• No results found

Genetiska och molekylära studier av ärftliga hudsjukdomar

Huden är en motståndskraftig vävnad som skyddar kroppen mot fysiska ska-dor och vattenförlust. Cellerna i huden är specialinriktade mot att bygga upp fetter och proteiner som i hudens yttersta del bildar ett skyddande lager. Det är fortfarande till stora delar okänt vilka signaler i cellerna som styr denna bildning och vilka faktorer som behövs för tillverkning och nedbrytning av de nödvändiga byggstenarna.

För att få en ökad förståelse av hudens fysiologi kan man studera de gener som är muterade i ärftliga hudsjukdomar och kartlägga effekterna av muta-tionerna. I det här avhandlingsarbetet har två ovanliga hudsjukdomar stude-rats. Den första sjukdomen, iktyos, kännetecknas av ökad fjällning av huden samt rodnad hud. Den ökade fjällningen tros bero på att huden försöker kompensera en brist i barriären som skyddar mot vattenförlust genom att öka produktionen av celler. Den andra sjukdomen, kallad KLICK, uppvisar ock-så fjällning, men även hudförtjockningar i ett karaktäristiskt mönster. I det här projektet användes en genetisk metod som baseras på att jämföra varia-tioner i arvsmassan mellan flera patienter för att hitta den gen som är mute-rad i respektive sjukdom. I arbetet runt sjukdomen iktyos identifiemute-rades hos patienterna mutationer i Iktyin-genen, i vilken man tidigare hittat mutationer i iktyospatienter. Det som är nytt i den här studien är att mutationer i Iktyin kunde kopplas till specifika förändringar i hudens struktur, vilka identifiera-des med elektronmikroskopi. Vidare framkom det att uttrycket av iktyin-genen ökar när hudens celler mognar, vilket tyder på att Iktyin har en viktig funktion för bildningen av hudens yttersta lager. Analys av huden med elek-tronmikroskopi visade att proteinet som iktyin-genen kodar för befinner sig vid keratinfilament i cellerna och vid molekyler i cellmembranet som fäster mot närliggande celler och alltså utövar sin funktion därifrån. Iktyinets roll i huden är okänd, men dessa fynd ger ytterligare ledtrådar till dess funktion.

I den andra sjukdomen, KLICK, hittades hos patienterna en mutation i närheten av POMP-genen. POMP är nödvändigt för att cellens sopstation, proteasomen, ska kunna bildas i alla kroppen celler. Analyserna i det här arbetet visar att mutationen leder till att POMP-genen översätts till ett delvis förändrat mRNA. mRNA är den molekyl som sedan översätts till det funk-tionella proteinet, men i det här fallet tyder resultaten på att mängden protein

från POMP-mRNA minskar i mogna hudceller. Detta leder i sin tur till att inte tillräckligt med proteasomer kan tillverkas, vilket gör att proteiner inte bryts ner som de ska i huden. Det här tros störa cellernas utmognad, bland annat genom att molekyler som inte har brutits ner korrekt ansamlas och stör cellens funktioner.

Dessa studier har identifierat genetiska förändringar kopplade till två ärft-liga hudsjukdomar, samt även bidragit till ökad förståelse av hudens fysiolo-gi. Att hitta de specifika avvikelserna i sjukdomar är viktigt för att kunna utveckla diagnostik och behandling av patienter. Resultaten från de här stu-dierna kan användas för att arbeta vidare mot detta mål.

Acknowledgements

This work was carried out at the Department of Immunology, Genetics and Pathology at Uppsala University. I wish to express my gratitude to everyone who has contributed to the work leading to this thesis. In particular, I would like to acknowledge:

The patients and their families for their participation in these studies, along with our collaborators throughout Europe that have contributed in various ways.

Niklas Dahl, my supervisor, for introducing me to genetics and basic re-search. Thank you for your solid confidence in me and my ideas (including wild plans about going abroad) and for your ever-lasting optimism about new results and prospects.

Anders Vahlquist, my co-supervisor, for a good collaboration and for bring-ing clinical input to this work. I truly appreciate our discussions to which you have always brought encouragement and enthusiasm.

Present and former members of the Dahl group: Lena, Ed, Maria T, Malin, Larry, Miriam, Jitendra, Anne-Sophie, Hanna, Joakim, Jens, Maria S, Alire-za, Chikari, Jimmy, Doroteya and all the other great students that have come and gone over the years. Thank you all for your generosity, for your support in situations when weeks (months?) of work go down the drain and, most of all, for all the great fun!

Medhi, Ola, Madhu, Maja, Sara and Marie-Louise of the Wadelius and the Bondeson/Annerén groups. I have enjoyed our scientific discussions as well as our relaxed chats over “Friday fikas”.

All other Rudbeckian friends!

Inger Pihl-Lundin, Hans Törmä and Hao Li at the Dep. of Medical Sciences, for contributing with substantial work and discussions to the studies leading to this thesis. I have really enjoyed working with you and I deeply appreciate our collaboration.

Brian Ellis for linguistic help and, above all, for long and lasting friendship.

My old buddies from Umeå and my friends from Medical School for uncon-ditional support in the ups and downs of life.

Åke, Solbritt and Matilda for life-long encouragement and inspiration. Jo-han, Karin, Ulf, Sofia and Ebba for enthusiasm and interest in the seemingly incomprehensible work that I have carried out during the past years.

Oskar, for end-less support, patience and encouragement. You have dried my tears in times of despair, calmed my temper in times of frustration and laughed with me in times of success; you are unreplaceable .

This work was supported by the Swedish Research Council, T. and R.

Söderberg’s fund, E. Welander foundation, Astra Zeneca, Network for Ich-thyoses and Related Keratinisation Disorders (German Ministry of Educa-tion and Research), Science for Life Laboratory, Uppsala University and Uppsala University Hospital.

References

1. Gregor, M. (1865). Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereins Brünn 4, 3-47.

2. Watson, J.D., and Crick, F.H. (1953). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737-738.

3. Rando, O.J. (2007). Chromatin structure in the genomics era. Trends Genet 23, 67-73.

4. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860-921.

5. Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al. (2001). The sequence of the human genome. Science 291, 1304-1351.

6. International_Human_Genome_Sequencing_Consortium. (2004). Finishing the euchromatic sequence of the human genome. Nature 431, 931-945.

7. Claverie, J.M. (2005). Fewer genes, more noncoding RNA. Science 309, 1529-1530.

8. Bertone, P., Stolc, V., Royce, T.E., Rozowsky, J.S., Urban, A.E., Zhu, X., Rinn, J.L., Tongprasit, W., Samanta, M., Weissman, S., et al. (2004). Global identification of human transcribed sequences with genome tiling arrays.

Science 306, 2242-2246.

9. Birney, E., Stamatoyannopoulos, J.A., Dutta, A., Guigo, R., Gingeras, T.R., Margulies, E.H., Weng, Z., Snyder, M., Dermitzakis, E.T., Thurman, R.E., et al.

(2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799-816.

10. Mattick, J.S., Taft, R.J., and Faulkner, G.J. (2010). A global view of genomic information--moving beyond the gene and the master regulator. Trends Genet 26, 21-28.

11. Frith, M.C., Pheasant, M., and Mattick, J.S. (2005). The amazing complexity of the human transcriptome. Eur J Hum Genet 13, 894-897.

12. Levy, S., Sutton, G., Ng, P.C., Feuk, L., Halpern, A.L., Walenz, B.P., Axelrod, N., Huang, J., Kirkness, E.F., Denisov, G., et al. (2007). The diploid genome sequence of an individual human. PLoS Biol 5, e254.

13. Wheeler, D.A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y.J., Makhijani, V., Roth, G.T., et al. (2008). The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872-876.

14. Durbin, R.M., Abecasis, G.R., Altshuler, D.L., Auton, A., Brooks, L.D., Gibbs, R.A., Hurles, M.E., and McVean, G.A. (2010). A map of human genome variation from population-scale sequencing. Nature 467, 1061-1073.

15. Nakamura, Y. (2009). DNA variations in human and medical genetics: 25 years of my experience. J Hum Genet 54, 1-8.

16. Gemayel, R., Vinces, M.D., Legendre, M., and Verstrepen, K.J. (2010). Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet 44, 445-477.

17. Pang, A.W., MacDonald, J.R., Pinto, D., Wei, J., Rafiq, M.A., Conrad, D.F., Park, H., Hurles, M.E., Lee, C., Venter, J.C., et al. (2010). Towards a comprehensive structural variation map of an individual human genome.

Genome Biol 11, R52.

18. Conrad, D.F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., Aerts, J., Andrews, T.D., Barnes, C., Campbell, P., et al. (2010). Origins and functional impact of copy number variation in the human genome. Nature 464, 704-712.

19. Mills, R.E., Walter, K., Stewart, C., Handsaker, R.E., Chen, K., Alkan, C., Abyzov, A., Yoon, S.C., Ye, K., Cheetham, R.K., et al. (2011). Mapping copy number variation by population-scale genome sequencing. Nature 470, 59-65.

20. (2005). A haplotype map of the human genome. Nature 437, 1299-1320.

21. Frazer, K.A., Ballinger, D.G., Cox, D.R., Hinds, D.A., Stuve, L.L., Gibbs, R.A., Belmont, J.W., Boudreau, A., Hardenbol, P., Leal, S.M., et al. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851-861.

22. Altshuler, D.M., Gibbs, R.A., Peltonen, L., Dermitzakis, E., Schaffner, S.F., Yu, F., Bonnen, P.E., de Bakker, P.I., Deloukas, P., Gabriel, S.B., et al. (2010).

Integrating common and rare genetic variation in diverse human populations.

Nature 467, 52-58.

23. Usdin, K. (2008). The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res 18, 1011-1019.

24. Padiath, Q.S., Saigoh, K., Schiffmann, R., Asahara, H., Yamada, T., Koeppen, A., Hogan, K., Ptacek, L.J., and Fu, Y.H. (2006). Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat Genet 38, 1114-1123.

25. Gonzalez, E., Kulkarni, H., Bolivar, H., Mangano, A., Sanchez, R., Catano, G., Nibbs, R.J., Freedman, B.I., Quinones, M.P., Bamshad, M.J., et al. (2005). The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307, 1434-1440.

26. Cadwell, K., Patel, K.K., Maloney, N.S., Liu, T.C., Ng, A.C., Storer, C.E., Head, R.D., Xavier, R., Stappenbeck, T.S., and Virgin, H.W. (2010). Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135-1145.

27. Hindorff LA, J.H., Hall PN, Mehta JP, and Manolio TA. (Accessed 2011/01/19).

A Catalog of Published Genome-Wide Association Studies. In., p www.genome.gov/gwastudies.

28. Kozyrev, S.V., Abelson, A.K., Wojcik, J., Zaghlool, A., Linga Reddy, M.V., Sanchez, E., Gunnarsson, I., Svenungsson, E., Sturfelt, G., Jonsen, A., et al.

(2008). Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 40, 211-216.

29. Hughes, T.A. (2006). Regulation of gene expression by alternative untranslated regions. Trends Genet 22, 119-122.

30. Pickering, B.M., and Willis, A.E. (2005). The implications of structured 5' untranslated regions on translation and disease. Semin Cell Dev Biol 16, 39-47.

31. Andreassi, C., and Riccio, A. (2009). To localize or not to localize: mRNA fate is in 3'UTR ends. Trends Cell Biol 19, 465-474.

32. Krol, J., Loedige, I., and Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11, 597-610.

33. Shabalina, S.A., Spiridonov, A.N., Spiridonov, N.A., and Koonin, E.V. (2010).

Connections between alternative transcription and alternative splicing in mammals. Genome Biol Evol 2, 791-799.

34. Wang, Y., Newton, D.C., Robb, G.B., Kau, C.L., Miller, T.L., Cheung, A.H., Hall, A.V., VanDamme, S., Wilcox, J.N., and Marsden, P.A. (1999). RNA diversity has profound effects on the translation of neuronal nitric oxide synthase. Proc Natl Acad Sci U S A 96, 12150-12155.

35. Michalak, P. (2008). Coexpression, coregulation, and cofunctionality of neighboring genes in eukaryotic genomes. Genomics 91, 243-248.

36. Bulger, M., and Groudine, M. (2010). Enhancers: the abundance and function of regulatory sequences beyond promoters. Dev Biol 339, 250-257.

37. Taft, R.J., Glazov, E.A., Cloonan, N., Simons, C., Stephen, S., Faulkner, G.J., Lassmann, T., Forrest, A.R., Grimmond, S.M., Schroder, K., et al. (2009). Tiny RNAs associated with transcription start sites in animals. Nat Genet 41, 572-578.

38. Kapranov, P., Ozsolak, F., Kim, S.W., Foissac, S., Lipson, D., Hart, C., Roels, S., Borel, C., Antonarakis, S.E., Monaghan, A.P., et al. (2010). New class of gene-termini-associated human RNAs suggests a novel RNA copying mechanism. Nature 466, 642-646.

39. van Leeuwen, S., and Mikkers, H. (2010). Long non-coding RNAs: Guardians of development. Differentiation 80, 175-183.

40. Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W.J., and Pandolfi, P.P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033-1038.

41. Maunakea, A.K., Chepelev, I., and Zhao, K. (2010). Epigenome mapping in normal and disease States. Circ Res 107, 327-339.

42. He, C., and Klionsky, D.J. (2009). Regulation Mechanisms and Signaling Pathways of Autophagy. Annu Rev Genet.

43. Tanaka, K. (2009). The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci 85, 12-36.

44. Ciechanover, A. (2005). Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6, 79-87.

45. Gallastegui, N., and Groll, M. (2010). The 26S proteasome: assembly and function of a destructive machine. Trends Biochem Sci 35, 634-642.

46. Davies, K.J. (2001). Degradation of oxidized proteins by the 20S proteasome.

Biochimie 83, 301-310.

47. Murata, S., Yashiroda, H., and Tanaka, K. (2009). Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10, 104-115.

48. Fricke, B., Heink, S., Steffen, J., Kloetzel, P.M., and Kruger, E. (2007). The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum. EMBO Rep 8, 1170-1175.

49. Hirano, Y., Hendil, K.B., Yashiroda, H., Iemura, S., Nagane, R., Hioki, Y., Natsume, T., Tanaka, K., and Murata, S. (2005). A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 437, 1381-1385.

50. Hirano, Y., Kaneko, T., Okamoto, K., Bai, M., Yashiroda, H., Furuyama, K., Kato, K., Tanaka, K., and Murata, S. (2008). Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. EMBO J 27, 2204-2213.

51. Meiners, S., Ludwig, A., Stangl, V., and Stangl, K. (2008). Proteasome inhibitors: poisons and remedies. Med Res Rev 28, 309-327.

52. Naidoo, N. (2009). ER and aging-Protein folding and the ER stress response.

Ageing Res Rev 8, 150-159.

53. Hipkiss, A.R. (2006). Accumulation of altered proteins and ageing: causes and effects. Exp Gerontol 41, 464-473.

54. Oyadomari, S., and Mori, M. (2004). Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11, 381-389.

55. Schröder, M. (2008). Endoplasmic reticulum stress responses. Cell Mol Life Sci 65, 862-894.

56. Obeng, E.A., Carlson, L.M., Gutman, D.M., Harrington, W.J., Jr., Lee, K.P., and Boise, L.H. (2006). Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107, 4907-4916.

57. Maytin, E.V., and Habener, J.F. (1998). Transcription factors C/EBP alpha, C/EBP beta, and CHOP (Gadd153) expressed during the differentiation program of keratinocytes in vitro and in vivo. J Invest Dermatol 110, 238-246.

58. Candi, E., Schmidt, R., and Melino, G. (2005). The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6, 328-340.

59. Radoja, N., Gazel, A., Banno, T., Yano, S., and Blumenberg, M. (2006).

Transcriptional profiling of epidermal differentiation. Physiol Genomics 27, 65-78.

60. Sandilands, A., Sutherland, C., Irvine, A.D., and McLean, W.H. (2009).

Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci 122, 1285-1294.

61. Rawlings, A.V., and Harding, C.R. (2004). Moisturization and skin barrier function. Dermatol Ther 17 Suppl 1, 43-48.

62. Proksch, E., Brandner, J.M., and Jensen, J.M. (2008). The skin: an indispensable barrier. Exp Dermatol 17, 1063-1072.

63. Stefansson, K., Brattsand, M., Ny, A., Glas, B., and Egelrud, T. (2006).

Kallikrein-related peptidase 14 may be a major contributor to trypsin-like proteolytic activity in human stratum corneum. Biol Chem 387, 761-768.

64. Williams, M.L., and Elias, P.M. (1985). Heterogeneity in autosomal recessive ichthyosis. Clinical and biochemical differentiation of lamellar ichthyosis and nonbullous congenital ichthyosiform erythroderma. Arch Dermatol 121, 477-488.

65. Fischer, J. (2009). Autosomal recessive congenital ichthyosis. J Invest Dermatol 129, 1319-1321.

66. Anton-Lamprecht, I. (1992). The Skin. In Diagnostic ultrastructure of non-neoplastic diseases, J. Papadimitrou, Spagnolo, D., ed. (Edinburgh, Churchill and Livingstone), pp 459-469.

67. Kelsell, D.P., Norgett, E.E., Unsworth, H., Teh, M.T., Cullup, T., Mein, C.A., Dopping-Hepenstal, P.J., Dale, B.A., Tadini, G., Fleckman, P., et al. (2005).

Mutations in ABCA12 underlie the severe congenital skin disease harlequin ichthyosis. Am J Hum Genet 76, 794-803.

68. Lefevre, C., Audebert, S., Jobard, F., Bouadjar, B., Lakhdar, H., Boughdene-Stambouli, O., Blanchet-Bardon, C., Heilig, R., Foglio, M., Weissenbach, J., et al. (2003). Mutations in the transporter ABCA12 are associated with lamellar ichthyosis type 2. Hum Mol Genet 12, 2369-2378.

69. Lefevre, C., Bouadjar, B., Karaduman, A., Jobard, F., Saker, S., Ozguc, M., Lathrop, M., Prud'homme, J.F., and Fischer, J. (2004). Mutations in ichthyin a new gene on chromosome 5q33 in a new form of autosomal recessive congenital ichthyosis. Hum Mol Genet 13, 2473-2482.

70. Lefevre, C., Bouadjar, B., Ferrand, V., Tadini, G., Megarbane, A., Lathrop, M., Prud'homme, J.F., and Fischer, J. (2006). Mutations in a new cytochrome P450 gene in lamellar ichthyosis type 3. Hum Mol Genet 15, 767-776.

71. Jobard, F., Lefevre, C., Karaduman, A., Blanchet-Bardon, C., Emre, S., Weissenbach, J., Ozguc, M., Lathrop, M., Prud'homme, J.F., and Fischer, J.

(2002). Lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) are mutated in non-bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17p13.1. Hum Mol Genet 11, 107-113.

72. Huber, M., Rettler, I., Bernasconi, K., Frenk, E., Lavrijsen, S.P., Ponec, M., Bon, A., Lautenschlager, S., Schorderet, D.F., and Hohl, D. (1995). Mutations of keratinocyte transglutaminase in lamellar ichthyosis. Science 267, 525-528.

73. Klar, J., Schweiger, M., Zimmerman, R., Zechner, R., Li, H., Torma, H., Vahlquist, A., Bouadjar, B., Dahl, N., and Fischer, J. (2009). Mutations in the fatty acid transport protein 4 gene cause the ichthyosis prematurity syndrome.

Am J Hum Genet 85, 248-253.

74. Russell, L.J., DiGiovanna, J.J., Rogers, G.R., Steinert, P.M., Hashem, N., Compton, J.G., and Bale, S.J. (1995). Mutations in the gene for transglutaminase 1 in autosomal recessive lamellar ichthyosis. Nat Genet 9, 279-283.

75. Laiho, E., Ignatius, J., Mikkola, H., Yee, V.C., Teller, D.C., Niemi, K.M., Saarialho-Kere, U., Kere, J., and Palotie, A. (1997). Transglutaminase 1 mutations in autosomal recessive congenital ichthyosis: private and recurrent mutations in an isolated population. Am J Hum Genet 61, 529-538.

76. Krug, M., Oji, V., Traupe, H., and Berneburg, M. (2009). Ichthyoses--Part 2:

Congenital ichthyoses. J Dtsch Dermatol Ges 7, 577-588.

77. Nemes, Z., Marekov, L.N., Fesus, L., and Steinert, P.M. (1999). A novel function for transglutaminase 1: attachment of long-chain omega-hydroxyceramides to involucrin by ester bond formation. Proc Natl Acad Sci U S A 96, 8402-8407.

78. Eckl, K.M., Krieg, P., Kuster, W., Traupe, H., Andre, F., Wittstruck, N., Furstenberger, G., and Hennies, H.C. (2005). Mutation spectrum and functional analysis of epidermis-type lipoxygenases in patients with autosomal recessive congenital ichthyosis. Hum Mutat 26, 351-361.

79. Epp, N., Furstenberger, G., Muller, K., de Juanes, S., Leitges, M., Hausser, I., Thieme, F., Liebisch, G., Schmitz, G., and Krieg, P. (2007). 12R-lipoxygenase deficiency disrupts epidermal barrier function. J Cell Biol 177, 173-182.

80. Akiyama, M., Sugiyama-Nakagiri, Y., Sakai, K., McMillan, J.R., Goto, M., Arita, K., Tsuji-Abe, Y., Tabata, N., Matsuoka, K., Sasaki, R., et al. (2005).

Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J Clin Invest 115, 1777-1784.

81. Mitsutake, S., Suzuki, C., Akiyama, M., Tsuji, K., Yanagi, T., Shimizu, H., and Igarashi, Y. (2010). ABCA12 dysfunction causes a disorder in glucosylceramide accumulation during keratinocyte differentiation. J Dermatol Sci 60, 128-129.

82. Matsuki, M., Yamashita, F., Ishida-Yamamoto, A., Yamada, K., Kinoshita, C., Fushiki, S., Ueda, E., Morishima, Y., Tabata, K., Yasuno, H., et al. (1998).

Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase). Proc Natl Acad Sci U S A 95, 1044-1049.

83. Zuo, Y., Zhuang, D.Z., Han, R., Isaac, G., Tobin, J.J., McKee, M., Welti, R., Brissette, J.L., Fitzgerald, M.L., and Freeman, M.W. (2008). ABCA12 maintains the epidermal lipid permeability barrier by facilitating formation of ceramide linoleic esters. J Biol Chem 283, 36624-36635.

84. Yanagi, T., Akiyama, M., Nishihara, H., Sakai, K., Nishie, W., Tanaka, S., and Shimizu, H. (2008). Harlequin ichthyosis model mouse reveals alveolar collapse and severe fetal skin barrier defects. Hum Mol Genet 17, 3075-3083.

85. Goytain, A., Hines, R.M., and Quamme, G.A. (2008). Functional characterization of NIPA2, a selective Mg2+ transporter. Am J Physiol Cell Physiol 295, C944-953.

86. Pujol, R.M., Moreno, A., Alomar, A., and de Moragas, J.M. (1989). Congenital ichthyosiform dermatosis with linear keratotic flexural papules and sclerosing palmoplantar keratoderma. Arch Dermatol 125, 103-106.

87. Vahlquist, A., Ponten, F., and Pettersson, A. (1997). Keratosis linearis with ichthyosis congenita and sclerosing keratoderma (KLICK-syndrome): a rare, autosomal recessive disorder of keratohyaline formation? Acta Derm Venereol 77, 225-227.

88. van Steensel, M.A., van Geel, M., and Steijlen, P.M. (2005). A new type of erythrokeratoderma. Br J Dermatol 152, 155-158.

89. Chaves, A.J., Merchan-Garcia, R., Fernandez-Recio, J.M., Rodriguez-Nevado, I., and de Argila, D. (2006). [Keratosis linearis with ichthyosis congenita and sclerosing keratoderma (KLICK syndrome)]. Actas Dermosifiliogr 97, 342-344.

90. Maestrini, E., Korge, B.P., Ocana-Sierra, J., Calzolari, E., Cambiaghi, S., Scudder, P.M., Hovnanian, A., Monaco, A.P., and Munro, C.S. (1999). A missense mutation in connexin26, D66H, causes mutilating keratoderma with sensorineural deafness (Vohwinkel's syndrome) in three unrelated families.

Hum Mol Genet 8, 1237-1243.

91. Bondeson, M.L., Nystrom, A.M., Gunnarsson, U., and Vahlquist, A. (2006).

Connexin 26 (GJB2) mutations in two Swedish patients with atypical Vohwinkel (mutilating keratoderma plus deafness) and KID syndrome both extensively treated with acitretin. Acta Derm Venereol 86, 503-508.

92. Maestrini, E., Monaco, A.P., McGrath, J.A., Ishida-Yamamoto, A., Camisa, C., Hovnanian, A., Weeks, D.E., Lathrop, M., Uitto, J., and Christiano, A.M.

(1996). A molecular defect in loricrin, the major component of the cornified cell envelope, underlies Vohwinkel's syndrome. Nat Genet 13, 70-77.

93. Collins, F.S. (1991). Of needles and haystacks: finding human disease genes by positional cloning. Clin Res 39, 615-623.

94. Weber, J.L., and May, P.E. (1989). Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44, 388-396.

95. Lander, E.S., and Botstein, D. (1987). Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236, 1567-1570.

96. Mullis, K.B., and Faloona, F.A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155, 335-350.

97. Sanger, F., Nicklen, S., and Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463-5467.

98. Zhou, X., Ren, L., Meng, Q., Li, Y., Yu, Y., and Yu, J. (2010). The next-generation sequencing technology and application. Protein Cell 1, 520-536.

99. Laiho, E., Niemi, K.M., Ignatius, J., Kere, J., Palotie, A., and Saarialho-Kere, U.

(1999). Clinical and morphological correlations for transglutaminase 1 gene mutations in autosomal recessive congenital ichthyosis. Eur J Hum Genet 7, 625-632.

100. Tanemura, M., Saga, A., Kawamoto, K., Machida, T., Deguchi, T., Nishida, T., Sawa, Y., Doki, Y., Mori, M., and Ito, T. (2009). Rapamycin induces autophagy in islets: relevance in islet transplantation. Transplant Proc 41, 334-338.

101. Rothnagel, J.A., Dominey, A.M., Dempsey, L.D., Longley, M.A., Greenhalgh, D.A., Gagne, T.A., Huber, M., Frenk, E., Hohl, D., and Roop, D.R. (1992).

Mutations in the rod domains of keratins 1 and 10 in epidermolytic hyperkeratosis. Science 257, 1128-1130.

102. Schmuth, M., Yosipovitch, G., Williams, M.L., Weber, F., Hintner, H., Ortiz-Urda, S., Rappersberger, K., Crumrine, D., Feingold, K.R., and Elias, P.M.

(2001). Pathogenesis of the permeability barrier abnormality in epidermolytic hyperkeratosis. J Invest Dermatol 117, 837-847.

103. Ding, W.X., and Yin, X.M. (2008). Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 4, 141-150.

104. Heink, S., Ludwig, D., Kloetzel, P.M., and Kruger, E. (2005). IFN-gamma-induced immune adaptation of the proteasome system is an accelerated and transient response. Proc Natl Acad Sci U S A 102, 9241-9246.

105. Ma, Y., Brewer, J.W., Diehl, J.A., and Hendershot, L.M. (2002). Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318, 1351-1365.

106. Ding, W.X., Ni, H.M., Gao, W., Yoshimori, T., Stolz, D.B., Ron, D., and Yin, X.M. (2007). Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171, 513-524.

107. Boudjelal, M., Wang, Z., Voorhees, J.J., and Fisher, G.J. (2000).

Ubiquitin/proteasome pathway regulates levels of retinoic acid receptor gamma and retinoid X receptor alpha in human keratinocytes. Cancer Res 60, 2247-2252.

108. Varshavsky, A. (2005). Regulated protein degradation. Trends Biochem Sci 30, 283-286.

109. Pigg, M., Gedde-Dahl, T., Jr., Cox, D., Hausser, I., Anton-Lamprecht, I., and Dahl, N. (1998). Strong founder effect for a transglutaminase 1 gene mutation in lamellar ichthyosis and congenital ichthyosiform erythroderma from Norway.

Eur J Hum Genet 6, 589-596.

110. Horev, L., Babay, S., Ramot, Y., Saad-Edin, B., Moorad, S., Ingber, A., Maly,

110. Horev, L., Babay, S., Ramot, Y., Saad-Edin, B., Moorad, S., Ingber, A., Maly,

Related documents