(51)=9) CTEQ 5L

(MSTP(51)=7)

Non-diffractive + double diffraction (MSEL=0, ISUB 94

and 95)

Non-diffractive inelastic (MSEL=1) Non-diffractive inelastic

(MSEL=1)

PYTHIA6.214 - Tuned

ATLAS – TDR (PYTHIA5.7) PYTHIA6.2 -

Default

(38)

5thNovember 2004 Minimum-bias and the Underlying Event at the LHC

A. M. Moraes

LHC predictions: pp collisions at ¥s = 14 TeV

0 2 4 6 8 10

102 103 104 105

PYTHIA6.214 - tuned PYTHIA6.214 - default PHOJET1.12

pp interactions-

UA5 and CDF data

dN chg/dȘatȘ=0

¥s (GeV)

PYTHIAmodels favour ln2(s);

PHOJETsuggests a ln(s)dependence.

LHC

2 4 6 8 10 12

0 10 20 30 40 50

CDF data

PYTHIA6.214 - tuned

PHOJET1.12 LHC

Tevatron

x1.5 x 3

dNchg/dȘ ~ 30

dNchg/dȘ ~ 15

Central Region

(min-bias dNchg/dȘ ~ 7)

Transverse < N chg>

Pt(leading jet in GeV)

(39)

5thNovember 2004 Minimum-bias and the Underlying Event at the LHC

A. M. Moraes

LHC predictions: JIMMY4.1 Tunings A and B vs.

PYTHIA6.214 – ATLAS Tuning (DC2)

5 10 15 20

0 10 20 30 40 50

CDF data

JIMMY4.1 - Tuning A JIMMY4.1 - Tuning B

PYTHIA6.214 - ATLAS Tuning

Transverse < N chg>

Pt (leading jet in GeV) Tevatron LHC

x 4

x 5

x 3

(40)

Multiple Interactions Outlook

Multiple interactions concept compelling; it has to exist at some level.

? By now, strong direct evidence, overwhelming indirect evidence ?

• Understanding of multiple interactions crucial for LHC precision physics •

• Many details uncertain •

? p⊥min/p⊥0 cut-off ?

? impact parameter picture ?

? energy dependence ?

? multiparton densities in incoming hadron ?

? colour correlations between scatterings ?

? interferences between showers ?

? . . .?

• Above physics aspects must all be present, and more? • If a model is simple, it is wrong!

• So stay tuned for even more complicated models in the future. . . . •

References

Related documents

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

The increasing availability of data and attention to services has increased the understanding of the contribution of services to innovation and productivity in

Närmare 90 procent av de statliga medlen (intäkter och utgifter) för näringslivets klimatomställning går till generella styrmedel, det vill säga styrmedel som påverkar

Amorphous alloys are attractive from a technological point of view due to the following reasons: (1) it is easy to vary their composition over a wide range without the need of

71 Zhengzhou University, Zhengzhou 450001, People ’s Republic of China (Received 8 December 2020; accepted 2 February 2021; published 24 March 2021) Using a data sample of ð1310.6

In particular, integral domains, principal ideal domains, unique factorization do- mains, Euclidean domains, and fields, and all basic properties of ideals and elements in these

Doing research through material based art making responds to one of the purposes of my project, namely to shed new light on the history of women’s textile work in the home..

Industrial Emissions Directive, supplemented by horizontal legislation (e.g., Framework Directives on Waste and Water, Emissions Trading System, etc) and guidance on operating