• No results found

Makrofager i transplanterade cellöar är nära kopplade till pericyter

Blodkärl består inte enbart av de endotelceller som är närmast blodbanan.

Beroende på var i kroppen blodkärlet befinner sig och hur stort det är består det även av bl.a. fibrös vävnad, glatt muskulatur och nerver. En celltyp som är en viktig del av blodkärlen är pericyten. Den sitter precis utanpå endotel-cellerna och delar basalmembran med dessa. Pericyter bidrar med både fy-sisk stabilitet och utsöndrar substanser som håller endotelcellerna i ett stabilt tillstånd.

Kärlnätverket i Langerhanska cellöar har en god täckning av pericyter, men det har varit oklart om de återkommer efter transplantation. Efter transplan-tation till muskel hos mus i studie IV återkommer pericyterna i ungefär samma takt som blodkärlen och efter fyra veckor är de nybildade kärlen helt täckta med pericyter. Makrofagerna i studie III antog platser väldigt nära blodkärlen, på ett sätt som liknade pericyters vis. Detta föranledde en under-sökning kring hur dessa två celltyper är kopplade till varandra.

Hos möss som saknade makrofager undersöktes pericyttäckningen av blodkärlen i transplanterade cellöar. Dessa hade mycket färre pericyter än möss som hade normalt makrofagantal. I en mus som har grönfluorescerande makrofager upptäcktes att dessa även uttryckte den pericytspecifika markö-ren NG2.

I transplanterade Langerhanska cellöar har alltså makrofager en stor in-verkan på rekryteringen av nya pericyter. Vissa makrofager uttrycker pericytspecifika markörer, vilket kan innebära att makrofager i transplante-rade cellöar kan övergå till att bli pericyter.

Slutsats

Genom att transplantera Langerhanska cellöar till muskel kan blodkärlsnät-verket återupprättas och funktionen förbättras, något som kan leda till effek-tivare transplantationer för diabetiker framöver. Den experimentella modell som togs fram för att studera angiogenes möjliggjorde studier av immuncel-lers påverkan på blodkärlstillväxten. En särskild typ av immuncell som var involverad i detta identifierades och nya kopplingar mellan immunceller och de celler som utgör blodkärlen upptäcktes.

Acknowledgements

The majority of the work presented in this thesis was carried out at the De-partment of Medical Cell Biology, Uppsala University, Sweden. The results in here were not the work of one person alone; therefore I would like to ex-press my gratitude to:

My supervisor Associate Professor Mia Phillipson, for taking me on as your first PhD student in this exciting project. The way you not only work to get great scientific results, but also mentor your students to grow into better scientists is truly admirable. Working with you during these years, not only producing data, but also building a new lab, has been a blast!

My co-supervisor Professor Per-Ola Carlsson, for being the link to the clin-ic, for doing things faster than anyone else, for being a fellow smålänning, and an overall scientific role model.

My co-supervisor Professor Leif Jansson, who was the one who trusted me with a summer project as an undergrad many years ago, for lighting an inter-est in research and for continuing to be an inspiration in science and trivia.

My co-supervisor Dr Johanna Henriksnäs, who was the one to pioneer the field of curing diabetes through the cremaster muscle, for your enthusiasm, and for introducing me to lab things like anesthesia and rodent-MRI, and other things like the unexpectedly vast diversity of jelly beans.

All co-authors to the studies.

The heads of the department, present and former: Professor Erik Gylfe, and Professor Arne Andersson.

The technical assistance and overall guidance from Astrid Nordin, Lisbeth Sagulin, Anders Ahlander, Marianne Ljungkvist, IngBritt Hallgren, Ing-Marie Mörsare, and Eva Törnelius have been extremely valuable.

The animal facility staff for taking good care of my mice and the breeding of the B6.129P-Cx3cr1tm1Litt/J…äh, the cages with the purple tags!

The guys from the hospital: Dr José Caballero-Corbalàn, Dr Lars Johans-son, and Professor Olle Korsgren.

The Belgians: Professor Ghislain Opdenakker, Jennifer Vandooren, and your Rega-colleagues for a scientifically fruitful collaboration, and a won-derful time in Leuven.

The Americans: Professor Alvin Powers, Dr Marcela Brissova, and Rachel Reinert for excellent help on VEGF and islets.

The Canadians: All people in the Kubes lab for very rewarding periods in Calgary.

The guys at BioVis: Pacho, Matyas, and Jan.

The research group of Phillipson and Holm; Lena, for letting me “piggy-back” on the GI-group in the beginning, and for creating a nice atmosphere in the lab. Ulrika, for great times in- and outside of the lab, in and out of avalanche country, and for always letting me sit in the therapy-chair when needed. Evelina, for all help in the lab, for extreme and contagious enthusi-asm, and for sharing an interest in things that are hard (like flow cytometry and skiing). Sara, for once doubling the size of the lab and being my first lab mate. David, for discussions about everything from CX3CR1 to CMOS. To-mas, for introducing cleanliness to the lab with “your” bench. Antoine, for putting up with my impossible (?) experiments, and for being witty. Magnus, for the non-biologist angle to things. Annika, for always helping out, and for keeping the lab together. Cecilia, for coming to the lab now and then to turn up the pace. Former members Olof and Joel, for setting an atmosphere that I think still lives.

The persons helping out with economy, teaching, and technical issues at the department: Camilla, Shumin, Agneta, Gunno, Erik, Oleg, Göran, Lina, and Björn.

The faculty at the department for discussions, feedback, and sharing of methods and materials. Special thanks to Professor Michael Welsh, and Pro-fessor Nils Welsh.

Former and present PhD students and post-docs at the department, in par-ticular: Andreas, Daniel, Daniela, Ebba, Guang, Joey, Johan, Johan, Karin, Liselotte, Liza, Malou, Marie, Mattias, Michael, Patrik, Rikard, Sara, Sara, Sara, Stephanie, Xiang, and Åsa for great assistance, seminars, parties, lunches, and endless coffee breaks.

All people at the department for making the three corridors a very nice place to work. A special thanks to Angelica for your help with a wide range of things (from labware to coffee machines).

All students that have been involved in the projects.

Alla vänner utanför labbet som dragit ut mig från BMC för att göra något helt annat.

Erik för att ha introducerat mig till uthållighetssportens underbara och smärt-samma värld – det har varit en ventil i skrivandet. Arvid, Amelie och Johan för luncher, spex och mycket annat.

Klas, Kristofer, Mattias och Henrik, för allt vi gjort och allt vi fortsätter att göra. Killar kan!

Hedvig, för att du är en så bra vän (och för att en del av denna avhandling skrevs på din soffa).

Min familj: mamma Gunilla, pappa Jan-Ove, bror Filip, syster Amalia och farmor Inga-Britt. För att ni är grunden till allt.

Annika, för att du visar mig det viktiga i livet. Jag älskar dig!

The work in this thesis was supported by the Swedish Research Council, the Knut & Alice Wallenberg Foundation, the Swedish Diabetes Associa-tion, the Novo Nordisk FoundaAssocia-tion, the Ragnar Söderberg FoundaAssocia-tion, the Clas Groschinsky Foundation, the Jeansson Foundation, the Mag-nus Bergvall Foundation, the Lars Hierta Foundation, the Thuring Founda-tion, the Family Ernfors FoundaFounda-tion, the Åke Wiberg FoundaFounda-tion, the Anér Foundation, the Swedish Diabetes Foundation, the Juvenile Diabetes Re-search Foundation, and The Royal Swedish Academy of Sciences.

Jag vill personligen tacka Anna Maria Lundins stipendiefond vid Små-lands nation i Uppsala samt Gunnar Hylténs stiftelse vid Apotekarsocieteten för stipendier som möjliggjort vistelser vid utländska universitet och konfe-rensresor.

References

1. WHO. 2012. Diabetes Fact Sheet 312.

2. Group, T.D.C.a.C.T.R. 1993. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. . N Engl J Med 329:977-986.

3. Langerhans, P. 1869. Beiträge zur mikroskopischen Anatomie der Bauchspeicheldrüse. Berlin: Berlin.

4. Moldovan, S., and Brunicardi, F.C. 2001. Endocrine pancreas: summary of observations generated by surgical fellows. World J Surg 25:468-473.

5. Jansson, L. 1994. The regulation of pancreatic islet blood flow. Diabetes Metab Rev 10:407-416.

6. Lifson, N., Lassa, C.V., and Dixit, P.K. 1985. Relation between blood flow and morphology in islet organ of rat pancreas. Am J Physiol 249:E43-48.

7. Henderson, J.R., and Moss, M.C. 1985. A morphometric study of the endocrine and exocrine capillaries of the pancreas. Q J Exp Physiol 70:347-356.

8. Lammert, E., Gu, G., McLaughlin, M., Brown, D., Brekken, R., Murtaugh, L.C., Gerber, H.P., Ferrara, N., and Melton, D.A. 2003. Role of VEGF-A in vascularization of pancreatic islets. Curr Biol 13:1070-1074.

9. Bonner-Weir, S., and Orci, L. 1982. New perspectives on the microvasculature of the islets of Langerhans in the rat. Diabetes 31:883-889.

10. Samols, E., Stagner, J.I., Ewart, R.B., and Marks, V. 1988. The order of islet microvascular cellular perfusion is B----A----D in the perfused rat pancreas. J Clin Invest 82:350-353.

11. Stagner, J.I., Samols, E., and Bonner-Weir, S. 1988. beta----alpha----delta pancreatic islet cellular perfusion in dogs. Diabetes 37:1715-1721.

12. Stagner, J.I., Samols, E., Koerker, D.J., and Goodner, C.J. 1992. Perfusion with anti-insulin gamma globulin indicates a B to A to D cellular perfusion sequence in the pancreas of the rhesus monkey, Macaca mulatta. Pancreas 7:26-29.

13. Stagner, J.I., and Samols, E. 1992. The vascular order of islet cellular perfusion in the human pancreas. Diabetes 41:93-97.

14. Nyman, L.R., Wells, K.S., Head, W.S., McCaughey, M., Ford, E., Brissova, M., Piston, D.W., and Powers, A.C. 2008. Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets. J Clin Invest 118:3790-3797.

15. Bonner-Weir, S., and O'Brien, T.D. 2008. Islets in type 2 diabetes: in honor of Dr. Robert C. Turner. Diabetes 57:2899-2904.

16. Cabrera, O., Berman, D.M., Kenyon, N.S., Ricordi, C., Berggren, P.O., and Caicedo, A. 2006. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 103:2334-2339.

17. Brissova, M., Fowler, M.J., Nicholson, W.E., Chu, A., Hirshberg, B., Harlan, D.M., and Powers, A.C. 2005. Assessment of human pancreatic islet

architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53:1087-1097.

18. Odorico, J.S., and Sollinger, H.W. 2002. Technical and immunosuppressive advances in transplantation for insulin-dependent diabetes mellitus. World J Surg 26:194-211.

19. de Kort, H., de Koning, E.J., Rabelink, T.J., Bruijn, J.A., and Bajema, I.M.

2011. Islet transplantation in type 1 diabetes. BMJ 342:d217.

20. Shapiro, A.M., Lakey, J.R., Ryan, E.A., Korbutt, G.S., Toth, E., Warnock, G.L., Kneteman, N.M., and Rajotte, R.V. 2000. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230-238.

21. Ryan, E.A., Paty, B.W., Senior, P.A., Bigam, D., Alfadhli, E., Kneteman, N.M., Lakey, J.R., and Shapiro, A.M. 2005. Five-year follow-up after clinical islet transplantation. Diabetes 54:2060-2069.

22. Barton, F.B., Rickels, M.R., Alejandro, R., Hering, B.J., Wease, S., Naziruddin, B., Oberholzer, J., Odorico, J.S., Garfinkel, M.R., Levy, M., et al.

2012. Improvement in outcomes of clinical islet transplantation: 1999-2010.

Diabetes Care 35:1436-1445.

23. Hiller, W.F., Klempnauer, J., Luck, R., and Steiniger, B. 1991. Progressive deterioration of endocrine function after intraportal but not kidney subcapsular rat islet transplantation. Diabetes 40:134-140.

24. Lau, J., Mattsson, G., Carlsson, C., Nyqvist, D., Kohler, M., Berggren, P.O., Jansson, L., and Carlsson, P.O. 2007. Implantation site-dependent dysfunction of transplanted pancreatic islets. Diabetes 56:1544-1550.

25. Moberg, L., Johansson, H., Lukinius, A., Berne, C., Foss, A., Kallen, R., Ostraat, O., Salmela, K., Tibell, A., Tufveson, G., et al. 2002. Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet 360:2039-2045.

26. Bennet, W., Sundberg, B., Groth, C.G., Brendel, M.D., Brandhorst, D., Brandhorst, H., Bretzel, R.G., Elgue, G., Larsson, R., Nilsson, B., et al. 1999.

Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation? Diabetes 48:1907-1914.

27. Lee, Y., Ravazzola, M., Park, B.H., Bashmakov, Y.K., Orci, L., and Unger, R.H. 2007. Metabolic mechanisms of failure of intraportally transplanted pancreatic beta-cells in rats: role of lipotoxicity and prevention by leptin.

Diabetes 56:2295-2301.

28. Poitout, V., Briaud, I., Kelpe, C., and Hagman, D. 2004. Gluco-lipotoxicity of the pancreatic beta cell. Ann Endocrinol (Paris) 65:37-41.

29. Shapiro, A.M., Gallant, H.L., Hao, E.G., Lakey, J.R., McCready, T., Rajotte, R.V., Yatscoff, R.W., and Kneteman, N.M. 2005. The portal immunosuppressive storm: relevance to islet transplantation? Ther Drug Monit 27:35-37.

30. Redmon, J.B., Olson, L.K., Armstrong, M.B., Greene, M.J., and Robertson, R.P. 1996. Effects of tacrolimus (FK506) on human insulin gene expression, insulin mRNA levels, and insulin secretion in HIT-T15 cells. J Clin Invest 98:2786-2793.

31. Carlsson, P.O., Palm, F., and Mattsson, G. 2002. Low revascularization of experimentally transplanted human pancreatic islets. J Clin Endocrinol Metab 87:5418-5423.

32. Mattsson, G., Jansson, L., and Carlsson, P.O. 2002. Decreased vascular density

33. Carlsson, P.O., Palm, F., Andersson, A., and Liss, P. 2001. Markedly decreased oxygen tension in transplanted rat pancreatic islets irrespective of the implantation site. Diabetes 50:489-495.

34. Jansson, L., and Carlsson, P.O. 2002. Graft vascular function after transplantation of pancreatic islets. Diabetologia 45:749-763.

35. Lau, J., and Carlsson, P.O. 2009. Low revascularization of human islets when experimentally transplanted into the liver. Transplantation 87:322-325.

36. Mellgren, A., Schnell Landstrom, A.H., Petersson, B., and Andersson, A. 1986.

The renal subcapsular site offers better growth conditions for transplanted mouse pancreatic islet cells than the liver or spleen. Diabetologia 29:670-672.

37. Merani, S., Toso, C., Emamaullee, J., and Shapiro, A.M. 2008. Optimal implantation site for pancreatic islet transplantation. Br J Surg 95:1449-1461.

38. Yasunami, Y., Lacy, P.E., and Finke, E.H. 1983. A new site for islet transplantation--a peritoneal-omental pouch. Transplantation 36:181-182.

39. Sutton, R., Gray, D.W., Burnett, M., McShane, P., Turner, R.C., and Morris, P.J. 1989. Metabolic function of intraportal and intrasplenic islet autografts in cynomolgus monkeys. Diabetes 38 Suppl 1:182-184.

40. Caiazzo, R., Gmyr, V., Hubert, T., Delalleau, N., Lamberts, R., Moerman, E., Kerr-Conte, J., and Pattou, F. 2007. Evaluation of alternative sites for islet transplantation in the minipig: interest and limits of the gastric submucosa.

Transplant Proc 39:2620-2623.

41. Ar'Rajab, A., Dawidson, I.J., Harris, R.B., and Sentementes, J.T. 1994.

Immune privilege of the testis for islet xenotransplantation (rat to mouse). Cell Transplant 3:493-498.

42. Perez, V.L., Caicedo, A., Berman, D.M., Arrieta, E., Abdulreda, M.H., Rodriguez-Diaz, R., Pileggi, A., Hernandez, E., Dubovy, S.R., Parel, J.M., et al. 2011. The anterior chamber of the eye as a clinical transplantation site for the treatment of diabetes: a study in a baboon model of diabetes. Diabetologia.

43. Speier, S., Nyqvist, D., Cabrera, O., Yu, J., Molano, R.D., Pileggi, A., Moede, T., Kohler, M., Wilbertz, J., Leibiger, B., et al. 2008. Noninvasive in vivo imaging of pancreatic islet cell biology. Nat Med 14:574-578.

44. Cantarelli, E., Melzi, R., Mercalli, A., Sordi, V., Ferrari, G., Lederer, C.W., Mrak, E., Rubinacci, A., Ponzoni, M., Sitia, G., et al. 2009. Bone marrow as an alternative site for islet transplantation. Blood 114:4566-4574.

45. Salazar-Banuelos, A., Wright, J.R., Jr., Sigalet, D., and Benitez-Bribiesca, L.

2008. Pancreatic islet transplantation into the bone marrow of the rat. Am J Surg 195:674-678; discussion 678.

46. Pattou, F., Kerr-Conte, J., and Wild, D. 2010. GLP-1-receptor scanning for imaging of human beta cells transplanted in muscle. N Engl J Med 363:1289-1290.

47. Rafael, E., Tibell, A., Ryden, M., Lundgren, T., Savendahl, L., Borgstrom, B., Arnelo, U., Isaksson, B., Nilsson, B., Korsgren, O., et al. 2008. Intramuscular autotransplantation of pancreatic islets in a 7-year-old child: a 2-year follow-up. Am J Transplant 8:458-462.

48. Lau, J., Kampf, C., Mattsson, G., Nyqvist, D., Kohler, M., Berggren, P.O., and Carlsson, P.O. 2009. Beneficial role of pancreatic microenvironment for angiogenesis in transplanted pancreatic islets. Cell Transplant 18:23-30.

49. Zhang, C., Wang, M., Racine, J.J., Liu, H., Lin, C.L., Nair, I., Lau, J., Cao, Y.A., Todorov, I., Atkinson, M., et al. 2010. Induction of chimerism permits low-dose islet grafts in the liver or pancreas to reverse refractory autoimmune diabetes. Diabetes 59:2228-2236.

50. Carmeliet, P., and Jain, R.K. 2000. Angiogenesis in cancer and other diseases.

Nature 407:249-257.

51. Hanahan, D., and Weinberg, R.A. 2000. The hallmarks of cancer. Cell 100:57-52. Semenza, G.L. 2003. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 70.

3:721-732.

53. Kaelin, W.G., Jr., and Ratcliffe, P.J. 2008. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393-402.

54. Sica, A., and Mantovani, A. 2012. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787-795.

55. Bingle, L., Brown, N.J., and Lewis, C.E. 2002. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies.

J Pathol 196:254-265.

56. Sica, A., Allavena, P., and Mantovani, A. 2008. Cancer related inflammation:

the macrophage connection. Cancer Lett 267:204-215.

57. Steidl, C., Lee, T., Shah, S.P., Farinha, P., Han, G., Nayar, T., Delaney, A., Jones, S.J., Iqbal, J., Weisenburger, D.D., et al. 2010. Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N Engl J Med 362:875-885.

58. Mantovani, A., Schioppa, T., Porta, C., Allavena, P., and Sica, A. 2006. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25:315-322.

59. De Palma, M., Venneri, M.A., Roca, C., and Naldini, L. 2003. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med 9:789-795.

60. Bellocq, A., Antoine, M., Flahault, A., Philippe, C., Crestani, B., Bernaudin, J.F., Mayaud, C., Milleron, B., Baud, L., and Cadranel, J. 1998. Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome. Am J Pathol 152:83-92.

61. Kolaczkowska, E., and Kubes, P. 2013. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159-175.

62. Borregaard, N. 2010. Neutrophils, from marrow to microbes. Immunity 33:657-670.

63. Ley, K., Laudanna, C., Cybulsky, M.I., and Nourshargh, S. 2007. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678-689.

64. Bodey, B., Bodey, B., Jr., Siegel, S.E., Luck, J.V., and Kaiser, H.E. 1996.

Immunophenotypic characterization of human primary and metastatic melanoma infiltrating leukocytes. Anticancer Res 16:3439-3446.

65. Caruso, R.A., Bellocco, R., Pagano, M., Bertoli, G., Rigoli, L., and Inferrera, C. 2002. Prognostic value of intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy. Mod Pathol 15:831-837.

66. Bodey, B., Bodey, B., Jr., Siegel, S.E., and Kaiser, H.E. 2001.

Immunocytochemical detection of leukocyte-associated and apoptosis-related antigen expression in childhood brain tumors. Crit Rev Oncol Hematol 39:3-67. Fridlender, Z.G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., Worthen, 16.

G.S., and Albelda, S.M. 2009. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell 16:183-194.

68. Jablonska, J., Leschner, S., Westphal, K., Lienenklaus, S., and Weiss, S. 2010.

Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis

69. Piccard, H., Muschel, R.J., and Opdenakker, G. 2012. On the dual roles and polarized phenotypes of neutrophils in tumor development and progression.

Crit Rev Oncol Hematol 82:296-309.

70. Tsuda, Y., Takahashi, H., Kobayashi, M., Hanafusa, T., Herndon, D.N., and Suzuki, F. 2004. Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 21:215-226.

71. Pillay, J., Kamp, V.M., van Hoffen, E., Visser, T., Tak, T., Lammers, J.W., Ulfman, L.H., Leenen, L.P., Pickkers, P., and Koenderman, L. 2011. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest 122:327-336.

72. Mueller, M.D., Lebovic, D.I., Garrett, E., and Taylor, R.N. 2000. Neutrophils infiltrating the endometrium express vascular endothelial growth factor:

potential role in endometrial angiogenesis. Fertil Steril 74:107-112.

73. Heryanto, B., Girling, J.E., and Rogers, P.A. 2004. Intravascular neutrophils partially mediate the endometrial endothelial cell proliferative response to oestrogen in ovariectomised mice. Reproduction 127:613-620.

74. Mentzel, T., Brown, L.F., Dvorak, H.F., Kuhnen, C., Stiller, K.J., Katenkamp, D., and Fletcher, C.D. 2001. The association between tumour progression and vascularity in myxofibrosarcoma and myxoid/round cell liposarcoma.

Virchows Arch 438:13-22.

75. Van Coillie, E., Van Aelst, I., Wuyts, A., Vercauteren, R., Devos, R., De Wolf-Peeters, C., Van Damme, J., and Opdenakker, G. 2001. Tumor angiogenesis induced by granulocyte chemotactic protein-2 as a countercurrent principle. Am J Pathol 159:1405-1414.

76. Nozawa, H., Chiu, C., and Hanahan, D. 2006. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis.

Proc Natl Acad Sci U S A 103:12493-12498.

77. Schruefer, R., Sulyok, S., Schymeinsky, J., Peters, T., Scharffetter-Kochanek, K., and Walzog, B. 2006. The proangiogenic capacity of polymorphonuclear neutrophils delineated by microarray technique and by measurement of neovascularization in wounded skin of CD18-deficient mice. J Vasc Res 43:1-78. Gaudry, M., Bregerie, O., Andrieu, V., El Benna, J., Pocidalo, M.A., and 11.

Hakim, J. 1997. Intracellular pool of vascular endothelial growth factor in human neutrophils. Blood 90:4153-4161.

79. Fantin, A., Vieira, J.M., Gestri, G., Denti, L., Schwarz, Q., Prykhozhij, S., Peri, F., Wilson, S.W., and Ruhrberg, C. 2010. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829-840.

80. Van den Steen, P.E., Dubois, B., Nelissen, I., Rudd, P.M., Dwek, R.A., and Opdenakker, G. 2002. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37:375-536.

81. Ardi, V.C., Kupriyanova, T.A., Deryugina, E.I., and Quigley, J.P. 2007.

Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc Natl Acad Sci U S A 104:20262-20267.

82. Ahrens, D., Koch, A.E., Pope, R.M., Stein-Picarella, M., and Niedbala, M.J.

1996. Expression of matrix metalloproteinase 9 (96-kd gelatinase B) in human rheumatoid arthritis. Arthritis Rheum 39:1576-1587.

83. Hamdy, F.C., Fadlon, E.J., Cottam, D., Lawry, J., Thurrell, W., Silcocks, P.B., Anderson, J.B., Williams, J.L., and Rees, R.C. 1994. Matrix metalloproteinase

9 expression in primary human prostatic adenocarcinoma and benign prostatic hyperplasia. Br J Cancer 69:177-182.

84. Torii, A., Kodera, Y., Uesaka, K., Hirai, T., Yasui, K., Morimoto, T., Yamamura, Y., Kato, T., Hayakawa, T., Fujimoto, N., et al. 1997. Plasma concentration of matrix metalloproteinase 9 in gastric cancer. Br J Surg 84:133-136.

85. Rao, J.S., Yamamoto, M., Mohaman, S., Gokaslan, Z.L., Fuller, G.N., Stetler-Stevenson, W.G., Rao, V.H., Liotta, L.A., Nicolson, G.L., and Sawaya, R.E.

1996. Expression and localization of 92 kDa type IV collagenase/gelatinase B (MMP-9) in human gliomas. Clin Exp Metastasis 14:12-18.

86. Eberth, C.J. 1871. Handbuch der Lehre von der Gewegen des Menschen und der Tiere. Leipzig.

87. Rouget, C. 1873. Mémoire sur le développement, la structure et les propriétés physiologiques des capillaires sangiuns et lymphatiques. Arcs Physiol Norm Pathol 5:603-633.

88. Mathiisen, T.M., Lehre, K.P., Danbolt, N.C., and Ottersen, O.P. 2010. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094-1103.

89. Abbott, N.J., Patabendige, A.A., Dolman, D.E., Yusof, S.R., and Begley, D.J.

2010. Structure and function of the blood-brain barrier. Neurobiol Dis 37:13-90. Armulik, A., Genove, G., Mae, M., Nisancioglu, M.H., Wallgard, E., Niaudet, 25.

C., He, L., Norlin, J., Lindblom, P., Strittmatter, K., et al. 2010. Pericytes regulate the blood-brain barrier. Nature 468:557-561.

91. Daneman, R., Zhou, L., Kebede, A.A., and Barres, B.A. 2010. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature

91. Daneman, R., Zhou, L., Kebede, A.A., and Barres, B.A. 2010. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature

Related documents