• No results found

Framtida utvecklingsmöjligheter

5 Slutsats

5.1 Framtida utvecklingsmöjligheter

Precis som koldioxidhalten i luften kan avläsas i ett rum i realtid, skulle det teoretiskt kunna avläsas smittrisk för flertalet olika sjukdomar (olika quanta) i ett rum. Idén bygger på att partikelmätare installeras vid frånluft, tilluft och vistelsezon i syfte att generera värden för ventilationsindex. Någon typ av ljudindikator för att uppskatta aktivitet, och personräknare. Luftflöden, filters avskiljningsförmåga samt rumsvolym är konstant indata som förprogrammeras.

En brist med detta skulle kunna vara att denna apparat kan inte veta ifall någon/några befinner sig i presymptomatiskt tillstånd. Alltså får den basera sig på daglig uppdaterad statistik om hur många nya fall som registrerats i aktuell region. Med antal fall borde grov uppskattning kunna göras av hur stor del av befolkningen som befinner sig i presymptomatiskt tillstånd.

40

41

Referenser

Tajouri, L (2020) What is a virus? How do they spread? How do they make us sick?

The Conversation, 13 mars. https://theconversation.com/what-is-a-virus-how-do-they-spread-how-do-they-make-us-sick-133437

Bhagat, R., Wykes, D., Dalziel, S. & Linden, P. (2020) Effects of ventilation on the indoor spread of COVID-19. Cambridge University Press, Journal of Fluid Mechanics, Volume 903.

Doi: https://doi.org/10.1017/jfm.2020.720

Wang, J., Du, G. (2020) Covid-19 may transmit through aerosol. Irish Journal of Medical Science 189, 1143-1144.

Doi: https://doi.org/10.1007/s11845-020-02218-2

World Health Organization (WHO) (2020). Modes of transmission of virus COVID-19:

Implications for IPS precaution recommendation.

Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations (who.int) [2021-04-05]

World Health Organization (WHO) (2020). Transmission of SARS-Cov-2: Implications for infection prevention precautions. Transmission of SARS-CoV-2: implications for infection prevention precautions (who.int) [2021-04-05]

Viruseptin (u.å). Hur smittar virus? https://viruseptin.se/smittar-virus/ [2021-04-05]

Folkhälsomyndigheten (FHM) (2020). Smittspridning.

https://www.folkhalsomyndigheten.se/smittskydd-beredskap/utbrott/aktuella-utbrott/covid-19/om-sjukdomen-och-smittspridning/smittspridning/ [2021-04-05]

Qian, H., Miao, T., Liu, L., Zheng, X., Luo, D. & Li, Y. (2020) Indoor transmission of SARS-CoV-2. MedRxiv, the preprint server for health sciences.

Doi: https://doi.org/10.1101/2020.04.04.20053058

Warfvinge, C. & Dahlblom, M. (2010) Projektering av VVS-installationer. 1:12 uppl., Lund: Studentlitteratur.

Gammaitoni, L. & Nucci, MC. (1997). Using a Mathematical Model to Evaluate the Efficacy of TB Control Measures. Emerging Infectious Diseases. 1997;3(3):335–342 Doi: 10.3201/eid0303.970310

42

Industritorget (2018) Fråga experten: Hur kontrollerar man luftkvalitet med hjälp av koldioxidmätning?

https://www.industritorget.se/nyheter/fr%C3%A5ga+experten%3A+hur+kontrollerar+

man+luftkvalitet+med+hj%C3%A4lp+av+koldioxidm%C3%A4tning%3F/22424/#mo bileAnchor [2020-05-10]

Milton, D. (2020). A Rosetta Stone for Understanding Infectious Drops and Aerosols, Journal of the Pediatric Infectious Diseases Society, Volume 9, Issue 4, ss. 413-415.

Doi: https://doi.org/10.1093/jpids/piaa079

Federation of European Heating, Ventilation and Air Conditioning Associations (REHVA) (2020). How to operate and use building services in order to prevent the spread of the coronavirus disease (COVID-19) virus (SARS-COV-s) in workplaces.

(2020:3). REHVA_COVID-19_guidance_document_ver2_20200403_1.pdf

Nissen, K., Krambrich, J., Akaberi, D. Hoffman, T., Ling, J., Lundkvist, Å., Svensson, L. & Salaneck, E. (2020). Long-distance airborne dispersal of SARS-CoV.2 in COVID-19 wards. Sci Rep 10, COVID-19589.

Doi: https://doi.org/10.1038/s41598-020-76442-2

Duguid, J. (1946). The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. Epidemiology and Infection, 44(6), 471-479.

Doi: 10.1017/S0022172400019288

Thompson, H., Mousa, A., Dighe, A., Fu, H., Arnedopena, A., Barrett, P., Bellido-Blasco, J., Bi, Q., Caputi, A., Chaw, L., De Maria, L., Hoffmann, M., Mahapure, K., Ng, K., Raghuram, J., Singh, G., Soman, B., Soriano, V., Valent, F., Vimercati, L., Wee, L., Wong, J., Ghani, A. & Ferguson, N. (2021) Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Setting-specific Transmission Rates: A Systematic Review and Meta-analysis. Clinical Infectious Diseases, ciab 100.

Doi: https://doi.org/10.1093/cid/ciab100

Tang, J., Li, Y., Eames, I., Chan, P. K. & Ridgway, G. L. (2006). Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises.

The Journal of hospital infection, 64(2), 100–114.

Doi: https://doi.org/10.1016/j.jhin.2006.05.022

Klepeis, N., Nelson, W., Ott, W., Robinson, J., Tsang, A., Switzer, P., Behar, J., Hern, S. & Engelmann, W. (2001). The National Human Activity Pattern Survay (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Ezposure Analysis and Environmental Epidemiology, 11, ss. 231-252. 7500165a 231.252 (nature.com)

43

Boverkets Författningssamling (1998). Boverkets föreskrifter om ändring i verkets byggregler (föreskrifter och allmänna råd).

https://www.boverket.se/contentassets/3108c5069a60495380949c906e9c6f0b/bbr-7-ovk.pdf

Beggs, C., Shepherd, S. & Kerr, K. (2010). Potential for airborne transmission of infection in the waiting areas of healthcare premises: stochastic analysis using a Monte Carlo model. BMC infectious diseases, 10, 247.

Doi: 10.1186/1471-2334-10-247

Buonanno, G., Morawska, L. & Stabile, L. (2020). Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications. Environmental International, volume 145.

Doi: https://doi.org/10.1016/j.envint.2020.106112

Lodish, H., Berk, A., Zipursky, L., Matsudaira, P., Baltimore, D. & Darnell, J. (2000) Molecular Cell Biology, section 6.3, Viruses: Structure, Function, and Uses. New York: W. H. Freeman.

https://www.ncbi.nlm.nih.gov/books/NBK21523/

Knight, V. (1980). Viruses as agents of airborne contagion. Volume 353, Issue 1, Airborne Contagion. ss. 147-156.

Doi: https://doi.org/10.1111/j.1749-6632.1980.tb18917.x

Yi Y. Zuo, William E. Uspal, & Tao Wei. (2020) Airborne Transmission of COVID-19: Aerosol Dispersion, Lung Deposition, and Virus-Receptor Interactions, ACS Nano Doi: https://doi.org/10.1021/acsnano.0c08484

Madas, G., Füri, P., Farkas, Á., Nagy, A., Czitrovszky, A., Balásházy, I., Schay, G. &

Horváth, A. (2020). Deposition distribution of the new coronavirus (SARS-CoV-2) in the human airways upon exposure to cough-generated droplets and aerosol particles.

Scientific Reports 10.

Doi: https://doi.org/10.1038/s41598-020-79985-6

Buonanno, G., Morawska, L. & Stabile, L. (2020). Estimation of airborne viral emission:

Quanta emission rate of SARS-CoV-2 for infection risk assessment, Environment International, Volume 141.

Doi: https://doi.org/10.1016/j.envint.2020.105794

van Doremalen, N., Bushmaker, T. & Morris, D. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. The New England Journal of Medicine.

Doi: https://www.nejm.org/doi/10.1056/NEJMc2004973

44

Chatoutsidou, S. & Lazaridis, M. (2019). Assessment of the impact of particulate dry deposition on soiling of indoor cultural heritage objects found in churches and museums/libraries. Journal of Cultural Heritage, Volume 39, ss. 221-228.

Doi: https://doi.org/10.1016/j.culher.2019.02.017.

Erlandsson, A. & Glyré, CJ. (2014). Ventilationseffektivitet i kontorsmiljö. Lund:

Lunds Tekniska Högskola. sida 61.

https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=7856632&fileOId

=8961848

Shi, B. (2012). Removal of ultrafine particles by intermediate air filters in ventilation systems. Evaluation of performance and analysis of applications, s.100. Institutionen för Energi & Miljö, Avdelningen för Installationsteknik, Chalmers Tekniska Högskola, Göteborg. ISBN/ISSN: 978-91- 7385-782-6

https://publications.lib.chalmers.se/records/fulltext/165538/165538.pdf

IV Produkt (u.å). Vad innebär den nya filterstandarden ISO 16890?

https://www.ivprodukt.se/kunskap/filterstandard-iso-16890 [2021-05-17]

Airson Clean Air Technology AB (2018). Produktdatablad AS, s.2–3

https://6ca1672e-60f9-426e-aca3-bee6cdb10621.filesusr.com/ugd/12af48_66ca5df35b0445bc956352ef61581a5d.pdf [2021-05-20]

Arbetsmiljöverket (2009). Arbetsplatsens utformning, Ventilation.

https://www.av.se/globalassets/filer/publikationer/foreskrifter/arbetsplatsens-utformning-foreskrifter-afs2009-2.pdf

Boverket (2020). Avsnitt 6:251 Boverkets byggregler (2011:6) – föreskrifter och allmänna råd

Konsoliderad version av Boverkets byggregler (2011:6) – föreskrifter och allmänna råd Boverket (2008). Avsnitt 6:2522 Boverkets föreskrifter om ändring i verkets byggregler (1993:57) – föreskrifter och allmänna råd

https://www.boverket.se/contentassets/3108c5069a60495380949c906e9c6f0b/bbr-15-ovk.pdf

Asadi, S., Bouvier, N., Wexler, A & Ristenpart, W. (2020) The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles?, Aerosol Science and Technology, 54:6, 635-638

Doi: 10.1080/02786826.2020.1749229

45

Bilagor

46

Bilaga A

47

48

49

50

51

52

53

54

55

56

57

58

59

Bilaga B

60

61

Bilaga C

62

Related documents