• No results found

Conclusions and outlook

In document ARTICLE IN PRESS (Page 22-29)

Inconclusion,effortstoachievemorphologicalcontrol overtheconductivenetworksinCPCshaveattracted signif-icantattentionduetothevitalrolethatmorphologyplays inelectricalproperties.Recentandextensiveprogresson severalefficientmethodsforcontrollingthemorphology of conductive networks has beenreviewed. Conductive networksendowCPCswiththeirelectricalproperties.In addition,themajorityoftheresistanceinaparticulartype ofCPCisderivedfromthetunnellingresistancebetween local conductive networks; therefore, tunable electrical properties can beobtainedby adjusting theconductive networks.

Variousdirectandindirectobservationmethodshave beenusedtocharacteriseconductivenetwork morpholo-gies,includingOM,SEM,TEM,andAFM,aswellasRaman spectroscopyand electricalconductivitymeasurements,.

Tofullyutilisethelargeaspectratioofconductivefillers (suchasCNTs orgraphene)and furtherreducethe per-colation threshold of CPCs, various methods have been proposedforcontrollingconductivenetworks,including theuseofpolymerblendsand thermalannealing. Poly-mer blendsallowconductive networkstobeselectively dispersedat oneofthepolymerphasesorinterfacesby

Please cite this article in press as: Deng H, et al. Progress on the morphological control of conductive network carefullycontrollingthethermodynamic(e.g.,controlling

interfacial energy through careful selection of polymer types) and kinetic parameters (e.g., mixing procedures andsequence,blendingtime,shearstrength,etc.)ofthe system.Thermalannealingenablestherepairofcontacts betweenlocal conductivenetworks for CPCscontaining varioustypesofconductivefillers,includingCB,CNT,and carbonnanofibres.Othermethods,suchastheuseofshear force,mixedfillers(hybridfillers),electricalormagnetic fields,orlatex particles,canalsobeusedtocontrolthe morphologyofconductivenetworks.Thesemethodsare effectiveattuningtheconductivenetworkstructure,and thustheelectricalproperties,inacontrolledfashion. More-over, a combination ofdifferentmethods hasalsobeen showntobeefficientatcontrollingnetworkmorphology.

TheelectricalpropertiesofCPCscanbetunedovera relativelywiderangeusingvariousmethods.However,the maximumconductivityobservedintheresultingCPCsis oftenmuch lower thantheintrinsic conductivityofthe conductivefillers.Itisthoughtthatthecontactresistance betweenconductivefillersisresponsibleforthis.The abil-ity toenhance theconductivity of CPCstovalues close to that of the conductive fillers through morphological controlwouldthereforeprovideatremendousadvantage.

However,thistaskremainsachallenge.Moreover,as var-ious morphologicalcontrol methods can confer distinct characteristicstothenetwork(forinstance,shearor elec-tricalfieldscontrolorientation,thermalannealingrepairs local contacts, and polymer blends produce selectively distributednetworks),amoresystematicstudyusing com-binationsofdifferentmorphologicalcontrolmethodscould leadtobettercontrolovertheconductivenetwork struc-ture.Finally, theuseof novelprocessingmethods,such ashighspeedinjectionmoulding[102]orlayer-by-layer assembly,tocontroltheconductivenetworkstructurein CPCsisalsoaninterestingresearchdirection.

Asamaterialwithnumerousapplications,the multi-functionality of CPCshasbeen extensively investigated.

Thesefunctionalitiesincludestrainanddamagesensing, vapour/liquidsensing, andtemperature sensing,aswell aselectroactiveshapememoryproperties,thermoelectric properties,anduseasstretchableconductors.For sensing-basedfunctionalities,effortshavebeenmadetoenhance thesensitivityofCPCsusingvariousmorphologicalcontrol methods.Forstrain/damagesensing,tuningtheresistance betweenlocalconductivenetworkswasreportedtobevital forsensing.Otherstrategies,includingtheuseofmixed fillers,conductivefillerswithdifferentaspectratios,and conductive fillers withdifferent polymercoatings, have been consideredfor the modificationof strain sensitiv-ity.Nevertheless, therange oftunablesensitivityis still relativelysmall,andfundamentalaspects,suchasthe con-ductive networkstructure and interfacialstresstransfer between filler and matrix, need to be re-evaluated for thepreparationofhighperformanceCPCsstrain/damage sensors.In terms oftemperature sensing,thetransition temperaturecanbedeterminedbythemelting temper-ature, the glass transition temperature of the polymer matrix,orthedifferencein thethermal expansion coef-ficient between the polymer and conductive filler. In some cases, a wide range of transition temperatures

canbeobtainedby adjustingthefiller contentor poly-mer blend composition. These materials can be used fortemperature-sensingandcurrent-limitingapplications.

Forvapour/liquid-sensingapplications,thematchbetween polymerandvapourplaysanimportantroleinsensitivity.

AchangeinelectricalpropertiesupontheexposureofCPCs tochemicalsiscausedbymatrixswellinginducedbythe absorptionofvapourorliquid.Thesensitivityand selectiv-ityofthesesensorscanbemodifiedbygraftingfunctional chemicalgroupsorpolymermoleculesontothesurfaceof theconductivefillers.Animprovedunderstandingofthe fundamentalsensingmechanismsandmaterialprocessing couldleadtoarangeofnewapplicationsinleakage detec-tionusingCPC-basedvapour/liquidsensors.

Movingbeyondsensingapplications,variousmethods havealso beenproposedforthefabrication ofCPCsfor useasstretchableconductors.However,thesefabrication methods requirecomplicated and potentially expensive methodsormaterials(suchas1mmlongSWNTs). Recog-nising that the conductive network structure plays an importantroleinthestrain-electricalpropertiesofCPCs, our recent work observed that an interface-mediated method could be used to align the randomly oriented fillerduringstretchingandinducebucklingoftheMWNTs during relaxation. Using this simple approach, the fab-rication of high-performancestretchable conductorsfor arbitrarilyshapedobjectsinlargescaleapplicationscan beachieved.SMPsexhibit a shape-memoryeffect; they canbedeformedandfixedintoatemporaryshape,then recovertheiroriginalshapeinresponsetoexternal stim-uli.Thisstimuluscanbeprovidedbyelectricity-induced heatinginCPC-basedSMPs.Variousshape-memoryCPCs containingdifferentconductivefillershavebeenreported to provide a rapid response as electroactive materials.

The ability of thermoelectric CPCs to transform tem-perature gradients into electricity (and vice versa) has recently attracted tremendous research attention. The useof organicpolymer-based materialsas thermoelec-tricmaterialshastheadvantageofbeinggreener,more flexible,andlowerincostcomparedtoinorganic equiv-alents.Nevertheless,thehighestZTachievedforpolymers isonly0.25,whereastheZTofinorganicmaterialscanbe ashighas2.Someofthecurrentresearchfocusaimsto increase theelectrical conductivityofCPCssignificantly withoutincreasingtheirthermalconductivity.Inthenear future, developing a systematic approach for the selec-tionofappropriateconductivepolymersand conductive nanofillers,withtheaimofachievinghighthermopower andelectricalconductivitywhilemaintainingcontrolover structure,morphologyanddopinglevels,hasthepotential toimprovetheperformanceofcurrentorganic thermoelec-tricmaterials.

Finally,manypotentialapplicationshavebeen demon-strated for electroactive CPC-based materials. However, morphological control over the conductive networks is oftenlackinginthesematerials,eventhoughthe morpho-logicalcontrolofconductivenetworksiscrucialtothefinal electricalpropertiesofCPCs.Futureworkinthisareahas thepotentialtoleadtointerestingandexcitingresults. Fur-thermore,theindustrialuseofthemulti-functionalitiesof CPCsoftenrequiressignalorpropertystabilityandease

Please cite this article in press as: Deng H, et al. Progress on the morphological control of conductive network ofpreparation. Many obstaclesneedto beovercometo

addresstheseissues.

Acknowledgements

We expressour sincere thanksto theNational Nat-ural Science Foundation of China for financial support (51273117,51003063and51121001).Thisworkwas sub-sidizedbythespecialfundsforMajorStateBasicResearch ProjectsofChina(2011CB606006).Thisworkwasalso sup-portedbytheMinistryofEducation(20111568-8-1).The authorsacknowledgetheusewithpermissionoftext pub-lishedinref.[158],Copyright2013byJohnWiley&Sons.

References

[1]ByrneMT,Gun’ko YK.Recentadvancesinresearchoncarbon nanotube-polymercomposites.AdvMater2010;22:1672–88.

[2]ChouTW,GaoLM,ThostensonET,ZhangZ,ByunJH.Anassessment ofthescienceandtechnologyofcarbonnanotube-basedfibersand composites.ComposSciTechnol2010;70:1–19.

[3]SenguptaR,BhattacharyaM,BandyopadhyayS,BhowmickAK.A reviewonthemechanicalandelectricalpropertiesofgraphiteand modifiedgraphitereinforcedpolymercomposites.ProgPolymSci 2011;36:638–70.

[4]WineyKI,KashiwagiT,MuM.Improvingelectricalconductivityand thermalpropertiesofpolymersbytheadditionofcarbonnanotubes asfillers.MRSBull2007;32:348–53.

[5]AhirSV,HuangYY,TerentjevEM.Polymerswithalignedcarbon nanotubes:activecompositematerials.Polymer2008;49:3841–54.

[6]BauhoferW,KovacsJZ.Areviewandanalysisofelectrical percola-tionincarbonnanotubepolymercomposites.ComposSciTechnol 2009;69:1486–98.

[7]Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advancesingraphenebasedpolymercomposites.ProgPolymSci 2010;35:1350–75.

[8]LiC,ThostensonET,ChouTW.Sensorsandactuatorsbasedon car-bonnanotubesandtheircomposites:Areview.ComposSciTechnol 2008;68:1227–49.

[9]Lu X, Zhang W, Wang C, Wen TC, Wei Y. One-dimensional conductingpolymernanocomposites:synthesis,propertiesand applications.ProgPolymSci2011;36:671–712.

[10]MaPC,SiddiquiNA,MaromG,KimJK.Dispersionand functional-izationofcarbonnanotubesforpolymer-basednanocomposites:a review.CompositesPartA2010;41:1345–67.

[11]SahooNG,RanaS,ChoJW,LiL,ChanSH.Polymer nanocompos-itesbasedonfunctionalizedcarbonnanotubes.ProgPolymSci 2010;35:837–67.

[12]SinghV,JoungD,ZhaiL,DasS,KhondakerSI,SealS.Graphene based materials: past, present and future. Prog Mater Sci 2011;56:1178–271.

[13]SpitalskyZ,TasisD,PapagelisK,GaliotisC.Carbon nanotube-polymer composites: chemistry, processing, mechanical and electricalproperties.ProgPolymSci2010;35:357–401.

[14]WangCC, GuoZX,FuSK,Wu W,ZhuDB. Polymers contain-ing fullerene or carbon nanotube structures. Prog Polym Sci 2004;29:1079–141.

[15]AligI,PoetschkeP,LellingerD,SkipaT,PegelS,KasaliwalGR, VillmowT.Establishment,morphologyandpropertiesofcarbon nanotubenetworksinpolymermelts.Polymer2012;53:4–28.

[16]DengH,ZhangR,BilottiE,LoosJ,PeijsT.Conductivepolymer tapecontaininghighlyorientedcarbonnanofillers.JApplPolym Sci2009;113:742–51.

[17]JohnerN,GrimaldiC,MaederT,RyserP.Optimalpercolationof disorderedsegregatedcomposites.PhysRevE2009;79, 020104/1-5.

[18]KovacsJZ,VelagalaBS,SchulteK,BauhoferW.Twopercolation thresholds incarbon nanotubeepoxycomposites.ComposSci Technol2007;67:922–8.

[19]Al-Saleh MH,Sundararaj U. Areview of vapor growncarbon nanofiber/polymerconductivecomposites.Carbon2009;47:2–22.

[20]TibbettsGG,LakeML,StrongKL,RiceBP.Areviewofthe fabri-cationandpropertiesofvapor-growncarbonnanofiber/polymer composites.ComposSciTechnol2007;67:1709–18.

[21]Bautista-QuijanoJR,AvilesF,AguilarJO,TapiaA.Strainsensing capabilitiesof a piezoresistive MWCNT-polysulfone film.Sens ActuatorsA2010;159:135–40.

[22]DangZM,JiangMJ,XieD,YaoSH,ZhangLQ,BaiJ.Supersensitive linearpiezoresistivepropertyincarbonnanotubes/siliconerubber nanocomposites.JApplPhys2008;104,024114/1-6.

[23]GaoLM,ChouTW,ThostensonET,ZhangZ.Acomparativestudy ofdamagesensinginfibercompositesusinguniformlyand non-uniformlydispersedcarbonnanotubes.Carbon2010;48:3788–94.

[24]Hwang J, Jang J, Hong K, Kim KN, Han JH, Shin K, Park CE. Poly(3-hexylthiophene) wrapped carbon nano-tube/poly(dimethylsiloxane)compositesforuseinfinger-sensing piezoresistivepressuresensors.Carbon2011;49:106–10.

[25]LimAS,MelroseZR,ThostensonET,ChouTW.Damagesensing ofadhesively-bondedhybridcomposite/steeljointsusingcarbon nanotubes.ComposSciTechnol2011;71:1183–9.

[26]ZhangR,BaxendaleM,PeijsT.Universalresistivity-strain depend-enceofcarbonnanotube/polymercomposites.PhysRevB2007;76, 195433/1-5.

[27]CastroM,KumarB,FellerJF,HaddiZ,AmariA,BouchikhiB.Novel e-noseforthediscriminationofvolatileorganicbiomarkerswith anarrayofcarbonnanotubes(CNT)conductivepolymer nanocom-posites(CPC)sensors.SensActuatorsB2011;159:213–9.

[28]ChengJG,WangL,HuoJ,YuHJ.Anovel polycaprolactone-grafted-carbonblacknanocomposite-basedsensorfordetectingsolvent vapors.JApplPolymSci2011;121:3277–82.

[29]HandsPJW,LaughlinPJ,BloorD.Metal-polymercompositesensors forvolatile organic compounds: Part 1. Flow-through chemi-resistors.SensActuatorsB2012;162:400–8.

[30]KumarB,ParkYT,CastroM,GrunlanJC,FellerJF.Finecontrolof car-bonnanotubes-polyelectrolytesensorssensitivitybyelectrostatic layerbylayerassembly(eLbL)forthedetectionofvolatileorganic compounds(VOC).Talanta2012;88:396–402.

[31]KonoA,ShimizuK,NakanoH,GotoY,KobayashiY,OugizawaT, HoribeH.Positive-temperature-coefficienteffectofelectrical resis-tivitybelowmeltingpointofpoly(vinylidenefluoride)(PVDF)inNi particle-dispersedPVDFcomposites.Polymer2012;53:1760–4.

[32]ZhangYC,DaiK,PangH,LuoQJ,LiZM,ZhangWQ.Temperature andtimedependenceofelectricalresistivityinananisotropically conductivepolymercompositewithinsituconductivemicrofibrils.

JApplPolymSci2012;124:1808–14.

[33]RogersJA,SomeyaT,HuangY.Materialsandmechanicsfor stretch-ableelectronics.Science2010;327:1603–7.

[34]SekitaniT,NoguchiY,HataK,FukushimaT,AidaT,SomeyaT.A rub-berlikestretchableactivematrixusingelasticconductors.Science 2008;321:1468–72.

[35]SekitaniT,YokotaT,ZschieschangU,KlaukH,BauerS,Takeuchi K,TakamiyaM,SakuraiT,SomeyaT.Organicnonvolatilememory transistorsforflexiblesensorarrays.Science2009;326:1516–9.

[36]ZhuY,XuF.Bucklingofalignedcarbonnanotubesas stretch-able conductors: a new manufacturing strategy. Adv Mater 2012;24:1073–7.

[37]LengJ,LanX,LiuY,DuS.Shape-memorypolymersandtheir composites:Stimulusmethodsandapplications.ProgMaterSci 2011;56:1077–135.

[38]HewittCA,KaiserAB,RothS,CrapsM,CzerwR,CarrollDL. Multi-layeredcarbonnanotube/polymercompositebasedthermoelectric fabrics.NanoLett2012;12:1307–10.

[39]AmbrosettiG,GrimaldiC,BalbergI,MaederT,DananiA,RyserP.

Solutionofthetunneling-percolationprobleminthe nanocompos-iteregime.PhysRevB2010;81,155434/1-13.

[40]GurlandJ.Anestimateofcontactandcontinuityofdispersionsin opaquesamples.TransMetSocAIME1966;212:642–6.

[41]Vionnet-Menot S, Grimaldi C, Maeder T, Strassler S, Ryser P.Tunneling-percolationoriginofnonuniversality:Theoryand experiments.PhysRevB2005;71,064201/1-12.

[42]SichelEK,ShengP,GittlemanJI,BozowskiS.Observationof fluc-tuationmodulation oftunneljunctionsbyappliedacstressin carbonpolyvinylchloridecomposites.PhysRevB1981;24:6131–4.

[43]DengH, BilottiE, Zhang R, LoosJ, Peijs T.Effect of thermal annealingontheelectricalconductivityofhigh-strength bicom-ponentpolymertapescontainingcarbonnanofillers.SynthMet 2010;160:337–44.

[44]Kyrylyuk AV, van der Schoot P. Continuum percolation of carbon nanotubes in polymeric and colloidal media. PNAS 2008;105:8221–6.

[45]BalbergI,AndrersonCH,AlexanderS,WagnerN.Excluded vol-umeand its relationto theonsetof percolation. PhysRevB 1984;30:3933–43.

Please cite this article in press as: Deng H, et al. Progress on the morphological control of conductive network [46]Dalmas F, Dendievel R, Chazeau L, Cavaille JY, Gauthier C.

Carbonnanotube-filledpolymercomposites.Numercialsimulation ofelectricalconductivityinthree-dimensionalentangledfibrous networks.ActaMater2006;54:2923–31.

[47]HuangYY,AhirSV,TerentjevEM.Dispersionrheologyofcarbon nanotubesinapolymermatrix.PhysRevB2006;73,125422/1-9.

[48]VillmowT,KretzschmarB,PotschkeP.Influenceofscrew configura-tion,residencetime,andspecificmechanicalenergyintwin-screw extrusionofpolycaprolactone/multi-walledcarbonnanotube com-posites.ComposSciTechnol2010;70:2045–55.

[49]DengH,Bilotti E,ZhangR, PeijsT.Effectivereinforcementof carbon nanotubesinpolypropylenematrices.JApplPolymSci 2010;118:30–41.

[50]Pan YZ, Li L, Chan SH, Zhao JH.Correlation between disper-sion state andelectricalconductivity ofMWCNTs/PP compos-ites prepared by melt blending. Composites Part A2010;41:

419–26.

[51]GorrasiG,BredeauS,DiCandiaC,PatimoG,DePasqualeS,Dubois P.Electroconductivepolyamide6/MWNTnanocomposites:effect ofnanotubesurface-coatingbyinsitucatalyzedpolymerization.

MacromolMaterEng2011;296:408–13.

[52]Khare RA, Bhattacharyya AR, Kulkarni AR. Melt-mixed polypropylene/acrylonitrile-butadiene-styrene blends with multiwallcarbonnanotubes:effectofcompatibilizerandmodifier on morphology and electricalconductivity. J Appl Polym Sci 2011;120:2663–72.

[53]EzatGS,KellyAL,MitchellSC,YouseffiM,CoatesPD.Effectofmaleic anhydridegraftedpolypropylenecompatibilizeronthe morphol-ogyandpropertiesofpolypropylene/multiwalledcarbonnanotube composite.PolymCompos2012;33:1376–86.

[54]Cheng HKF, Pan Y, Sahoo NG, Chong K, Li L, Chan SH, Zhao JH. Improvement in properties of multiwalled carbon nanotube/polypropylenenanocompositesthroughhomogeneous dispersion with the aid of surfactants. J Appl Polym Sci 2012;124:1117–27.

[55]WangJP,XuYL,ZhuJ,RenPG.Electrochemicalinsitu polymeriza-tionofreducedgrapheneoxide/polypyrrolecompositewithhigh powerdensity.JPowerSources2012;208:138–43.

[56]Wu F, LuY, Shao G, ZengF, Wu Q. Preparationof polyacry-lonitrile/graphene oxide by in situ polymerization. Polym Int 2012;61:1394–9.

[57]YeYS,ChenYN,WangJS,RickJ,HuangYJ,ChangFC,HwangBJ.

Versatilegraftingapproachestofunctionalizingindividually dis-persedgraphenenanosheetsusingRAFTPolymerizationandClick Chemistry.ChemMater2012;24:2987–97.

[58]Wang XW, ZhangCA, WangPL, Zhao J, ZhangW,Ji JH,Hua K,ZhouJ,YangXB,LiXP.Enhancedperformanceof biodegrad-ablepoly(butylenesuccinate)/grapheneoxidenanocompositesvia insitupolymerization.Langmuir2012;28:7091–5.

[59]Nayak S, Bhattacharjee S,Singh BP. Preparation of transpar-ent andconductingcarbon nanotube/N-hydroxymethyl acryla-mide compositethin filmsby in situ polymerization. Carbon 2012;50:4269–76.

[60]Liu K, Chen L, Chen Y, Wu J, Zhang W, Chen F, Fu Q.

Preparationofpolyester/reducedgrapheneoxidecompositesviain situmeltpolycondensationandsimultaneousthermo-reductionof grapheneoxide.JMaterChem2011;21:8612–7.

[61]ElSawiI, OlivierPA,DemontP,BougheraraH.Processingand electrical characterization of a unidirectional CFRPcomposite filledwithdoublewalledcarbonnanotubes.ComposSciTechnol 2012;73:19–26.

[62]CombessisA,BayonL,FlandinL.Effectoffillerauto-assemblyon percolationtransitionincarbonnanotube/polymercomposites.

ApplPhysLett2013;102,011907/1-4.

[63]ThostensonET,ChouTW.Real-timeinsitusensingofdamage evolutioninadvancedfibercompositesusingcarbonnanotube networks.Nanotechnology2008;19,215713/1-6.

[64]ThostensonET,ChouTW.Carbonnanotubenetworks:sensingof distributedstrainanddamageforlifepredictionandselfhealing.

AdvMater2006;18:2837–41.

[65]SouierT,SantosS,AlGhaferiA,StefancichM,ChiesaM.Enhanced electricalpropertiesofverticallyalignedcarbonnanotube-epoxy nanocompositeswithhighpackingdensity.NanoscaleResLett 2012;7:1–8.

[66]BokobzaL.Someissuesinrubbernanocomposites:new opportu-nitiesforsiliconematerials.Silicon2009;1:141–5.

[67]Bloor D,GrahamA,WilliamsEJ,Laughlin PJ,LusseyD. Metal-polymer composite with nanostructured filler particles and amplifiedphysicalproperties.ApplPhysLett2006;88,102103/1-3.

[68]Bloor D, Donnelly K, Hands PJ, Laughlin P, Lussey D. A metal-polymer composite with unusual properties. J Phys D 2005;38:2851–60.

[69]ChangL,FriedrichK,YeL,ToroP.Evaluationandvisualizationofthe percolatingnetworksinmulti-wallcarbonnanotube/epoxy com-posites.JMaterSci2009;44:4003–12.

[70]KovacsJZ,AndresenK,PaulsJR,GarciaCP,SchossigM,Schulte K,BauhoferW.Analyzingthequalityofcarbon nanotube dis-persionsinpolymersusingscanningelectronmicroscopy.Carbon 2007;45:1279–88.

[71]LiW,BuschhornST,SchulteK,BauhoferW.Theimaging mech-anism,imagingdepth,andparametersinfluencingthevisibility ofcarbonnanotubesinapolymermatrixusinganSEM.Carbon 2011;49:1955–64.

[72]LiWJ,BauhoferW.ImagingofCNTsinapolymermatrixatlow acceleratingvoltagesusingaSEM.Carbon2011;49:3891–8.

[73]DengH,SkipaT,BilottiE,ZhangR,LellingerD,MezzoL,FuQ,AligI, PeijsT.Preparationofhigh-performanceconductivepolymerfibers throughmorphologicalcontrolofnetworksformedbynanofillers.

AdvFunctMater2010;20:1424–32.

[74]DengH,ZhangR,ReynoldsCT,BilottiE,PeijsT.Anovelconceptfor highlyorientedcarbonnanotubecompositetapesorfibreswith highstrengthandelectricalconductivity.MacromolMater Eng 2009;294:749–55.

[75]LoosJ,SourtyE,LuK,deWithG,vBavelS.Imagingpolymer sys-temswithhigh-angleannulardarkfieldscanningtransmission electronmicroscopy (HAADF-STEM).Macromolecules 2009;42:

2581–6.

[76]AligI,SkipaT,EngelM,LellingerD,PegelS,PotschkeP. Electri-calconductivityrecoveryincarbonnanotubepolymercomposites aftertransientshear.PhysStatusSolidiB2007;244:4223–6.

[77]Pegel S, Poetschke P, PetzoldG, AligI, DudkinSM, Lellinger D. Dispersion, agglomeration,and networkformation of mul-tiwalled carbon nanotubes in polycarbonate melts. Polymer 2008;49:974–84.

[78]DesbiefS,HergueN,DouheretO,SurinM,DuboisP,GeertsY, Lazzaroni R, Leclere P. Nanoscaleinvestigationof the electri-calpropertiesinsemiconductorpolymer-carbonnanotubehybrid materials.Nanoscale2012;4:2705–12.

[79]AlekseevA,ChenD,TkalyaEE,GhislandiMG,SyurikY,AgeevO, LoosJ,deWithG.Localorganizationofgraphenenetworkinside graphene/polymercomposites.AdvFunctMater2012;22:1311–8.

[80]LoosJ,AlexeevA,GrossiordN,KoningCE,RegevO.Visualization ofsingle-wallcarbonnanotube(SWNT)networksinconductive polystyrenenanocompositesbychargecontrastimaging. Ultrami-croscopy2005;104:160–7.

[81]Chung KT, Reisner JH, Campbell ER. Charging phenomena in thescanningelectronmicroscopyofconductor–insulator

[81]Chung KT, Reisner JH, Campbell ER. Charging phenomena in thescanningelectronmicroscopyofconductor–insulator

In document ARTICLE IN PRESS (Page 22-29)

Related documents