• No results found

Mutanter som växer i gamla kolonier är bättre på att

När en koloni med Salmonella åldras på fast näringsmedium kommer de flesta cellerna att växa och dela sig i ungefär ett dygn. Efter detta kommer bakterierna att gå in i en stationär fas, där ingen nettoförändring av mängden bakterier sker. Vissa grupper av celler kommer att dö under den stationära

fasen och vissa kommer att fortsätta att växa. Det har tidigare visats att de bakterier som kan fortsätta att växa har mutationer som gör dem mer anpas-sade för miljön i en gammal koloni. Två sådana mutanter som tidigare isole-rats har varsin förändring i RNA-polymeraset (RNAP), det proteinkomplex som skriver av DNA till RNA. Vi ville ta reda på om dessa mutanter var beroende av någon näringskälla för sin tillväxt i gamla kolonier.

För att undersöka detta läste vi av hela proteininnehållet i unga och gamla kolonier av vildtypsbakterier och de två RNAP-mutanterna. Vi fann att alla gamla kolonier hade ökat mängden protein för att bryta ner olika kolkällor. Mer specifikt fann vi att RNAP-mutanterna, men inte vildtypen, hade ett ökat uttryck av de proteiner som utför det första steget i den kemiska proces-sen för att använda den lilla kolbaserade molekylen acetat i cellen.

Bakterier som växter snabbt på rika näringskällor, till exempel sockerar-ten glukos, utsöndrar acetat för att återbilda molekyler som behövs för meta-bolismen av socker. När glukosen börjar ta slut kommer cellerna i stället att samla in den tidigare utsöndrade acetaten och använda den som näringskälla tills populationen går in i stationärfas.

Eftersom RNAP-mutanterna hade högre nivåer av de proteiner som be-hövs för det första stegen för att kunna använda acetat testade vi att inakti-vera dessa proteiner i RNAP-mutanterna. När dessa dubbelmutanter odlades som en liten grupp på en koloni som annars bestod av vildtypsceller såg vi att de hade förlorat sin förmåga att kunna fortsätta växa i gamla kolonier. I ett annat experiment odlade vi celler av vildtyp eller med någon av RNAP-mutationerna som små grupper på kolonier som vi muterat så att de inte längre kunde samla in den utsöndrade acetaten. Vår hypotes var att detta skulle lämna mer acetat åt den lilla gruppen celler och ge dem en ännu större fördel. Detta visade sig stämma och till och med vildtypsbakterierna kunde växa bättre än vad de gör på gamla vildtypskolonier.

Allt detta tyder på att det fria acetat som finns kvar i en koloni där majori-teten av cellerna är i stationärfas räcker för att understödja en fortsatt tillväxt för en liten grupp bakterier. För att en sådan grupp med celler ska ha möjlig-het att använda det acetat som finns behöver dessa celler uttrycka de protei-ner som behövs för att kunna använda acetat. Vi föreslår också att de två studerade mutationerna i RNA-polymeraset ger ett förändrat mönster i vilka gener som skrivs om till mRNA och därmed vilka protein som uttrycks. Sammanfattningsvis har jag under arbetet med denna avhandling studerat olika mekanismer för hur bakterier kan anpassa sig till förändringar i sin omgivning och vad som händer om denna anpassning inte fungerar. Anpass-ning till miljön sker ofta genom reglering av vilka gener som ska skrivas av och översättas till protein. Denna reglering kan ske på olika nivåer; i kopie-ringen av DNA till RNA (Artikel I och IV), i stabilitet hos RNA-molekyler (Artikel II), och i effektivitet av översättningen till protein (Artikel I och III). Allt detta leder till ett sammanlagt metaboliskt svar på miljön (Artikel IV).

Acknowledgements

There are many people I wish to thank for their help and input and for sup-porting me during the scientific roller coaster it can be to be a PhD student. First and foremost, I want to thank my supervisor Diarmaid Hughes for giving me the opportunity to do research in your group and for all your guid-ance and encouragement. Thank you for all the nice chats about genetics and everything and for always being able to look at my data from a different point of view.

My co-supervisors Dan Andersson and Måns Ehrenberg, thank you for help and comments on my work and for great seminars. Dorothe Spillmann, my examiner, thank you for the pep talks!

The Hughes group: Disa, thanks for taking care of me when I was new, for always helping me and for great collaborations. Marie, thanks for always being positive and cheerful. The acetate story turned out really nicely (after a bit of aging…). Gerrit, you are the most organized person I have ever met and I am very happy that we could collaborate on the tufB story. Franzi, I envy your calmness. Thank you for being a great friend. Eva, it’s a tuf life sometimes, but I am sure you will rock it! Lisa P, we had fun at the micro-biology course and I am happy we came to the same lab afterwards. Linnéa, welcome and good luck! Doug, thank you for organizing the US road trip, it was amazing! Cao Sha, we came to the lab almost at the same time and you have been a great office mate and friend. Punya, good luck with everything.

Linda, so nice that you came back for a while! Klas, I am not sure why you

built that wall of plates at your bench, but I am happy that you were in our group. Rachel, Downton nights with the special cookie girl! Good luck in Copenhagen. Rahel: good luck with your new family! Students and project workers: Anna L (although you were more a friend) I miss your laughter in the lab; Eva GB and Svenja, thanks for great work on the aging colo-nies/acetate project; Andreas L, thank you for the work on the tufB project. Thank you to the D7:3 corridor and the rest of IMBIM: Anna K, so nice that we ended up in the same corridor. Good luck with everything. Erik G, for sharing the writing office, good company and making me procrastinate less.

Mr Ambitious! Marlen, for being social and sweet. I am so happy that we could go to NY and CSHL together. Lisa T, from high school to D7:3!

Ul-rika, for keeping things (and people) in order. Julia, “adopted” by D7:3, I

liked our touring of Visby. Erik L, Fredrika, Hava, Hervé, Jess, Jocke,

Karin, Linus, Lisa A, Michael, Peter, Sohaib, Göte and Nizar, you all

make it nice coming to the lab!

The administrative personnel: Special thanks to Rehné, Barbro and Erika for knowing how to fill in all the various forms and for keeping track of things.

Thank you everybody at ICM: All past and present PIs at Micro for help and input. A special thanks to Gerhart Wagner and Staffan Svärd for helping me with the Northern blots, to Karin Carlson for opening my eyes to the wonderful world of bacteria and to Nora Ausmees, I learned so much from that project in your lab. Elin, thanks for being a good friend, for all the “dagens kram” and chats about everything. Britta, the original cookie girl!

Bork, Linnea J, Cédric, Mirthe, Lina, Mao, Gürkan and KaWeng, thank

you for helping me at the various occasions I came back to ICM to do lab work or to borrow equipment. Ewa G, huge thanks for all the plates and media you made!

Special thanks to Disa Hammarlöf, Andreas Sandberg and Marlen Adler, who have proofread this thesis and given valuable comments.

Friends from outside of BMC: Linda and Sara, my “bonus sisters” – thanks for always being there. Jonas and Jörgen, you are great and I am so happy that you found such nice wives! All my friends from Valsätrakyrkans

scoutkår, thanks for taking my mind off science for a while.

My family: Mamma och pappa, thank you for everything! For putting up with all my questions, encouraging me to ask even more and for always making me feel safe. Mattias and Oskar, the best brothers there ever were. Thank you so much for the front cover illustration Oskar! Siri, welcome to the family (yet another biologist!). My grandparents, aunts, uncles and cous-ins, we are a large family and I am so happy for every one of you. Inger and

Emelie, thanks for welcoming me into your family. Andreas, you are

References

Abdulkarim F, Ehrenberg M & Hughes D (1996) Mutants of EF-Tu defective in binding aminoacyl-tRNA. FEBS Lett 382: 297–303

Abdulkarim F, Liljas L & Hughes D (1994) Mutations to kirromycin resistance occur in the interface of domains I and III of EF-Tu.GTP. FEBS Lett 352: 118– 122

Anupama K, Leela JK & Gowrishankar J (2011) Two pathways for RNase E action in Escherichia coli in vivo and bypass of its essentiality in mutants defective for Rho-dependent transcription termination. Mol Microbiol 82: 1330–1348

Apirion D & Lassar AB (1978) A conditional lethal mutant of Escherichia coli which affects the processing of ribosomal RNA. J Biol Chem 253: 1738–1742 Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG,

Moreira RN, Pobre V, Reis FP, Saramago M, Silva IJ & Viegas SC (2010) The critical role of RNA processing and degradation in the control of gene expres-sion. FEMS Microbiol Rev 34: 883–923

Arraiano CM, Mauxion F, Viegas SC, Matos RG & Séraphin B (2013) Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. Biochim Biophys Acta 1829: 491–513

Barends S, Wower J & Kraal B (2000) Kinetic parameters for tmRNA binding to alanyl-tRNA synthetase and elongation factor Tu from Escherichia coli.

Bio-chemistry 39: 2652–2658

Barker MM, Gaal T, Josaitis CA & Gourse RL (2001) Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J Mol Biol 305: 673–688

Berg P (1956) Acyl adenylates; an enzymatic mechanism of acetate activation. J

Biol Chem 222: 991–1013

Bjedov I, Tenaillon O, Gerard B, Souza V, Denamur E, Radman M, Taddei F & Matic I (2003) Stress-induced mutagenesis in bacteria. Science 300: 1404–1409 Bøggild A, Sofos N, Andersen KR, Feddersen A, Easter AD, Passmore LA &

Brodersen DE (2012) The Crystal Structure of the Intact E. coli RelBE Toxin-Antitoxin Complex Provides the Structural Basis for Conditional Cooperativity.

Structure/Folding and Design 20: 1641–1648

Bouvier M & Carpousis AJ (2011) A tale of two mRNA degradation pathways me-diated by RNase E. Mol Microbiol 82: 1305–1310

Bremer H & Dennis P (1996) Modulation of chemical composition and other pa-rameters of the cell by growth rate. In Neidhardt FC, Curtiss III, R, Ingraham, JL, Lin, ECC, Low, KB, Magasanik, B, Reznikoff, WS, Riley, M, Schaechter, M and Umbarger, HE (ed.), Escherichia coli and Salmonella: Cellular and Mo-lecular Biology, 2 ed, vol. 2. ASM Press, Washington, pp. 1553-1569.

Brown L, Gentry D, Elliott T & Cashel M (2002) DksA affects ppGpp induction of RpoS at a translational level. J Bacteriol 184: 4455–4465

Cairns J, Overbaugh J & Miller S (1988) The origin of mutants. Nature 335: 142– 145

Carpousis AJ (2007) The RNA Degradosome of Escherichia coli: An mRNA-Degrading Machine Assembled on RNase E. Annu Rev Microbiol 61: 71–87 Cashel M & Gallant J (1969) Two compounds implicated in the function of the RC

gene of Escherichia coli. Nature 221: 838–841

Cech TR (2000) The Ribosome Is a Ribozyme. Science 289: 878–879

Celesnik H & Deana A (2007) Initiation of RNA decay in Escherichia coli by 5'pyrophosphate removal. Mol Cell

Chatterji D & Fujita N (1998) The mediator for stringent control, ppGpp, binds to the β‐subunit of Escherichia coli RNA polymerase. Genes to Cells

Chiaruttini C, Milet M & Springer M (1996) A long-range RNA-RNA interaction forms a pseudoknot required for translational control of the IF3-L35-L20 ribo-somal protein operon in Escherichia coli. EMBO J. 15: 4402–4413

Christensen SK & Gerdes K (2003) RelE toxins from bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol Microbiol

48: 1389–1400

Christensen SK & Gerdes K (2004) Delayed-relaxed response explained by hyperac-tivation of RelE. Mol Microbiol 53: 587–597

Chung T, Klumpp DJ & LaPorte DC (1988) Glyoxylate bypass operon of Escherich-ia coli: cloning and determination of the functional map. J Bacteriol 170: 386– 392

Cook GM, Robson JR, Frampton RA, McKenzie J, Przybilski R, Fineran PC & Arcus VL (2013) Ribonucleases in bacterial toxin-antitoxin systems. Biochim

Biophys Acta 1829: 523–531

Crabtree HG (1929) Observations on the carbohydrate metabolism of tumours.

Bio-chem J 23: 536–545

Cronan JE & Waldrop GL (2002) Multi-subunit acetyl-CoA carboxylases. Prog

Lipid Res 41: 407–435

Darst SA, Kubalek EW & Kornberg RD (1989) Three-dimensional structure of Escherichia coli RNA polymerase holoenzyme determined by electron crystal-lography. Nature 340: 730–732

Darst SA, Polyakov A, Richter C & Zhang G (1998) Insights into Escherichia coli RNA polymerase structure from a combination of x-ray and electron crystallog-raphy. J Struct Biol 124: 115–122

Datsenko KA & Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640– 6645

De Lay N, Schu DJ & Gottesman S (2013) Bacterial Small RNA-based Negative Regulation: Hfq and Its Accomplices. J Biol Chem 288: 7996–8003

Deana A & Belasco JG (2004) The function of RNase G in Escherichia coli is con-strained by its amino and carboxyl termini. Mol Microbiol 51: 1205–1217 Deana A, Celesnik H & Belasco JG (2008) The bacterial enzyme RppH triggers

messenger RNA degradation by 5′ pyrophosphate removal. Nature 451: 355– 358

Diderichsen B, Fiil NP & Lavallé R (1977) Genetics of the relB locus in Escherichia coli. J Bacteriol 131: 30–33

Doelle HW, Ewings KN & Hollywood NW (1982) Regulation of glucose metabo-lism in bacterial systems - Springer. Advances in Biochemical Engineering 23: 1–35

El-Mansi EM & Holms WH (1989) Control of carbon flux to acetate excretion dur-ing growth of Escherichia coli in batch and continuous cultures. J Gen

El-Mansi M (2004) Flux to acetate and lactate excretions in industrial fermentations: physiological and biochemical implications. J Ind Microbiol Biotechnol 31: 295–300

Ellis HM, Yu D, DiTizio T & Court DL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides.

Proc Natl Acad Sci USA 98: 6742–6746

English BP, Hauryliuk V, Sanamrad A, Tankov S, Dekker NH & Elf J (2011) Sin-gle-molecule investigations of the stringent response machinery in living bacte-rial cells. Proc Natl Acad Sci USA 108: E365–73

Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS & Salmond GPC (2009) The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci USA 106: 894–899

Finkel SE (2006) Long-term survival during stationary phase: evolution and the GASP phenotype. Nat Rev Microbiol 4: 113–120

Gerdes K & Maisonneuve E (2012) Bacterial persistence and toxin-antitoxin loci.

Annu Rev Microbiol 66: 103–123

Gerdes K, Christensen SK & Løbner-Olesen A (2005) Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 3: 371–382

Gerdes K, Rasmussen PB & Molin S (1986) Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proc Natl Acad Sci

USA 83: 3116–3120

Gimenez R, Nuñez MF, Badia J, Aguilar J & Baldoma L (2003) The gene yjcG, cotranscribed with the gene acs, encodes an acetate permease in Escherichia coli. J Bacteriol 185: 6448–6455

Gotfredsen M & Gerdes K (1998) The Escherichia coli relBE genes belong to a new toxin-antitoxin gene family. Mol Microbiol 29: 1065–1076

Guillier M, Allemand F, Raibaud S, Dardel F, Springer M & Chiaruttini C (2002) Translational feedback regulation of the gene for L35 in Escherichia coli re-quires binding of ribosomal protein L20 to two sites in its leader mRNA: a pos-sible case of ribosomal RNA-messenger RNA molecular mimicry. RNA 8: 878– 889

Haebel PW, Gutmann S & Ban N (2004) Dial tm for rescue: tmRNA engages ribo-somes stalled on defective mRNAs. Curr Opin Struc Biol 14: 58–65

Hammarlöf DL & Hughes D (2008) Mutants of the RNA-processing enzyme RNase E reverse the extreme slow-growth phenotype caused by a mutant translation factor EF-Tu. Mol Microbiol 70: 1194–1209

Hammarlöf DL, Liljas L & Hughes D (2011) Temperature-sensitive mutants of RNase E in Salmonella enterica. J Bacteriol 193: 6639–6650

Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol

Biol Rev 66: 373–95

Hu LI, Lima BP & Wolfe AJ (2010) Bacterial protein acetylation: the dawning of a new age. Mol Microbiol 77: 15–21

Hughes D (1986) The isolation and mapping of EF-Tu mutations in Salmonella typhimurium. Mol Gen Genet 202: 108–111

Hughes D (1990) Both genes for EF-Tu in Salmonella typhimurium are individually dispensable for growth. J Mol Biol 215: 41–51

Hurley JM, Cruz JW, Ouyang M & Woychik NA (2011) Bacterial toxin RelE medi-ates frequent codon-independent mRNA cleavage from the 5' end of coding re-gions in vivo. J Biol Chem 286: 14770–14778

Ishihama A (2000) Functional modulation of Escherichia coli RNA polymerase.

Jain C, Deana A & Belasco JG (2002) Consequences of RNase E scarcity in Esche-richia coli. Mol Microbiol 43: 1053–1064

Jarvik T, Smillie C, Groisman EA & Ochman H (2010) Short-term signatures of evolutionary change in the Salmonella enterica serovar typhimurium 14028 ge-nome. J Bacteriol 192: 560–567

Jaskunas SR, Lindahl L, Nomura M & Burgess RR (1975) Identification of two copies of the gene for the elongation factor EF–Tu in E. Coli. Nature 257: 458– 462

Jishage M, Kvint K, Shingler V & Nyström T (2002) Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev. 16: 1260–1270

Johansson M, Lovmar M & Ehrenberg M (2008) Rate and accuracy of bacterial protein synthesis revisited. Curr Opin Microbiol 11: 141–147

Johansson M, Zhang J & Ehrenberg M (2012) Genetic code translation displays a linear trade-off between efficiency and accuracy of tRNA selection. Proc Natl

Acad Sci USA 109: 131–136

Johnston HM & Roth JR (1981) DNA sequence changes of mutations altering atten-uation control of the histidine operon of Salmonella typhimurium. J Mol Biol

145: 735–756

Kaczanowska M & Rydén-Aulin M (2007) Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Biol Rev 71: 477–494

Karlin S, Mrázek J & Campbell AM (1998) Codon usages in different gene classes of the Escherichia coli genome. Mol Microbiol 29: 1341–1355

Karlin S, Mrázek J, Campbell A & Kaiser D (2001) Characterizations of highly expressed genes of four fast-growing bacteria. J Bacteriol 183: 5025–5040 Keiler K & Waller P (1996) Role of a peptide tagging system in degradation of

proteins synthesized from damaged messenger RNA. Science

Khemici V, Poljak L, Luisi BF & Carpousis AJ (2008) The RNase E of Escherichia coli is a membrane-binding protein. Mol Microbiol 70: 799–813

Kido M, Yamanaka K, Mitani T, Niki H, Ogura T & Hiraga S (1996) RNase E pol-ypeptides lacking a carboxyl-terminal half suppress a mukB mutation in Esche-richia coli. J Bacteriol 178: 3917–3925

Kihara M & Macnab RM (1981) Cytoplasmic pH mediates pH taxis and weak-acid repellent taxis of bacteria. J Bacteriol 145: 1209–1221

Kime L, Clarke JE, Romero A D, Grasby JA & McDowall KJ (2014) Adjacent sin-gle-stranded regions mediate processing of tRNA precursors by RNase E direct entry. Nucleic Acids Res 42: 4577–4589

Kime L, Jourdan SS, Stead JA, Hidalgo-Sastre A & McDowall KJ (2010) Rapid cleavage of RNA by RNase E in the absence of 5' monophosphate stimulation.

Mol Microbiol 76: 590–604

Kisselev LL & Buckingham RH (2000) Translational termination comes of age.

Trends Biochem Sci. 25: 561–566

Kjeldgaard M & Nyborg J (1992) Refined structure of elongation factor EF-Tu from Escherichia coli. J Mol Biol 223: 721–742

Kornberg HL (1966) The role and control of the glyoxylate cycle in Escherichia coli. Biochem J 99: 1–11

Kumari S, Beatty CM, Browning DF, Busby SJ, Simel EJ, Hovel-Miner G & Wolfe AJ (2000a) Regulation of acetyl coenzyme A synthetase in Escherichia coli. J

Bacteriol 182: 4173–4179

Kumari S, Simel EJ & Wolfe AJ (2000b) sigma(70) is the principal sigma factor responsible for transcription of acs, which encodes acetyl coenzyme A synthe-tase in Escherichia coli. J Bacteriol 182: 551–554

Kumari S, Tishel R, Eisenbach M & Wolfe AJ (1995) Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A syn-thetase in Escherichia coli. J Bacteriol 177: 2878–2886

Kuroda A, Murphy H, Cashel M & Kornberg A (1997) Guanosine tetra- and penta-phosphate promote accumulation of inorganic polypenta-phosphate in Escherichia coli. J Biol Chem 272: 21240–21243

Kuroda A, Nomura K, Ohtomo R, Kato J, Ikeda T, Takiguchi N, Ohtake H & Korn-berg A (2001) Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science 293: 705–708

Kuroda A, Tanaka S, Ikeda T, Kato J, Takiguchi N & Ohtake H (1999) Inorganic polyphosphate kinase is required to stimulate protein degradation and for adap-tation to amino acid starvation in Escherichia coli. Proc Natl Acad Sci USA 96: 14264–14269

Laalami S, Zig L & Putzer H (2014) Initiation of mRNA decay in bacteria. Cell Mol

Life Sci 71: 1799–1828

LaPorte DC (1993) The isocitrate dehydrogenase phosphorylation cycle: regulation

Related documents