• No results found

Mats Leijon, min handledare. Tack för stöd, hjälp och all den insperationen du ger mig. Det är ett väldigt roligt jobb du har gett mig.

Janaina Goncalves, min biträdande handledare. Jag är väldigt glad att jag har haft turen att få lära känna dig. Tack för allt stöd och att du alltid tar dig tid. Du har lärt mig väldigt mycket.

Daniel Käller, Robert Leandersson och Ingrid Antonzon. Tack för allt ni har gjort för mig. Daniel ska ha ett extra stort tack för alla timmar i verkstan, genialiska lösningar och för att du förstår när du inte ska lyssna på mig.

Andrej, min rumskompis. Tack för all hjälp och inte minst alla roliga diskussioner  Jag vill tacka Ulf Ring för dina förståndiga visdomsord och även ett tack till Gunnel, Maria, Tomas och Ingrid för den administrativ hjälpen.

This research was carried out as part of the Statkraft Ocean Energy Research Program, sponsored by Statkraft. (www.statkraft.no). This support is gratefully acknowledged.

The author would also express gratitude’s to:

The Swedish Research Council, Grant No 2009-3417, Swedish Centre for Renewable Electric Energy Conversion, Swedish Governmental Agency for Innovation Systems, StandUp for Energy strategic government initiative, Swedish Energy Agency, Draka Cable AB, the Göran Gustavsson Research Foundation, Statkraft AS, Fortum, Stiftelsen Olle Engkvist Byggmästare, Stiftelsen J. Gust Richert, Ångpanneföreningens Forskningsstiftelse, Civilingenjörsförbundets Miljöfond, and the Wallenius for their contribution in the Lysekil Wave Power Project.

The author would also like to express graditude’s to the founders in The Electrical Motor Projcet,: Märta och Göran Öbergs stiftelse, Stiftelsen J. Gust Richert, Ångpanneföreningens Forskningsstiftelse and StandUp for All Electrical Propulsion Systems.

Bibliography

[1] B. Söderbergh, F. Robelius, K. Aleklett. “A crash program scenario for the Canadian oil sands industry”, Energy Policy, Vol. 35, pp.

1931-1947, 2007.

[2] M. E. Mann, R. S. Brandley, M. K. Hughes, “Global-scale temperature patterns and climate forcing over the past six centuries”, Nature, Vol. 392, pp. 779-787, 1998.

[3] A. A. Moberg, D. M. Sonechkin, K. Holmgren, N. M. Datsenko, W.

Karlen. “Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution proxy data”, Nature, Vol. 433, pp. 613-617, 2005.

[4] J. Lundin, Flywheel in an all-electric propulsion system, Licentiate thesis, Uppsala University, Uppsala, Sweden, 2011.

[5] J. Falnes, J. Lovseth. “Ocean wave energy”, Energy Policy, Vol. 19, pp. 768-775, 1991.

[6] M., Leijon, R., Waters, M., Rahm, O.,Svensson, C., Boström, E., Strömstedt, J., Engström, S., Tyrberg, A., Savin, H., Gravråkmo, H., Bernhoff, J., Sundberg, J., Isberg, O., Ågren, O., Danielsson, M., Eriksson, E., Lejerskog, B., Bolund, S., Gustafsson, and K., Thorburn, “Catch the wave to electricity: the conversion of wave motions to electricity using a grid-oriented approach”, IEEE Power and Energy Magazine, Vol. 7, pp. 50–54, 2009.

[7] M. Rahm, C. Boström, O. Svensson, M. Grabbe, F. Bülow, M.

Leijon, “Offshore underwater substation for wave energy converter arrays”, IET Renewable Power Generation, Vol. 4, pp. 602-612, 2010.

[8] O. Langhamer, Wave energy conversion and the marine environment: Colonization patterns and habitat dynamics, PhD thesis, Uppsala University, Uppsala, Sweden, 2009.

[9] J. Engström, Hydrodynamic Modelling for a Point Absorbing Wave Energy Converter, PhD thesis, Uppsala University, Uppsala, Sweden, 2011.

[10] H. Gravråkmo, Buoy for linear wave energy converter, Licentiate thesis, Uppsala University, Uppsala, Sweden, 2011.

[11] S. Tyrberg, O. Svensson, V. Kurupath, J. Engström, E. Strömstedt, M. Leijon. “Wave Bouy and Translator Motions – On-Site Measurements and Simulations”, IEEE Journal of Oceanic Engineering, Vol. 36, pp. 377-385, 2011.

[12] S. Tyrberg, H. Gravråkmo, M. Leijon. “Tracking a Wave Power Buoy Using a Network Camera – System Analysis and First Results”, Proc. of the ASME 28th International Conference on

Ocean, Offshore and Arctic Engineering, OMAE2009, Honolulu, Hawaii, 2009.

[13] O. Svensson, C. Boström, M. Rahm, M. Leijon. “Description of the control and measurement system used in the Low Voltage Marine Substation at the Lysekil research site”, Proc. of the 8th European wave and tidal energy conference, (EWTEC09), Uppsala, Sweden.

2009.

[14] Y., Hong, E., Hultman, V., Castellucci, B., Ekergård, L., Sjökvist, D. E., Soman, R., Krishna, K., Haikonen, A., Baudoin, L., Lindblad, E., Lejerskog, D., Käller, M., Rahm, E., Strömstedt, C., Boström, R., Waters, M. Leijon, “Status Update of the Wave Energy Research at Uppsala University”, Proc. of the 9th European Wave and Tidal Energy Conference, Aalborg, Denmark, September, 2013.

[15] AK. Koch, MW. Fowler, RA., Fraser. “Implementation of a fuel cell plug-in hybrid electric vehicle and factors affecting transportation policy”, International Journal of Energy Research, DOI: 10.1002/er.1907, 2011.

[16] C. C. Chan, “The State of the Art of Electric and Hybrid Vehicles”, Proc. of the IEEE, Vol. 90 pp. 247-275, 2002.

[17] M. Zeraoulia, M. El Hachemi Benbouzid, D. Diallo, Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study”, IEEE Transactions on Vehicular Technology, Vol. 55, pp.

1756-1764, 2006.

[18] T. Finken, M. Hombitzer, K. Hameyer. “Study and Comparison of several Permanent-Magnet excited Rotor Types regarding their Applicability in Electric Vehicles”, Emobility - Electrical Power Train: pp. 1-7, 2010.

[19] J-H. Choi, Y-D. Chun, P-W. Han, M-J. Kim, D-H Koo, J. Lee, J-S.

Chun, “Design of High Power Permanent Magnet Motor with Segment Rectangular Copper Wire and Closed Slot Opening on Electric Vehicles”, IEEE Transactions on Magnetics, Vol. 46, pp.

2070-2073, 2010.

[20] Z. Zhang, F. Profumo, A. Tenconi, “Improved design for electric vehicle induction motors using an optimization procedure”, Electric.

Power Application., Vol. 143, pp. 410–416, 1996.

[21] S. Wang, Qionghua Zhan, Z. Ma, L. Zhou, “Implementation of a 50-kW Four-Phase Switched Reluctance Motor Drive System for Hybrid Electric Vehicle”, IEEE Transaction on Magnetics, Vol. 41, pp. 501–504, 2005.

[22] S. M. Lukic and A. Emado, “Modelling of electric machines for automotive applications using efficiency maps”, Proc. Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Technology Conference, pp. 543–550, Cincinnati, USA, 2003.

[23] K.M, Rahman, B. Fahimi, G. Suresh, A.V. Rajarathnam, M. Ehsani.

“Advantages of Switched Reluctance Motor Applications to EV and HEV: Design and Control Issues”, IEEE Transactions on Industry Applications, Vol. 36, pp. 111-121, 2000.

[24] M. A. Rahman, “Advances on IPM Technology for Hybrid Cars and Impact in Developing Countries”, 5th International Conference on Electrical and Computer Engineering, ICECE2008, Dhaka, Bangladesh, 2008.

[25] M. A. Rahman, “IPM Motor Drives for Hybrid Electric Vehicles”, International Aegean Conference on Electrical Machines and Power Electronics, Turkey, 2007.

[26] X. Li, Student, S. S. Williamson, “Efficiency Analysis of Hybrid Electric Vehicle (HEV) Traction Motor-Inverter Drive for Varied Driving Load Demands”, Applied Power Electronics Conference and Exposition, USA, 2008.

[27] J. Malan, M. J., Kamper, “Performance of Hybrid Electric Vehicle using Reluctance Synchronous Machine Technology”, Conference Record of IEEE Industry Applications Conference, Vol. 3, pp.

1881–1887, Rome, Italy, 2000.

[28] S. Chul Oh, “Evaluation of Motor Characteristics for Hybrid Electric Vehicles Using the Hardware-in-the-Loop Concept”, IEEE Transaction on Vehicular Technology, Vol. 54, pp. 817–824, 2005.

[29] S. Chul Oh, A. Emadi, “Test and Simulation of Axial Flux- Motor Characteristics for Hybrid Electric Vehicles”, IEEE Transaction on Vehicular Technology, Vol. 53, pp. 912–919, 2004.

[30] J. Faiz, “Optimal Design of an induction motor for an electric vehicle”, IEEE Transaction on Electrical Power, Vol. 16, pp. 33, 2005.

[31] K. Thorburn, Electric Energy Conversion System: Wave Energy and Hydropower, PhD thesis, Uppsala University, Uppsala, Sweden, 2006.

[32] O. Danielsson, Wave Energy Conversion – Linear Synchronous Permanent Magnet Generator, PhD thesis, Uppsala University, Uppsala, Sweden, 2006.

[33] M. Eriksson, Modelling and Experimental Verification of Direct Drive Wave Energy Conversion. Bouy-Generator Dynamics. PhD thesis, Uppsala University, Uppsala, Sweden, 2006.

[34] R. Waters, Energy from Ocean Waves. Full Scale Experimental Verification of a Wave Energy Converter. PhD thesis, Uppsala University, Uppsala, Sweden, 2008.

[35] M. Rahm, Ocean Wave Energy: Underwater Substation System for Wave Energy Converters, PhD thesis, Uppsala University, Uppsala, Sweden, 2010.

[36] C. Boström, Electrical systems for wave energy conversion, PhD thesis, Uppsala University, Uppsala, Sweden, 2011.

[37] S. Lindroth, Buoy and Generator Interaction with Ocean Waves, PhD thesis, Uppsala University, Uppsala, Sweden, 2011.

[38] A. Savin, Experimental measurement of lateral force in a submerged single heaving buoy wave energy converter, PhD thesis, Uppsala University, Uppsala, Sweden, 2012.

[39] E. Strömstedt, Submerged Transmission in Wave Energy Converters, PhD thesis, Uppsala University, Uppsala, Sweden, 2012.

[40] O. Svensson, Experimental results from the Lysekil Wave Power Research Site, PhD thesis, Uppsala University, Uppsala, Sweden, 2012.

[41] Fano, Chu, Adler, Electromagnetic fields, Energy and Force, Inc, John Wiley & Sons, 1960.

[42] J.L. Coulomb, “A methodology for the determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness”, IEEE Transactions on Magnetics, Vol. 19, 1983.

[43] W. N. Fu, S. L. Ho, “Error Estimation for the Computation of Force Using the Virtual Work Method on Finite Element Models”, IEEE Transaction on Magnetics. Vol. 45, pp. 1388–1391, March 2009.

[44] O. Danielsson, M. Leijon, “Flux Distribution in Linear Permanent-Magnet Synchronous Machines Including Longitudinal End Effects”, IEEE Transaction on Magnetics, Vol. 43, July 2007. [45 [46] Henk Polinder, Johannes G. Slootweg, Martin J. Hoeijmakers, John

C. Compter, “Modeling of a Linear PM Machine Including Magnetic Saturation and End Effects: Maximum Force-to-Current Ratio”, IEEE Transaction on Industry Applications, Vol. 39, 2003.

[47] J. Faiz and H. Jagari, “Accurate modeling of single-sided linear induction motor considers end effect and equivalent thickness”, IEEE Transaction on Magnetics, Vol. 36, pp. 3785–3790, Sep.

2000.

[48] K. Adamiak, K. Ananthasivam, G. E. Dawson, A. R. Eastham, and J. F. Gieras, “The causes and consequences of phase unbalance in single sided linear induction motors”, IEEE Transaction on Magnetics, Vol. 24, pp. 3223–3233, 1988.

[49] J. Sang-Yong, J. Hyun-Kyo, C. Jang-Sung, K. Do-Hyun, and H.Ji-Hyun, “Dynamic characteristics of partially excited permanent magnet linear synchronous motor considering end-effect”, IEEE International Electric Machines and Drives Conf., Cambridge, MA, 2001

[50] RL. Stoll. The analysis of eddy currents. Oxford University, Press, 1974.

[51] Anon. 2. Electric Steel Non Oriented Fully Processed Cogent, Cogent 2002-11. SIR-Gruppen Sweden, Surahammars Bruk AB, Box 201, SE-735 23 Surahammar, Sweden.

[52] H. Weh, H. Hoffmann, J. Landrath, “New permanent magnet excited synchronous machine with high efficiency at low speed”, International Conference on Electric Machines, 35-40, 1988.

[53] F. W. Carter, “Pole-face losses”, Journal IEE, Vol. 54, pp. 168, 1916.

[54] P. J. Lawrenson, P. Reece, M. C. Ralph, “Tooth-ripple losses in solid poles”, Proc. IEE, Vol. 113, pp. 4, 1966.

[55] Drubel O, Stoll RL. “Comparison Between Analytical and Numerical Methods of Calculating Tooth Ripple Losses in Salient Pole Synchronous Machines”, IEEE Transaction on Energy Conversion, Vol. 16, pp. 61-67, 2001.

[56] WJ. Gibbs. “Tooth-ripple losses in unwound pole-shoes”, Journal of the Institution of Electrical Engineers – Part II, Vol. 94, pp. 2, 1947.

[57] M., Ranlöf, A., Wolfbrandt, J., Lidenholm, Lundin, U. “Core Loss Prediction in Large Hydropower Generators: Influence of Rotational Fields”, IEEE Transaction on Magnetics, Vol. 45, pp. 3200-3206, 2009.

[58] B. Bolund, M. Leijon, U. Lundin, “Poynting Theorem for Cable Wound Generator”, IEEE Transaction on Dielectrics and Electrical Insulation, Vol. 15, pp. 600–605, April 2008.

[59] T. L. Skvarenina, “The Power Electronic Handbook”, CRC PressLLC, Florida, US, 2002.

[60] H. Lundh, Grundläggande Hållfasthetslära, Instant Book AB, Stockhom 2007.

[61] Metev, Veiko. “Laser Assisted Microtechnology”, 2nd ed., R.M.

Osgood, Jr., Ed. Berlin, Germany: Springer-Verlag, 2005

[62] Wegemuller, von der Weid, Oberson, Ginis. “High resolution fiber distributed measurements with coherent OFDR”, Proceedings ECOC’00.

[63] Zhang, Zhu, Sin, Mok. “A novel ultrathin elevated channel low-temperaturepoly-Si TFT”, IEEE Electronics Device Letter, Vol. 20, pp. 569-571, Nov. 2007.

[64] K., Chase, A. R., Parkinson, “A Survey of Research in the Application of Tolerance Analysis to the Design of Mechanical Assemblies”, Research in Engineering Design, Vol. 3, pp. 23-37, 1991.

[65] Anon. 1. Ace, Modified Version 3.1, ABB common platform for field analysis and simulations. ABB Corporate Research Centre.

ABB AB, Corporate Research, 721 78 Västerås, Sweden.

[66] S. Eriksson, S. Solum, H. Bernhoff, M. Leijon, “Simulations and experiments on a 12 kW direct driven PM synchronous generator for wind power”, Renewable Energy, Vol. 33 No.4, pp. 674-681, 2008.

[67] S, Eriksson, H. Bernhoff, M. Leijon, “FEM simulations and experiments of different loading conditions for a 12 kW direct driven PM synchronous generator for wind power”, International Journal of Emerging Electric Power Systems, Vol. 10, No. 1, article 3, 2010.

[68] S, Eriksson, H. Bernhoff, M. Leijon, “A 225 kW direct driven PM generator adapted to a vertical axis wind turbine”, Advances in Power Electronics, Vol. 2011 Article ID 239061, doi:10.1155/2011/239061.

[69] M. Leijon, H. Bernhoff, O. Ågren, J. Isberg, J. Sundberg, M. Berg, KE. Karlsson, A. Wolfbrandt, “Multiphysics Simulation of Wave Energy to Electric Energy Conversion by Permanent Magnet Linear Generator”, IEEE Transactions on Energy Conversion, Vol. 20, No 1, pp. 219 – 224, March 2005.

[70] O. Danielsson, K. Thorburn, M. Eriksson, M. Leijon, “Permanent magnet fixation concepts for linear generator”, Fifth European wave energy conference, EWTEC, 17-19 Sept. 2003.

[71] T. Parel, M. D. Rotaru, J. K. Sykulski and G. Hearn, “Optimization of a tubular linear machine with permanent magnets machine with permanent magnets”, The Int. J. for Comp. and Math., COMPEL, Vol. 30, pp. 1056-1068, 2010.

[72] E. Spooner, M. A: Mueller, “Comparative study of linear generators and hydraulic systems for wave energy conversion”, University of Durham, School of engineering, ETSU Report V/06/00189/REP 2001.

[73] A. Munteanu, A. Simion, L. Livadaru, and A. Malanciuc, “P M Tubular Linear Synchronous Generator for wave energy conversion”, Buletinul AGIR, Vol 4, 2011.

[74] R. Akmese, and J. F. Eastham, “Design of permanent magnet flat linear motors for standstill applications”, IEEE Transactions on Magnetics, Vol. 28, pp. 3042-3044, 1992.

[75] N. Bianchi, S. Bolognani and F. Tonel, “Design criteria of a tubular linear IPM motor”, IEEE International Electric Machines and Drives Conference (IEMDC), 17-20 June, pp. 1-7, 2001.

[76] T. Sun, S. O. Kwon, J. J. Lee and J. P. Hong, “Investigation and comparison of system efficiency on the PMSM considering NdFeB magnet and Ferrite magnet”, 31th International Telecommunications Energy Conference, INTELEC, 18-22 Oct., pp.

1-6, 2009.

[77] A. M. Mihai, S. Benelghali, L. Livadaru, A. Simion, and R. Outbib,

“FEM analysis upon significance of different permanent magnet types used in a five-phase PM generator for gearless small-scale wind”, International Conference on Electrical Machines (ICEM), 2-5 Sept. pp. 267-273, 2012.

[78] M. R. J. Dubois, Optimized Permanent Magnet Generator Topologies for Direct-Drive Wind Turbines, PhD Thesis, Delft University, 2004.

[79] C. Hurst, “China’s Rare Earth Elements Industry: What Can the West Learn”. Institute for the Analysis of Global Security, 7811 Montrose Rd. suite 505, Potomac, MD 20854, USA, March 2010.

[80] B. Bolund, M. Leijon, “Rotor configuration impact on generator ventilation needs”, Power Systems Conference and Exposition, IEEE PES2004, Vol. 2, pp. 749–752, 2004.

[81] J. Santiago, J. Goncalves de Oliveira, J. Lundin, J. Abrahamsson, A.

Larsson, H. Bernhoff. “Design parameters calculation of a novel driveline for electric vehicles”, World Electric Vehicle Journal. Vol.

3, pp. 2032-6653, 2009.

[82] J. Santiago, FEM Analysis Applied to Electrical Machines for Electric Vehicles, PhD thesis, Uppsala University, Uppsala, Sweden, 2011.

[83] J. Goncalves De Oliveira, Power Control System in a Flywheel All-Electric Driveline, PhD thesis, Uppsala University, Uppsala, Sweden, 2011.

[84] J. Abrahamsson, Kinetic Energy Storage and Magnetic Bearings for Vehiculat Applications, Licentiate thesis, Uppsala University, Uppsala, Sweden, 2011.

Acta Universitatis Upsaliensis

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1074

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and Technology, Uppsala University, is usually a summary of a number of papers. A few copies of the complete dissertation are kept at major Swedish research libraries, while the summary alone is distributed internationally through the series Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology.

Distribution: publications.uu.se

UNIVERSITATISACTA UPSALIENSIS

Related documents