• No results found

Axion Cold Dark Matter in Standard and Non-Standard Cosmologies

N/A
N/A
Protected

Academic year: 2023

Share "Axion Cold Dark Matter in Standard and Non-Standard Cosmologies"

Copied!
28
0
0

Loading.... (view fulltext now)

Full text

(1)

Paolo Gondolo

University of Utah

Axion Cold Dark Matter in Standard and Non-Standard Cosmologies

Visinelli, Gondolo, arxiv:0903.4377, Phys. Rev. D 80, 035024 (2009) Visinelli, Gondolo, arxiv:0912.0015

Luca Visinelli

(2)

Axion cold dark matter

Study axion parameter space imposing Ω

a

CDM

=0.1131+0.0034

When are axions 100% of cold dark matter?

And update cosmological constraints and include anharmonicities

(3)

Axions as solution to the strong CP problem

The strong CP problem

Vacuum potentials Aµ = iΩ∂µ−1 with Ω → e2πin as r → ∞ Vacuum state |θ� = �

n e−inθ |0�

New term in lagrangian Lθ = θ 32πg22 Faµνaµν

violates P and T but conserves C, thus produces a neutron electric dipole moment dn ≈ e(mq/Mn2)θ Lθ

Experimentally dn < 1.1 × 10−26 ecm so θ < 10−9–10−10 Why θ should be so small is the strong CP problem

(4)

Axions as solution to the strong CP problem

The Peccei-Quinn solution

New lagrangian La = −12µa∂µa + fa

a

g2

32π2 FaµνFaµν + Lint(a)

Before QCD phase transition,�θ� can be anything Introducing a U(1)PQ symmetry replaces

θtotal = θ + arg det Mquark

static CP-violating angle dynamic CP-conserving field

θ(x) = a(x)/fa

axion

V (θ) = m2afa2(1 − cos θ)

After QCD phase transition, instanton effects generate and �θ� = 0 dynamically

! V(!)

(5)

Axions as dark matter

Hot

Cold

Produced thermally in early universe

Important for ma>0.1eV (fa<108), mostly excluded by astrophysics

Produced by coherent field oscillations around mimimum of V(θ)

(Vacuum realignment)

Produced by decay of topological defects

(Axionic string decays)

(6)

Axion cold dark matter parameter space

fa Peccei-Quinn symmetry breaking scale N Peccei-Quinn color anomaly

Nd Number of degenerate QCD vacua

Kim-Shifman-Vainshtain-Zakharov

Dine-Fischler-Srednicki-Zhitnistki Couplings to quarks, leptons, and photons HI Expansion rate at end of inflation

θi Initial misalignment angle

Harari-Sikivie-Hagmann-Chang

Davis-Battye-Shellard Axionic string parameters

Assume N = Nd = 1 and show results for KSVZ and HSHC string network Thus 3 free parameters fa, θi, HI and one constraint ΩaCDM

(7)

Cold axion production in cosmology

Initial misalignment angle θi

Coherent axion oscillations start at temperature T1

3H(T1)=m(T1)

Density at T1 is

Conservation of comoving axion number gives present density Ωa

Hubble expansion parameter non-standard expansion histories differ in the function H(T)

T-dependent axion mass axions acquire mass through

instanton effects at T < Λ ≈ ΛQCD

Vacuum realignment

na(T1) = 12ma(T1)fa2χ�θi2f (θi)�

Anharmonicity correction f (θ)

axion field equation has anharmonic terms ¨θ+ 3H(T) ˙θ + m2a(T ) sin θ = 0

(8)

Cold axion production in cosmology

Energy density ratio (string decay/misalignment)

(String stretching rate)-2

Axionic string decays

α ≡ ρstra

ρmisa = ξ¯rNd2 ζ

Density enhancement from string decays

Uncertainty in axion spectrum

Fast-oscillating strings (Harari-Hagmann-Chang-Sikivie) Slow oscillating strings (Davis-Battye-Shellard)

¯r = 1−β−1 0.8

¯r = 1−β−1 ln(t1/δ)

with a(t)tβ

(9)

Standard cosmology

ρ∝a-3 ρ∝a-4

MD RD

Inflation ρ∝V(φ)

H

2

= 8 π

3 M

Pl2

ρ

H∝a

-2

H∝V

1/2

H∝a

-3/2

ln a ln H Inflation Reheating

Radiation dominated

Matter dominated

H∝Λ

1/2

Λ dominated

ρ∝Λ

ΛD

Axion production

(10)

Axion CDM - Standard cosmology

White dwarfs cooling time

Tensormodes

Θi"1 Θi"0.1

Θi"3.14 Θi"0.01 Θi"0.001 Θi"0.0001

#a $ #CDM

#a % #CDM

ADMXI ADMXII

CARRACK

PLANCK

PLANCK

fa" TGH

Axion isocurvature fluctuations

104 106 108 1010 1012 1014 108

1010 1012 1014 1016 1018

10!3 10!6 10!9 10!12

HI !GeV"

f a!GeV" m a!eV"

(11)

Axion CDM - Standard cosmology

White dwarfs cooling time

Tensormodes

Θi"1 Θi"0.1

Θi"3.14 Θi"0.01 Θi"0.001 Θi"0.0001

#a $ #CDM

#a % #CDM

ADMXI ADMXII

CARRACK

PLANCK

PLANCK

fa" TGH

Axion isocurvature fluctuations

104 106 108 1010 1012 1014 108

1010 1012 1014 1016 1018

10!3 10!6 10!9 10!12

HI !GeV"

f a!GeV" m a!eV"

PQ sym

metry breaks after end of inflation PQ sym

metry breaks during inflation

(12)

Axion CDM - Standard cosmology

White dwarfs cooling time

Tensormodes

Θi"1 Θi"0.1

Θi"3.14 Θi"0.01 Θi"0.001 Θi"0.0001

#a $ #CDM

#a % #CDM

ADMXI ADMXII

CARRACK

PLANCK

PLANCK

fa" TGH

Axion isocurvature fluctuations

104 106 108 1010 1012 1014 108

1010 1012 1014 1016 1018

10!3 10!6 10!9 10!12

HI !GeV"

f a!GeV" m a!eV"

PQ sym

metry breaks after end of inflation Axion oscillations start

during inflation

PQ symmetry breaks after end of inflation

Average θi over Hubble volume

Anharmonicities are important

!"#$%&'()*+'$$$$$$$

! !""#$%!"#! # &$

&$'""$ #(%)&

! !""#

! !""#

"')&

!"#$%#&'()*

+,-.&'((/

θ/π

f (θ) =

ln π2−θ22

7/6

String decay contribution is

~16% of vacuum realignment

(13)

Axion CDM - Standard cosmology

White dwarfs cooling time

Tensormodes

Θi"1 Θi"0.1

Θi"3.14 Θi"0.01 Θi"0.001 Θi"0.0001

#a $ #CDM

#a % #CDM

ADMXI ADMXII

CARRACK

PLANCK

PLANCK

fa" TGH

Axion isocurvature fluctuations

104 106 108 1010 1012 1014 108

1010 1012 1014 1016 1018

10!3 10!6 10!9 10!12

HI !GeV"

f a!GeV" m a!eV"

Axion oscillations start after end of inflation PQ sym

metry breaks during inflation

!a " !CDM

!a # !CDM

109 1010 1011 1012 1013 1014 1015 1016 0.0

0.2 0.4 0.6 0.8

1.0 10!3 10!4 10!5 10!6 10!7 10!8 10!9

f GeV"

Θi#Π

ma !eV"

Single value of θi throughout Hubble volume

Strong CP problem?

Constrained by non-adiabatic fluctuations

PQ symmetry breaks during inflation

Anharmonicities

(14)

Axion CDM - Standard cosmology

White dwarfs cooling time

Tensormodes

Θi"1 Θi"0.1

Θi"3.14 Θi"0.01 Θi"0.001 Θi"0.0001

#a $ #CDM

#a % #CDM

ADMXI ADMXII

CARRACK

PLANCK

PLANCK

fa" TGH

Axion isocurvature fluctuations

104 106 108 1010 1012 1014 108

1010 1012 1014 1016 1018

10!3 10!6 10!9 10!12

HI !GeV"

f a!GeV" m a!eV"

ma = 85±3 µeV

(15)

Standard cosmology

ρ∝a-3 ρ∝a-4

MD RD

Inflation ρ∝V(φ)

H

2

= 8 π

3 M

Pl2

ρ

H∝a

-2

H∝V

1/2

H∝a

-3/2

ln a ln H Inflation Reheating

Radiation dominated

Matter dominated

H∝Λ

1/2

Λ dominated

ρ∝Λ

ΛD

Axion production

(16)

Non-standard cosmology

ρ∝a-3 ρ∝a-4

MD RD

Inflation ρ∝V(φ)

H

2

= 8 π

3 M

Pl2

ρ

H∝a

-2

H∝V

1/2

H∝a

-3/2

H∝a

-3/2

ln a ln H Inflation Reheating

Radiation dominated

Matter dominated

H∝Λ

1/2

Λ dominated

ρ∝Λ

ΛD

Big-Bang Nucleosynthesis

Axion production

(17)

Low Temperature Reheating cosmology

ρ∝a-3 ρ∝a-4

MD RD

Inflation ρ∝V(φ)

H

2

= 8 π

3 M

Pl2

ρ

H∝a

-2

H∝V

1/2

H∝a

-3/2

H∝a

-3/2

ln a ln H Inflation Reheating

Radiation dominated

Matter dominated

H∝Λ

1/2

Λ dominated

ρ∝Λ

ΛD

Axion production

Dominated by the decay of a frozen scalar field

Turner 1983, Scherrer, Turner 1983, Dine, Fischler 1983

(18)

Axion CDM - Low Temp. Reheating cosmology

White Dwarfs Cooling Time

TensorModes

fa! H I!2Π

Axion Isocurvature Fluctuations

Standard TRH ! 4MeV TRH ! 15MeV TRH ! 150MeV

ADMX

104 106 108 1010 1012 1014 108

1010 1012 1014 1016 1018

10!3 10!6 10!9

HI !GeV"

f a!GeV" m a!eV"

(19)

Axion CDM - Low Temp. Reheating cosmology

White Dwarfs Cooling Time

TensorModes

fa! H I!2Π

Axion Isocurvature Fluctuations

Standard TRH ! 4MeV TRH ! 15MeV TRH ! 150MeV

ADMX

104 106 108 1010 1012 1014 108

1010 1012 1014 1016 1018

10!3 10!6 10!9

HI !GeV"

f a!GeV" m a!eV"

PQ sym

metry breaks after end of inflation PQ sym

metry breaks during inflation

(20)

Axion CDM - Low Temp. Reheating cosmology

White Dwarfs Cooling Time

TensorModes

fa! H I!2Π

Axion Isocurvature Fluctuations

Standard TRH ! 4MeV TRH ! 15MeV TRH ! 150MeV

ADMX

104 106 108 1010 1012 1014 108

1010 1012 1014 1016 1018

10!3 10!6 10!9

HI !GeV"

f a!GeV" m a!eV"

PQ sym

metry breaks after end of inflation PQ sym

metry breaks during inflation

lower TRH

PQ symmetry breaks after end of inflation

As TRH decreases, fa must increase and ma decrease

White Dwarfs Cooling Time Tensor Modes

BigBangNucleosynthesis

faLTR

ADMX

fastd

TRH!T1std

fa"HI!2Π

5 10 50 100 500 1000

108 1010 1012 1014

10!2 10!4 10!6 10!8

TRH!MeV"

fa!GeV" ma!eV"

(21)

Axion CDM - Low Temp. Reheating cosmology

White Dwarfs Cooling Time

TensorModes

fa! H I!2Π

Axion Isocurvature Fluctuations

Standard TRH ! 4MeV TRH ! 15MeV TRH ! 150MeV

ADMX

104 106 108 1010 1012 1014 108

1010 1012 1014 1016 1018

10!3 10!6 10!9

HI !GeV"

f a!GeV" m a!eV"

PQ sym

metry breaks after end of inflation PQ sym

metry breaks during inflation

As TRH decreases, constraints from non-adiabatic fluctuations become weaker

PQ symmetry breaks during inflation

And the initial misalignment angle θi must be larger

!a" !CDM

!a# !CDM

fa"HI!2Π

WhiteDwarfsCoolingTime

107 108 109 1010 1011 1012 1013 1014 1015 1016 1017 0.0

0.2 0.4 0.6 0.8 1.0

10!110!210!310!410!510!610!710!810!910!10

Θi#Π

ma !eV"

lower TRH

lower TRH

(22)

Non-standard cosmology

ρ∝a-3 ρ∝a-4

MD RD

Inflation ρ∝V(φ)

H

2

= 8 π

3 M

Pl2

ρ

H∝a

-2

H∝V

1/2

H∝a

-3/2

H∝a

-3/2

ln a ln H Inflation Reheating

Radiation dominated

Matter dominated

H∝Λ

1/2

Λ dominated

ρ∝Λ

ΛD

Big-Bang Nucleosynthesis

Axion production

(23)

Kination cosmology

ρ∝a-3 ρ∝a-4

MD RD

Inflation ρ∝V(φ)

H

2

= 8 π

3 M

Pl2

ρ

H∝a

-2

H∝V

1/2

H∝a

-3/2

H∝a

-3

ln a ln H Inflation Kination

Radiation dominated

Matter dominated

H∝Λ

1/2

Λ dominated

ρ∝Λ

ΛD

Axion production

Kination period dominated by kinetic energy of scalar field

Ford 1987

(24)

Axion CDM - Kination cosmology

White Dwarfs Cooling Time

TensorModes

fa!H I!2Π

Axion Isocurvature Fluctuations

Standard Tkin ! 4MeV Tkin ! 300MeV Tkin ! 700MeV

ADMX

104 106 108 1010 1012 1014 108

1010 1012 1014 1016 1018

10!3 10!6 10!9 10!12

HI !GeV"

f a!GeV" m a!eV"

(25)

Axion CDM - Kination cosmology

White Dwarfs Cooling Time

TensorModes

fa!H I!2Π

Axion Isocurvature Fluctuations

Standard Tkin ! 4MeV Tkin ! 300MeV Tkin ! 700MeV

ADMX

104 106 108 1010 1012 1014 108

1010 1012 1014 1016 1018

10!3 10!6 10!9 10!12

HI !GeV"

f a!GeV" m a!eV"

PQ sym

metry breaks after end of inflation PQ sym

metry breaks during inflation

(26)

Axion CDM - Kination cosmology

White Dwarfs Cooling Time

TensorModes

fa!H I!2Π

Axion Isocurvature Fluctuations

Standard Tkin ! 4MeV Tkin ! 300MeV Tkin ! 700MeV

ADMX

104 106 108 1010 1012 1014 108

1010 1012 1014 1016 1018

10!3 10!6 10!9 10!12

HI !GeV"

f a!GeV" m a!eV"

PQ sym

metry breaks after end of inflation PQ sym

metry breaks during inflation

PQ symmetry breaks after end of inflation

As Tkin decreases, fa must decrease and ma increase

White Dwarfs Cooling Time Tensor Modes

BigBangNucleosynthesis

fastd

ADMX

fakin stdT!Tkin1

fa"HI!2Π

5 10 50 100 500 1000

108 1010 1012 1014

10!2 10!4 10!6 10!8

Tkin!MeV"

fa!GeV" ma!eV"

lower Tkin

String decay contribution is 15 × vacuum realignment

(27)

Axion CDM - Kination cosmology

White Dwarfs Cooling Time

TensorModes

fa!H I!2Π

Axion Isocurvature Fluctuations

Standard Tkin ! 4MeV Tkin ! 300MeV Tkin ! 700MeV

ADMX

104 106 108 1010 1012 1014 108

1010 1012 1014 1016 1018

10!3 10!6 10!9 10!12

HI !GeV"

f a!GeV" m a!eV"

PQ sym

metry breaks after end of inflation PQ sym

metry breaks during inflation

As Tkin decreases, constraints from non-adiabatic fluctuations become stronger

PQ symmetry breaks during inflation

And the initial misalignment angle θi must be smaller

lower Tkin

!a" !CDM

!a# !CDM

fa"HI!2Π

WhiteDwarfsCoolingTime

107 108 109 1010 1011 1012 1013 1014 1015 1016 1017 0.0

0.2 0.4 0.6 0.8 1.0

10!110!210!310!410!510!610!710!810!910!10

Θi#Π

ma !eV"

lower Tkin

(28)

Conclusions

• If the Peccei-Quinn symmetry breaks after inflation ends,

the axion mass must be m

a

=85±3 µeV in standard cosmology

• If the Peccei-Quinn symmetry breaks during inflation,

cosmological limits on non-adiabatic fluctuations constrain parameter space and a specific initial misalignment angle θ

i

must be chosen

For axions to be 100% of cold dark matter...

-

much smaller ma in LTR cosmology

-

much larger ma in kination cosmology

-

larger allowed region and larger θi in LTR cosmology

-

smaller allowed region and smaller θi in kination cosmology

References

Related documents

Gravitational lensing allows the detection of subhalos, even if they are completely dark – and one such object has already been detected (Vegetti et al. 2012,

In this section, we present the numerical results on the physics reach of the OPERA experiment in constraining the new physics parameters ε αβ.. In addition, the parameter θ 13

The fact that different ε τ τ will be needed in order to reproduce this effect at different energies implies that this degeneracy can be somewhat resolved by studying the

We find how the precision measurement of neutrino oscillation parameters can be altered by non-standard effects alone (not including non- standard interactions in the creation

The scope of the material turned out to be uneven for the genders, with boys’ movies containing both a greater number of words and lasting longer than the girls’ movies. As

Abstract: The aim of this study is to examine the extent and type of non-standard language use in Benjamin Zephaniah’s poetry collection Propa Propaganda.. It also investigates

In order to place constraints on |f R0 | (rather, on its logarithm with base 10 log |f R0 |, since this is computationally easier) and σ 8 , the matter power spectrum normaliza- tion

Our findings show that, while integer IPOs have higher initial return, uncertainty and offer price levels, there is no proof of different information content conveyed within