• No results found

Diskussion

In document Selektiv lasersmältning (Page 41-44)

Denna rapport fokuserade främst på den tekniska aspekten av SLM men de ekonomiska och ekologiska aspekterna bör ej överses när diskussionen handlar om adoptionen av teknologin i industrier. Den tekniska aspekten betonades dock i detta arbete för att den tänkta måldemografin för denna rapport är läsare som redan är bekanta, och jobbar, med AM/SLM och därmed redan känner till de ekonomiska och ekologiska fördelarna som teknologin erbjuder. Därmed ansåg författaren av detta arbete att tekniken bör ligga i fokus då de största utmaningarna och utvecklingarna inom SLM ligger just där.

Förslag till fortsatt arbete är vidare undersökning i standardiseringsprocessen och insatser från organisationer som ASTM och ISO. Då hur tidigt och omfattat SLM standardiseras, kommer att påverka hur snabbt och brett teknologin kan adopteras i industrin. Vidare undersökning i hårdvarans utveckling är även intressant, specifikt gällande användningen av sensorer och höghastighetskameror för att analysera smältpölar och ge återkoppling till kontrollsystemet för att justera parametrar i realtid under processens gång.

I

Referenser

Aboulkhair, N.T. et al., 2014. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing, 1-4(C), pp.77–86. (hämtad: 02/05/2020)

Agarwala, M. et al., 1995. Direct selective laser sintering of metals. Rapid Prototyping

Journal, 1(1), pp.26–36. (hämtad: 24/03/2020)

Ahmad, N., 2019. 3D Printing Technology in Nanomedicine., pp.1–22 (hämtad: 27/05/2020)

Attar, H. et al., 2014. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Materials Science & Engineering A, 593, pp.170–177. (hämtad: 20/04/2020)

Bremen, S., Meiners, W. & Diatlov, A., 2012. Selective Laser Melting: A manufacturing technology for the future? Laser Technik Journal, 9(2), pp.33–38. (hämtad: 26/03/2020)

Carluccio, D. et al., 2019. Comparative Study of Pure Iron Manufactured by Selective Laser Melting, Laser Metal Deposition, and Casting Processes. Advanced Engineering Materials, 21(7), p.n/a. (hämtad: 21/04/2020)

Childs, T.H.C., Hauser, C. & Badrossamay, M., 2005. Selective laser sintering (melting) of stainless and tool steel powders: Experiments and modelling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(4), pp.339–357. (hämtad: 30/04/2020)

Colopi, M. et al., 2019. Limits and solutions in processing pure Cu via selective laser melting using a high-power single-mode fiber laser. The International Journal of Advanced Manufacturing Technology, 104(5-8), pp.2473–2486. (hämtad: 26/04/2020)

Das, S., 2003. Physical Aspects of Process Control in Selective Laser Sintering of Metals. Advanced Engineering Materials, 5(10), pp.701–711. (hämtad: 29/04/2020) Dinda, G.P. et al., 2009. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability. Materials Science & Engineering A, 509(1-2), pp.98–104. (hämtad: 03/05/2020)

Ekzo. 2019. SLM500HL. 3dprintekzo.be. (hämtad: 13/05/2020)

Fortunato et al., 2019. Additive Manufacturing of WC-Co Cutting Tools for Gear Production. Lasers in Manufacturing and Materials Processing, 6(3), pp.247–262. (hämtad: 05/05/2020)

Fousová, M. et al, 2015. 3D printing as an alternative to casting, forging, and machining technologies? 15. 809-814. (hämtad: 27/05/2020)

Frazier, W.E., 2014. Metal Additive Manufacturing: A Review. J. of Materi Eng and

II

Gasser, A. et al., 2010. Laser Additive Manufacturing. Laser Technik Journal, 7(2), pp.58–63. (hämtad: 26/05/2020)

German, R., Suri, M. & Park, P., 2009. Review: liquid phase sintering. Journal of Materials Science, 44(1), pp.1–39. (hämtad: 24/03/2020)

Goodridge, R. & Ziegelmeier, S., 2017. Powder bed fusion of polymers. In Laser

Additive Manufacturing: Materials, Design, Technologies, and Applications. Elsevier

Inc., pp. 181–204.

Gokuldoss, P.K., Kolla, S. & Eckert, J., 2017. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder JettingSelection Guidelines. Materials, 10(6), pp.Materials, 2017 Jun, Vol.10(6). (hämtad: 26/05/2020)

Gu, D., 2015. Laser Additive Manufacturing of High-Performance Materials 1st ed. 2015. (hämtad: 23/03/2020)

Gu, D. & Shen, Y., 2009. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. (Report). Materials and

Design, 30(8), pp.2903–2910 (hämtad: 25/03/2020)

Kruth, J.P. et al., 2003. New Ferro Powder for Selective Laser Sintering of Dense Parts. CIRP Annals - Manufacturing Technology, 52(1), pp.139–142. (hämtad: 24/03/2020)

Lejček, P. et al., 2019. Selective laser melting of pure iron: Multiscale characterization of hierarchical microstructure. Materials Characterization, 154, pp.222–232. (hämtad: 21/04/2020)

Loginov, Y. et al., 2018. Effect of SLM parameters on the structure and properties of CP-Ti. AIP Conference Proceedings, 2053(1), pp.Mechanics, Resource And Diagnostics Of Materials And Structures (Mrdms-2018): Proceedings of the 12th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures, Ekaterinburg, Russia (21–25 May 2018) (hämtad: 26/03/2020)

Löffler, K., 2013. 4 - Developments in disk laser welding. In Handbook of laser welding technologies. Elsevier Ltd, pp. 73–102. (hämtad: 29/05/2020)

Mostafaei, A. et al., 2018. Binder jetting of a complex-shaped metal partial denture framework. Additive Manufacturing, 21, pp.63–68. (hämtad: 29/05/2020)

Murr, L.E. & Gaytan, S.M., 2014. 10.06 - Electron Beam Melting. In Comprehensive Materials Processing. Elsevier Ltd, pp. 135–161. (hämtad: 26/05/2020)

Olakanmi, E.O., 2013. Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties. Journal of

Materials Processing Tech, 213(8), pp.1387–1405. (hämtad: 23/03/2020)

Olakanmi, E.O. et al., 2015. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Progress in Materials Science, 74(C), pp.401–477. (hämtad: 30/04/2020)

Paul, C. et al., 2007. Investigating laser rapid manufacturing for Inconel-625 components. Optics and Laser Technology, 39(4), pp.800–805. (hämtad: 02/05/2020)

III

Poprawe, R. et al., 2015. SLM Production Systems: Recent Developments in Process Development, Machine Concepts and Component Design. (Hämtad: 08/05/2020) Previtali, B. et al., 2017. Comparitive costs of additive manufacturing vs. Machining: The case study of the production of forming dies for tube bending. Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium. Pp. 2816 – 2834. (hämtad: 27/05/2020)

Shah, F.A. et al., 2016. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants — Is one truly better than the other? Materials Science & Engineering C, 62, pp.960–966. (hämtad: 20/04/2020)

Sidambe, A., 2014. Biocompatibility of Advanced Manufactured Titanium Implants-A Review. Materials, 7(12), pp.8168–8188. (hämtad: 29/05/2020)

Song, B. et al., 2015. Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review. Frontiers of Mechanical Engineering, 10(2), pp.111–125. (hämtad: 27/05/2020) Srivatsan, T., Sudarshan, T., 2016. Additive Manufacturing. Boca Raton: CRC Press, 1st ed. (hämtad: 12/05/2020)

Sun, Z. et al., 2016. Selective laser melting of stainless steel 316L with low porosity and high build rates. Materials & Design, 104(C), pp.197–204. (hämtad: 23/03/2020) Tan, C. et al., 2018. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties. Science and Technology of Advanced Materials, 19(1), pp.370–380. (hämtad: 26/04/2020)

Xu, X. et al., 2015. Energy consumption model of Binder-jetting additive manufacturing processes. International Journal of Production Research, 53(23), pp.7005–7015. (hämtad: 26/05/2020)

Zhang, S. et al., 2019. Microstructure and properties of high strength and high conductivity Cu-Cr alloy components fabricated by high power selective laser melting. Materials Letters, 237, pp.306–309. (hämtad: 04/05/2020)

Ziaee, M. & Crane, N.B., 2019. Binder jetting: A review of process, materials, and methods. Additive Manufacturing, 28, pp.781–801. (hämtad: 26/05/2020)

In document Selektiv lasersmältning (Page 41-44)

Related documents