• No results found

1. WHO. Make every mother and child count. (2005).

2. UNDP. Human Development Report. (2006).

3. Black, R.E., Morris, S.S. & Bryce, J. Where and why are 10 million children dying every year? Lancet 361, 2226-34 (2003).

4. Desai, M. et al. Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis 7, 93-104 (2007).

5. UNAIDS. AIDS epidemic update. (2007).

6. Millenium Report, U.N. Investing in Development: A practical plan to achieve the Millenium Development Goals, (Earthscan, London, 2005).

7. UNDP. Annual report: Making globalization work for all. (2007).

8. UNDP. Taking gender equality seriously. (2006).

9. Cox-Singh, J. et al. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin Infect Dis 46, 165-71 (2008).

10. Singh, B. et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363, 1017-24 (2004).

11. WHO. World Malaria Report. (2005).

12. WHO. The world health report: shaping the future. (2003).

13. Nahlen, B.L., Korenromp, E.L., Miller, J.M. & Shibuya, K. Malaria risk:

estimating clinical episodes of malaria. Nature 437, E3; discussion E4-5 (2005).

14. Snow, R.W. et al. Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa. The Lancet 349, 1650-1654 (1997).

15. Maitland, K. et al. Absence of malaria-specific mortality in children in an area of hyperendemic malaria. Trans R Soc Trop Med Hyg 91, 562-6 (1997).

16. Fernando, S.D. et al. The impact of repeated malaria attacks on the school performance of children. Am J Trop Med Hyg 69, 582-8 (2003).

17. Sachs, J. Macroeconomics and health: investing in health for economic development. (World Health Organization, Geneva, 2001).

18. Magner, L.N. A History of Medicine, (Taylor & Francis Group, Boca Raton, USA, 2005).

19. Desowitz, R.S. The Malaria Capers: More tales of Parasites and People, Research and reality, (W.W. Norton & Company, New York, 1991).

20. Veith, I. Huang Ti Nei Ching Su Wên: The Yellow Emperor´s Classic of Internal Medicine, (Williams & Wilkins Company, Baltimore, 1949).

21. Raina, B.L. Introduction to the malaria problem in India, (Commonwealth Publishers, New Dehli, 1991).

22. Pinder, R.M. Malaria: the design, Use, and Mode of Action of Chemotherapeutic Agents, (Scientechnica Ltd., Bristol, UK, 1973).

23. Garnham, P.C.C. Malaria parasites and other Haemosporidia, (Blackwell Scientific Publications Ltd., Oxford, 1966).

24. UN.Millennium Project. Investing in Development. A practical guide to achieve the Millenium development goals, (Earthscan, London, 2005).

25. Bhattarai, A. et al. Impact of artemisinin-based combination therapy and insecticide-treated nets on malaria burden in Zanzibar. PLoS Med 4, e309 (2007).

26. Lengeler, C. Insecticide-treated bed nets and curtains for preventing malaria.

Cochrane Database Syst Rev, CD000363 (2004).

27. Menendez, C., D'Alessandro, U. & ter Kuile, F.O. Reducing the burden of malaria in pregnancy by preventive strategies. Lancet Infect Dis 7, 126-35 (2007).

28. WHO. The use of DDT in malaria vector control. (2007).

29. Schellenberg, D. et al. Intermittent treatment for malaria and anaemia control at time of routine vaccinations in Tanzanian infants: a randomised, placebo-controlled trial. Lancet 357, 1471-7 (2001).

30. Massaga, J.J. et al. Effect of intermittent treatment with amodiaquine on anaemia and malarial fevers in infants in Tanzania: a randomised placebo-controlled trial. Lancet 361, 1853-60 (2003).

31. Schultz, L.J. et al. The efficacy of antimalarial regimens containing

sulfadoxine-pyrimethamine and/or chloroquine in preventing peripheral and placental Plasmodium falciparum infection among pregnant women in Malawi. Am J Trop Med Hyg 51, 515-22 (1994).

32. EANMAT. The efficacy of antimalarial monotherapies,

sulphadoxine-pyrimethamine and amodiaquine in East Africa: implications for sub-regional policy. Trop Med Int Health 8, 860-7 (2003).

33. Hill, J. & Kazembe, P. Reaching the Abuja target for intermittent preventive treatment of malaria in pregnancy in African women: a review of progress and operational challenges. Trop Med Int Health 11, 409-18 (2006).

34. Vallely, A., Vallely, L., Changalucha, J., Greenwood, B. & Chandramohan, D. Intermittent preventive treatment for malaria in pregnancy in Africa: what's new, what's needed? Malar J 6, 16 (2007).

35. NIH. Intermittent preventive treatment during pregnancy in Benin: a

randomized, open, and equivalent trial comparing sulfadoxine-pyrimethamine wth mefloquine. (2006).

36. NIH. Efficacy of intermittent pyrimethamine and sulfadoxine-pyrimethamine + artesunate treatment in the prevention of malaria in pregnancy in an area with chloroquine-resistant Plasmodium falciparum.

(2006).

37. NIH. Lungwena Antenatal Intervention Study. A single-centre intervention trial in rural Malawi, testing maternal and infant health effects of presumptive

intermittent treatment of pregnant women with sulfadoxine-pyrimethamine and azithromycin. (2006).

38. Menendez, C. et al. Varying efficacy of intermittent preventive treatment for malaria in infants in two similar trials: public health implications. Malar J 6, 132 (2007).

39. Sargeant, T.J. et al. Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol 7, R12 (2006).

40. Molyneux, M.E., Taylor, T.E., Wirima, J.J. & Borgstein, A. Clinical features and prognostic indicators in paediatric cerebral malaria: A study of 131 comatose Malawian children. Quart. J. Med. 71, 441-459 (1989).

41. Kihara, M., Carter, J.A. & Newton, C.R. The effect of Plasmodium falciparum on cognition: a systematic review. Trop Med Int Health 11, 386-97 (2006).

42. Snow, R.W. et al. Periodicity and space-time clustering of severe childhood malaria on the coast of Kenya. Trans.Roy.Soc.Trop.Med.Hyg. 87, 386-390 (1993).

43. Snow, R.W. et al. Severe childhood malaria in two areas of markedly different P. falciparum malaria transmission in East Africa. Acta Tropica 578, 289-300 (1994).

44. Snow RW., C.M., Deichmann U., et al. Estimating mortality, morbidity and disability due to malaria among Africa's non-pregnant population. Bull. World Health Organ. 77, 624-640 (1999).

45. McGregor, I.A. Mechanisms of acquired immunity and epidemiological patterns of antibody responses in malaria in man. Bull. W.H.O. 50, 259-266.

(1974).

46. Riley, E.M., Hviid, L., and Theander, T.G. Parasitic Infections and the Immune System, 119-143 (Academic Press, New York, 1994).

47. Biggs, B.-A. et al. Antigenic variation in Plasmodium falciparum. Proc. Natl.

Acad. Sci. USA 88, 9171-9174 (1991).

48. McBride, J.S., Walliker, D. & Morgan, G. Antigenic diversity in the human malaria parasite Plasmodium falciparum. Science 217, 254-7 (1982).

49. Biggs, B.-A. et al. Adherence of infected erythrocytes to venular endothelium selects for antigenic variants of Plasmodium falciparum. J. Immunol. 149, 2047-2054 (1992).

50. Cowman, A.F. et al. Functional analysis of Plasmodium falciparum merozoite antigens: implications for erythrocyte invasion and vaccine development.

Philos Trans R Soc Lond B Biol Sci 357, 25-33 (2002).

51. Barr, M. & Mc, G.I. Diphtheria antitoxin levels in the serum of Gambian Africans. Trans R Soc Trop Med Hyg 56, 368-70 (1962).

52. Brabin, B.J. An analysis of malaria in pregnancy. Bull. World Health Org. 61, 1005-1076 (1983).

53. Murphy, S.C. & Breman, J.G. Gaps in the childhood malaria burden in Africa:

cerebral malaria, neurological sequelae, anemia, respiratory distress,

hypoglycemia, and complications of pregnancy. Am J Trop Med Hyg 64, 57-67 (2001).

54. Brair, M.E., Brabin, B.J., Milligan, P., Maxwell, S. & Hart, C.A. Reduced transfer of tetanus antibodies with placental malaria. Lancet 343, 208-9.

(1994).

55. de Moraes-Pinto, M.I. et al. Placental antibody transfer: influence of maternal HIV infection and placental malaria. Arch Dis Child Fetal Neonatal Ed 79, F202-5. (1998).

56. Ackerman, H. et al. A comparison of case-control and family-based

association methods: the example of sickle-cell and malaria. Ann Hum Genet 69, 559-65 (2005).

57. Mockenhaupt, F.P. et al. Alpha(+)-thalassemia protects African children from severe malaria. Blood 104, 2003-6 (2004).

58. Roberts, D.J. & Williams, T.N. Haemoglobinopathies and resistance to malaria. Redox Rep 8, 304-10 (2003).

59. Kwiatkowski, D.P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 77, 171-92 (2005).

60. Patnaik, P. et al. Effects of HIV-1 serostatus, HIV-1 RNA concentration, and CD4 cell count on the incidence of malaria infection in a cohort of adults in rural Malawi. J Infect Dis 192, 984-91 (2005).

61. French, N. et al. Increasing rates of malarial fever with deteriorating immune status in HIV-1-infected Ugandan adults. Aids 15, 899-906 (2001).

62. Steketee, R.W. et al. Malaria parasite infection during pregnancy and at delivery in mother, placenta, and newborn: efficacy of chloroquine and mefloquine in rural Malawi. Am J Trop Med Hyg 55, 24-32 (1996).

63. Verhoeff, F.H. et al. Increased prevalence of malaria in HIV-infected pregnant women and its implications for malaria control. Trop Med Int Health 4, 5-12 (1999).

64. Mount, A.M. et al. Impairment of humoral immunity to Plasmodium falciparum malaria in pregnancy by HIV infection. Lancet 363, 1860-7 (2004).

65. Newton, C.R., Taylor, T.E. & Whitten, R.O. Pathophysiology of fatal falciparum malaria in African children. Am J Trop Med Hyg 58, 673-83 (1998).

66. MacPherson, G.G., Warrell, M.J., White, N.J., Looareesuwan, S. & Warrell, D.A. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am. J. Pathol. 119, 385-401 (1985).

67. Taylor, T.E. et al. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med 10, 143-5 (2004).

68. Bulmer, J.N., Rasheed, F.N., Francis, N., Morrison, L. & Greenwood, B.M.

Placental malaria. I. Pathological classification. Histopathology 22, 211-8 (1993).

69. Ismail, M.R. et al. Placental pathology in malaria: a histological,

immunohistochemical, and quantitative study. Hum Pathol 31, 85-93 (2000).

70. Schofield, L. & Grau, G.E. Immunological processes in malaria pathogenesis.

Nat Rev Immunol 5, 722-35 (2005).

71. Schofield, L. & Hackett, F. Signal transduction in host cells by a

glycosylphosphatidylinositol toxin of malaria parasites. J. Exp. Med. 177, 145-153 (1993).

72. Naik, R.S. et al. Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody

response that may provide immunity to malaria pathogenesis. J Exp Med 192, 1563-76 (2000).

73. Vijaykumar, M., Naik, R.S. & Gowda, D.C. Plasmodium falciparum

glycosylphosphatidylinositol-induced TNF-alpha secretion by macrophages is mediated without membrane insertion or endocytosis. J Biol Chem 276, 6909-12 (2001).

74. Schofield, L., Hewitt, M.C., Evans, K., Siomos, M.A. & Seeberger, P.H.

Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature 418, 785-9 (2002).

75. Taylor, T.E., Borgstein, A. & Molyneux, M.E. Acid-base status in paediatric Plasmodium falciparum malaria. Q. J. Med. 86, 99-109 (1993).

76. Taylor, T.E., Molyneux, M.E., Wirima, J.J., Fletcher, K.A. & Morris, K.

Blood glucose levels in Malawian children before and during the

administration of intravenous quinine for severe falciparum malaria. N. Eng.

J. Med. 319, 1040-1047 (1988).

77. Marsh, K. et al. Indicators of life-threatening malaria in African children.

New.Eng.J.Med. 332, 1399-1404 (1995).

78. White, N.J. & Ho, M. The pathophysiology of malaria. Adv. Parasitol 31, 83-173 (1992).

79. Tachado, S.D. et al. Glycosylphosphatidylinositol toxin of Plasmodium induces nitric oxide synthase expression in macrophages and vascular

endothelial cells by a protein tyrosine kinase-dependent and protein kinase C-dependent signaling pathway. J Immunol 156, 1897-1907 (1996).

80. Schofield, L. et al. Glycosylphosphatidylinositol toxin of Plasmodium up-regulates intercellular adhesion 1, vascular cell adhesion molecule-1, and E-selectin expression in vascular endothelial cells and increases leukocyte and parasite cytoadherence via tyrosine kinase-dependent signal transduction. J Immunol 156, 1886-96 (1996).

81. Aikawa, M. et al. The pathology of human cerebral malaria. Am. J. Trop.

Med. Hyg. 43 suppl, 30-37 (1990).

82. Hunt, N.H. & Grau, G.E. Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol 24, 491-9 (2003).

83. Grau, G.E. et al. Platelet accumulation in brain microvessels in fatal pediatric cerebral malaria. J Infect Dis 187, 461-6 (2003).

84. Coltel, N., Combes, V., Hunt, N.H. & Grau, G.E. Cerebral malaria -- a

neurovascular pathology with many riddles still to be solved. Curr Neurovasc Res 1, 91-110 (2004).

85. Grau, G.E. et al. Monoclonal antibody against interferon gamma can prevent experimental cerebral malaria and its associated overproduction of tumor necrosis factor. Proc. Natl. Acad. Sci. USA 86, 5572-5574 (1989).

86. Rudin, W., Favre, N., Bordmann, G. & Ryffel, G. IFN-γ is essential for the development of cerebral malaria. Eur. J. Immunol., 810-815 (1997).

87. Amani, V. et al. Involvement of IFN-gamma receptor-medicated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection. Eur J Immunol 30, 1646-55 (2000).

88. Schofield, L. et al. CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283, 225-9 (1999).

89. Hansen, D.S., Siomos, M.A., Buckingham, L., Scalzo, A.A. & Schofield, L.

Regulation of murine cerebral malaria pathogenesis by CD1d-restricted NKT cells and the natural killer complex. Immunity 18, 391-402 (2003).

90. Scott, P., Pearce, E., Cheever, A.W., Coffman, R.L. & Sher, A. Role of cytokines and CD4+ T-cell subsets in the regulation of parasite immunity and disease. Immunol Rev 112, 161-82 (1989).

91. de Kossodo, S. & Grau, G.E. Profiles of cytokine production in relation with susceptibility to cerebral malaria. J Immunol 151, 4811-20 (1993).

92. D'Ombrain, M.C., Hansen, D.S., Simpson, K.M. & Schofield, L. gammadelta-T cells expressing NK receptors predominate over NK cells and conventional T cells in the innate IFN-gamma response to Plasmodium falciparum malaria.

Eur J Immunol 37, 1864-73 (2007).

93. Nitcheu, J. et al. Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. J Immunol 170, 2221-8 (2003).

94. Chizzolini, C., Grau, G.E., Geinoz, A. & Schrijvers, D. T lymphocyte interferon-gamma production induced by Plasmodium falciparum antigen is high in recently infected non-immune and low in immune subjects. Clin Exp Immunol 79, 95-9 (1990).

95. Abrams, E.T. et al. Host response to malaria during pregnancy: placental monocyte recruitment is associated with elevated beta chemokine expression.

J Immunol 170, 2759-64 (2003).

96. Rogerson, S.J. et al. Placental monocyte infiltrates in response to Plasmodium falciparum malaria infection and their association with adverse pregnancy outcomes. Am J Trop Med Hyg 68, 115-9 (2003).

97. Rogerson, S.J. et al. Placental tumor necrosis factor alpha but not gamma interferon is associated with placental malaria and low birth weight in Malawian women. Infect Immun 71, 267-70 (2003).

98. Brabin, B.J. et al. The sick placenta-the role of malaria. Placenta 25, 359-78.

(2004).

99. Nosten, F. et al. Effects of Plasmodium vivax malaria in pregnancy. Lancet 354, 546-9 (1999).

100. Facer, C.A. Direct Coombs antiglobulin reactions in Gambian children with Plasmodium falciparum malaria. II. Specificity of erythrocyte-bound IgG.

Clin. Exp. Immunol. 39, 279-288 (1980).

101. Dondorp, A.M. et al. The role of reduced red cell deformability in the pathogenesis of severe falciparum malaria and its restoration by blood transfusion. Trans R Soc Trop Med Hyg 96, 282-6 (2002).

102. Das, B.S. & Nanda, N.K. Evidence for erythrocyte lipid peroxidation in acute falciparum malaria. Trans R Soc Trop Med Hyg 93, 58-62 (1999).

103. Goka, B.Q. et al. Complement binding to erythrocytes is associated with macrophage activation and reduced haemoglobin in Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 95, 545-9 (2001).

104. Biemba, G., Gordeuk, V.R., Thuma, P.E., Mabeza, G.F. & Weiss, G.

Prolonged macrophage activation and persistent anaemia in children with complicated malaria. Trop Med Int Health 3, 60-5 (1998).

105. Biemba, G., Gordeuk, V.R., Thuma, P. & Weiss, G. Markers of inflammation in children with severe malarial anaemia. Trop Med Int Health 5, 256-62 (2000).

106. La Raja, M. Erythrophagocytosis by peripheral monocytes in Plasmodium falciparum malaria. Haematologica 87, EIM14 (2002).

107. Kitchen, S. Malariology, 995-1016 (Saunders, Philadelphia, PA, 1949).

108. Evans, K.J., Hansen, D.S., van Rooijen, N., Buckingham, L.A. & Schofield, L. Severe malarial anemia of low parasite burden in rodent models results from accelerated clearance of uninfected erythrocytes. Blood 107, 1192-9 (2006).

109. Chang, K.H. & Stevenson, M.M. Malarial anaemia: mechanisms and implications of insufficient erythropoiesis during blood-stage malaria. Int J Parasitol 34, 1501-16 (2004).

110. Trager, W., Rudzinska, M.A. & Bradbury, P.C. The fine structure of

Plasmodium falciparum and its host erythrocyte in natural malarial infections in man. Bull. WHO 35, 883-885 (1966).

111. Walter, P.R., Garin, Y. & Blot, P. Placental pathologic changes in malaria. A histologic and ultrastructural study. Am J Pathol 109, 330-42 (1982).

112. Silamut, K. & White, N.J. Relation of the stage of parasite development in the peripheral blood to prognosis in severe falciparum malaria. Trans R Soc Trop Med Hyg 87, 436-43 (1993).

113. Roberts, D.J., Biggs, B.-A., Brown, G. & Newbold, C.I. Protection,

pathogenesis and phenotypic plasticity in Plasmodium falciparum malaria.

Parasitol.Today 9, 281-286 (1993).

114. Langreth, S.G. & Peterson, E. Pathogenicity, stability, and immunogenicity of a knobless clone of Plasmodium falciparum in Colombian owl monkeys.

Infect. Immun. 47, 760-766 (1985).

115. Wahlgren, M. et al. Geographical distribution of Plasmodium falciparum erythrocyte rosetting and frequency of rosetting antibodies in human sera.

Am.J.Trop.Med.Hyg. 43, 333-338 (1990).

116. Udomsangpetch, R. et al. Plasmodium falciparum-infected erythrocytes form spontaneous erythrocyte rosettes. J. Exp. Med. 169, 1835-1840 (1989).

117. Carlson, J. et al. Human cerebral malaria: association with erythrocyte

rosetting and lack of anti-rosetting antibodies. Lancet 336, 1457-1460 (1990).

118. Treutiger, C.J. et al. Rosette formation in Plasmodium falciparum isolates and anti-rosette activity of sera from Gambians with cerebral or

uncomplicated malaria. Am. J. Trop. Med. Hyg. 46, 503-510 (1992).

119. Heddini, A. et al. Fresh isolates from children with severe Plasmodium falciparum malaria bind to multiple receptors. Infect Immun 69, 5849-56.

(2001).

120. Nash, G.B., Cooke, B.M., Carlson, J. & Wahlgren, M. Rheological properties of rosettes formed by red blood cells parasitised by Plasmodium falciparum.

Br. J. Haematol. 82, 757-763 (1992).

121. Kaul, D.K., Roth Jr, E.F., Nagel, R.L., Howard, R.J. & Handunnetti, S.M.

Rosetting of Plasmodium falciparum-infected red cells with uninfected red cells enhances vasoocclusion in an ex vivo microvascular system. Blood 78, 812-819 (1991).

122. Udomsangpetch, R., Brown, A.E., Smith, C.D. & Webster, H.K. Rosette formation by Plasmodium coatneyi-infected red blood cells. Am. J. Trop.

Med. Hyg. 44, 399-401 (1991).

123. Aikawa, M. et al. A primate model for human cerebral malaria: Plasmodium coatneyi-infected rhesus monkeys. Am. J. Trop. Med. Hyg. 46, 391-397 (1992).

124. Scholander, C., Treutiger, C.J., Hultenby, K. & Wahlgren, M. Novel fibrillar structure confers adhesive property to malaria-infected erythrocytes. Nature Med. 2, 204-208 (1996).

125. Roberts, D.J., Pain, A., Kai, O., Kortok, M. & Marsh, K. Autoagglutination of malaria-infected red blood cells and malaria severity. The Lancet 355, 1427-1428 (2000).

126. Pain, A. et al. Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria. Proc Natl Acad Sci U S A 98, 1805-10 (2001).

127. Wahlgren, M. et al. Adhesion of Plasmodium falciparum-infected

erythrocytes to human cells and secretion of cytokines (1-β, 1RA, IL-6,IL-8, IL-10, TGFβ, TNFα, G-CSF, GM-CSF). Scand. J. Immunol. 42, 626-636 (1995).

128. Cooke, B.M., Mohandas, N., Cowman, A.F. & Coppel, R.L. Cellular adhesive phenomena in apicomplexan parasites of red blood cells. Vet Parasitol 132, 273-95 (2005).

129. Urban, B. et al. Plasmodium-falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400, 73-7 (1999).

130. Urban, B.C. & Roberts, D.J. Malaria, monocytes, macrophages and myeloid dendritic cells: sticking of infected erythrocytes switches off host cells. Curr Opin Immunol 14, 458-65 (2002).

131. Gabrielsen, A.A., Jr. & Jensen, J.B. Mitogenic activity of extracts from

continuous cultures of Plasmodium falciparum. Am J Trop Med Hyg 31, 441-8 (1982).

132. Rosenberg, Y.J. Autoimmune and polyclonal B cell responses during murine malaria. Nature 274, 170-2 (1978).

133. Kataaha, P.K., Facer, C.A., Mortazavi-Milani, S.M., Stierle, H. & Holborow, E.J. Stimulation of autoantibody production in normal blood lymphocytes by malaria culture supernatants. Parasite Immunol 6, 481-92 (1984).

134. Curtain, C.C., Kidson, C., Champness, D.L. & Gorman, J.G. Malaria

Antibody Content Of Gamma 2-7s Globulin In Tropical Populations. Nature 203, 1366-7 (1964).

135. Donati, D. et al. Increased B cell survival and preferential activation of the memory compartment by a malaria polyclonal B cell activator. J Immunol 177, 3035-44 (2006).

136. Donati, D. et al. Identification of a polyclonal B-cell activator in Plasmodium falciparum. Infect Immun 72, 5412-8 (2004).

137. Chene, A. et al. A molecular link between malaria and Epstein-Barr virus reactivation. PLoS Pathog 3, e80 (2007).

138. Turner, G. et al. An immunochemical study of the pathology of fatal malaria:

evidence for widespread endothelial activation and a potential role for ICAM-1 in cerebral sequestration. Am.J.Pathol. ICAM-145, ICAM-1057-ICAM-1069 (ICAM-1994).

139. Barnwell, J.W. et al. A human 88-kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes. J. Clin. Invest. 84, 765-772 (1989).

140. Ockenhouse, C.F., Tandon, N.N., Magowan, C., Jamieson, G.A. & Chulay, J.D. Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor. Science 243, 1469-1471 (1989).

141. Hasler, T. et al. In vitro rosetting, cytoadherence, and microagglutination of Plasmodium falciparum-infected erythrocytes from Gambian and Tanzanian patients. Blood 76, 1845-1852 (1990).

142. Ockenhouse, C.F., Klotz, F.W., Tandon, N.N. & Jamieson, G.A. Sequestrin, a CD36 recognition protein on Plasmodium falciparum malaria-infected

erythrocytes identified by anti-idiotype antibodies. Proc. Natl. Acad. Sci. USA 88, 3175-3179 (1991).

143. Newbold, C. et al. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am.J.Trop.Med.Hyg. 57, 389-398 (1997).

144. Cooke, B.M. Rolling and stationary cytoadhesion of red blood cells

parasitized by Plasmodium falciparum: separate roles for ICAM-1, CD36 and thrombospondin. Br. J. Haematol. 87, 162-170 (1994).

145. Rogerson, S. et al. Cytoadherence characteristics of Plasmodium falciparum-infected erythrocytes from Malawian children with severe and uncomplicated malaria. Am J Trop Med Hyg 61, 467-72 (1999).

146. Treutiger, C.J., Heddini, A., Fernandez, V., Muller, W.A. & Wahlgren, M.

PECAM-1/CD31, an endothelial receptor for binding Plasmodium falciparum-infected erythrocytes. Nature Med. 3, 1405-1408 (1997).

147. Romer, L.H., Mclean, N.V., Yan, H.-C., Sun, J. & DeLisser, H.M. IFN-gamma and TNF-alpha induce redistribution of PECAM-1/CD31. J.

Immunology 154, 6582-6592 (1995).

148. Roberts, D.D. et al. Thrombospondin binds falciparum malaria parasitized erythrocytes and may mediate cytoadherence. Nature 318, 64-66 (1985).

149. Berendt, A.R., Simmons, D.L., Tansey, J., Newbold, C.I. & Marsh, K.

Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature 341, 57-59 (1989).

150. Dustin, M.L., Rothlein, R., Bhan, A.K., Dinarello, C.A. & Springer, T.A.

Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule(ICAM-1). J. Immunol. 137, 245-254 (1986).

151. Udeinya, I.J. & Akogyeram, C.O. Induction of adhesiveness in human

endothelial cells by Plasmodium falciparum-infected erythrocytes. Am J Trop Med Hyg 48, 488-95. (1993).

152. Craig, A.G. et al. Failue to block adhesion of Plasmodium falciparum-infected erythrocyte ICAM-1 with soluble ICAM-1. Inf. Immun. 65, 4580-4585 (1997).

153. McCormick, C.J., Craig, A., Roberts, D., Newbold, C.I. & Berendt, A.R.

Intercellular adhesion molecule-1 and CD36 synergise to mediate adherence of Plasmodium falciparum-infected erythrocytes to cultured human

microvascular endothelial cells. J.Clin.Invest. 100, 2521-9 (1997).

154. Fernandez-Reyes, D. et al. A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya.

Hum Mol Genet 6, 1357-60 (1997).

155. Kun, J.F. et al. Association of the ICAM-1Kilifi mutation with protection against severe malaria in Lambarene, Gabon. Am J Trop Med Hyg 61, 776-9 (1999).

156. Vogt, A.M. et al. Heparan sulfate on endothelial cells mediates the binding of Plasmodium falciparum-infected erythrocytes via the DBL1alpha domain of PfEMP1. Blood 101, 2405-11. Epub 2002 Nov 14. (2003).

157. Vogt, A.M., Winter, G., Wahlgren, M. & Spillmann, D. Heparan sulfate identified on human erythrocytes: a P. falciparum receptor. Biochem J 21(2004).

158. Barragan, A., Spillmann, D., Wahlgren, M. & Carlson, J. Plasmodium falciparum: molecular background of strain specific rosette disruption by glycosaminoglycans and sulfated glycoconjugates. Exp. Parasitol., 133-143 (1999).

159. Maccarana, M., Sakura, Y., Tawada, A., Yoshida, K. & Lindahl, U. Domain structure of heparan sulfate from bovine organs. J. Biol. Chem. 271, 17804-17810 (1996).

160. van Kuppevelt, T.H., Dennissen, M.A., van Venrooij, W.J., Hoet, R.M. &

Veerkamp, J.H. Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J Biol Chem 273, 12960-6.

(1998).

161. Ledin, J. et al. Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 29, 29 (2004).

162. Robert, C. et al. Chondroitin-4-sulphate (proteoglycan), a receptor for Plasmodium falciparum-infected erythrocyte adherence on brain microvascular endothelial cells. Res. Immunol. 146, 383-393 (1995).

163. Fried, M. & Duffy, P.E. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science 272, 1502-4. (1996).

164. Beeson, J. et al. Plasmodium falciparum isolates from infected pregnant women and children are associated with distinct adhesive and antigenic properties. J Infect Dis 180, 464-72 (1999).

165. Tuikue Ndam, N.G. et al. Variable adhesion abilities and overlapping

antigenic properties in placental Plasmodium falciparum isolates. J Infect Dis 190, 2001-9 (2004).

166. Achur, R.N., Valiyaveettil, M. & Gowda, D.C. The low sulfated chondroitin sulfate proteoglycans of human placenta have sulfate group-clustered domains that can efficiently bind Plasmodium falciparum-infected erythrocytes. J Biol Chem 278, 11705-13. Epub 2003 Jan 6. (2003).

167. Achur, R.N., Valiyaveettil, M., Alkhalil, A., Ockenhouse, C.F. & Gowda, D.C. Characterization of proteoglycans of human placenta and identification of unique chondroitin sulfate proteoglycans of the intervillous spaces that mediate the adherence of Plasmodium falciparum-infected erythrocytes to the placenta. J Biol Chem 275, 40344-56. (2000).

168. Muthusamy, A. et al. Plasmodium falciparum-infected erythrocytes adhere both in the intervillous space and on the villous surface of human placenta by binding to the low-sulfated chondroitin sulfate proteoglycan receptor. Am J Pathol 164, 2013-25 (2004).

169. Muthusamy, A. et al. Chondroitin sulfate proteoglycan but not hyaluronic acid is the receptor for the adherence of Plasmodium falciparum-infected

Related documents