• No results found

5. Present Investigations

5.4 Paper 4

DNA-fragmentation is a source of bactericidal activity against Pseudomonas aeruginosa.

Background

Cystic fibrosis (CF) is a genetic disorder that affects many organs but the lung disease is the major cause of morbidity and mortality in these patients. The characteristics of CF lung disease include chronic bacterial infections (especially Pseudomonas aeruginosa), inflammatory exacerbations, and highly viscous sputum of the lower airways. Long-lasting and dysregulated inflammatory responses in CF airways leads to accumulation of immune cells like neutrophils, that eventually succumb, resulting in abundant extracellular DNA (eDNA). This eDNA is a major contributor to the viscous mucus seen in this disease and is the basis for use of recombinant human DNaseI as a treatment for reducing the viscoelasticity of the sputum for efficient clearance of the airway congestion.

Aim

- To investigate the effects of DNase I treatment in a murine model of acute P.

aeruginosa airway infection.

- To determine the molecular properties of eDNA and possible roles for DNA-fragmentation, in executing bactericidal activity against P. aeruginosa.

Results and conclusions

DNase I treatment of P. aeruginosa infected mice enhanced their survival and decreased the bacterial load in the BALF and lung tissue. The treatment significantly decreased the pro-inflammatory cytokines IL-6 and TNF-α in the lung tissue.

The eDNA isolated form the BALF of the DNase I treated mice showed increased fragmentation with accumulation of smaller fragments of sizes around and below 200 bp.

By using synthetic DNA fragments of decreasing lengths, we showed that there is a size threshold for the DNA fragments to exhibit bactericidal activity and this activity was possibly because of the chelation of divalent cations from the surface of Gram-negative bacterial outer membrane.

The findings suggest a novel host defense strategy that could potentially be employed to treat P. aeruginosa infections, circumventing mechanisms involved in resistance against conventional antibiotics.

References

1. Tlaskalova-Hogenova H, Stepankova R, Hudcovic T, Tuckova L, Cukrowska B, Lodinova-Zadnikova R, et al. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett.

2004;93(2-3):97-108.

2. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science.

2001;292(5519):1115-8.

3. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240-73, Table of Contents.

4. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol.

2010;125(2 Suppl 2):S3-23.

5. Dempsey PW, Vaidya SA, Cheng G. The art of war: Innate and adaptive immune responses. Cell Mol Life Sci. 2003;60(12):2604-21.

6. Medzhitov R, Janeway C, Jr. Innate immunity. N Engl J Med. 2000;343(5):338-44.

7. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3(3):238-50.

8. Shai Y, Oren Z. From "carpet" mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides. 2001;22(10):1629-41.

9. Bechinger B. Insights into the mechanisms of action of host defence peptides from biophysical and structural investigations. J Pept Sci. 2011;17(5):306-14.

10. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta. 1999;1462(1-2):55-70.

11. Zaiou M. Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med (Berl). 2007;85(4):317-29.

12. Perl M, Chung CS, Garber M, Huang X, Ayala A. Contribution of anti-inflammatory/immune suppressive processes to the pathology of sepsis. Front Biosci.

2006;11:272-99.

13. Oldberg A, Franzen A, Heinegard D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence.

Proc Natl Acad Sci U S A. 1986;83(23):8819-23.

14. Lund SA, Giachelli CM, Scatena M. The role of osteopontin in inflammatory processes. J Cell Commun Signal. 2009;3(3-4):311-22.

15. O'Regan A, Berman JS. Osteopontin: a key cytokine in cell-mediated and granulomatous inflammation. Int J Exp Pathol. 2000;81(6):373-90.

16. Gassler N, Autschbach F, Gauer S, Bohn J, Sido B, Otto HF, et al. Expression of osteopontin (Eta-1) in Crohn disease of the terminal ileum. Scand J Gastroenterol.

2002;37(11):1286-95.

17. Zhao X, Johnson JN, Singh K, Singh M. Impairment of myocardial angiogenic response in the absence of osteopontin. Microcirculation. 2007;14(3):233-40.

18. Woodruff PG, Koth LL, Yang YH, Rodriguez MW, Favoreto S, Dolganov GM, et al.

A distinctive alveolar macrophage activation state induced by cigarette smoking. Am J Respir Crit Care Med. 2005;172(11):1383-92.

19. Xanthou G, Alissafi T, Semitekolou M, Simoes DC, Economidou E, Gaga M, et al.

Osteopontin has a crucial role in allergic airway disease through regulation of dendritic cell subsets. Nat Med. 2007;13(5):570-8.

20. Wiesner J, Vilcinskas A. Antimicrobial peptides The ancient arm of the human immune system. Virulence. 2010;1(5):440-64.

21. Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 1997;89(10):3503-21.

22. Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome:

oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92(9):3007-17.

23. Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197-223.

24. Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, et al.

Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Protein Complex Involved in Host Defense against Candida albicans. Plos Pathog. 2009;5(10).

25. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231-41.

26. Farley K, Stolley JM, Zhao P, Cooley J, Remold-O'Donnell E. A serpinB1 regulatory mechanism is essential for restricting neutrophil extracellular trap generation. J Immunol. 2012;189(9):4574-81.

27. Li PX, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang YM. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. Journal of Experimental Medicine. 2010;207(9):1853-62.

28. Neeli I, Dwivedi N, Khan S, Radic M. Regulation of extracellular chromatin release from neutrophils. J Innate Immun. 2009;1(3):194-201.

29. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009;184(2):205-13.

30. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol.

2010;191(3):677-91.

31. Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ.

32. Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18(9):1386-93.

33. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al.

Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-5.

34. Abi Abdallah DS, Denkers EY. Neutrophils cast extracellular traps in response to protozoan parasites. Front Immunol. 2012;3:382.

35. Yamada M, Gomez JC, Chugh PE, Lowell CA, Dinauer MC, Dittmer DP, et al.

Interferon-gamma production by neutrophils during bacterial pneumonia in mice.

Am J Respir Crit Care Med. 2011;183(10):1391-401.

36. Belaaouaj A, Kim KS, Shapiro SD. Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science. 2000;289(5482):1185-8.

37. Weinrauch Y, Drujan D, Shapiro SD, Weiss J, Zychlinsky A. Neutrophil elastase targets virulence factors of enterobacteria. Nature. 2002;417(6884):91-4.

38. Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, et al. Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones. PloS one. 2012;7(2).

39. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, et al.

Extracellular histones are major mediators of death in sepsis. Nat Med.

2009;15(11):1318-21.

40. Bosmann M, Grailer JJ, Ruemmler R, Russkamp NF, Zetoune FS, Sarma JV, et al.

Extracellular histones are essential effectors of C5aR- and C5L2-mediated tissue damage and inflammation in acute lung injury. FASEB J. 2013;27(12):5010-21.

41. Kang R, Lotze MT, Zeh HJ, Billiar TR, Tang D. Cell death and DAMPs in acute pancreatitis. Mol Med. 2014;20:466-77.

42. Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, et al.

Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952-61.

43. Urban CF, Lourido S, Zychlinsky A. How do microbes evade neutrophil killing? Cell Microbiol. 2006;8(11):1687-96.

44. Murphy K, Travers P, Walport M, Janeway C. Janeway's immunobiology. 8th ed.

New York: Garland Science; 2012. xix, 868 p. p.

45. Montero Vega MT. A new era for innate immunity. Allergol Immunopathol (Madr).

2008;36(3):164-75.

46. Janeway CA, Jr. How the immune system works to protect the host from infection: a personal view. Proc Natl Acad Sci U S A. 2001;98(13):7461-8.

47. Opal SM, Esmon CT. Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit Care. 2003;7(1):23-38.

48. Iwasaki Y, Morishita M, Asai M, Onishi A, Yoshida M, Oiso Y, et al. Effects of hormones targeting nuclear receptors on transcriptional regulation of the growth hormone gene in the MtT/S rat somatotrope cell line. Neuroendocrinology.

2004;79(5):229-36.

49. Lien E, Ingalls RR. Toll-like receptors. Crit Care Med. 2002;30(1 Supp):S1-S11.

50. Pasare C, Medzhitov R. Toll-like receptors: linking innate and adaptive immunity.

Microbes Infect. 2004;6(15):1382-7.

51. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol.

2001;1(2):135-45.

52. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol.

1994;12:991-1045.

53. Matzinger P. The danger model: a renewed sense of self. Science.

2002;296(5566):301-5.

54. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1-5.

55. Chen R, Kang R, Fan XG, Tang D. Release and activity of histone in diseases. Cell Death Dis. 2014;5:e1370.

56. Wakefield D, Gray P, Chang J, Di Girolamo N, McCluskey P. The role of PAMPs and DAMPs in the pathogenesis of acute and recurrent anterior uveitis. Br J Ophthalmol. 2010;94(3):271-4.

57. Albiger B, Dahlberg S, Henriques-Normark B, Normark S. Role of the innate immune system in host defence against bacterial infections: focus on the Toll-like receptors. Journal of internal medicine. 2007;261(6):511-28.

58. Cirino G, Vergnolle N. Proteinase-activated receptors (PARs): crossroads between innate immunity and coagulation. Curr Opin Pharmacol. 2006;6(4):428-34.

59. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell.

1991;64(6):1057-68.

60. Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest. 2012;122(8):2731-40.

61. Matthay MA, Zimmerman GA. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol. 2005;33(4):319-27.

62. Matthay MA, Zimmerman GA, Esmon C, Bhattacharya J, Coller B, Doerschuk CM, et al. Future research directions in acute lung injury: summary of a National Heart, Lung, and Blood Institute working group. Am J Respir Crit Care Med.

2003;167(7):1027-35.

63. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med.

2000;342(18):1334-49.

64. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11(8):519-31.

65. Bachofen M, Weibel ER. Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am Rev Respir Dis.

1977;116(4):589-615.

66. Raghavendran K, Pryhuber GS, Chess PR, Davidson BA, Knight PR, Notter RH.

Pharmacotherapy of acute lung injury and acute respiratory distress syndrome. Curr Med Chem. 2008;15(19):1911-24.

67. Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2017. Available from:

http://goldcopd.org/ . 2017 [Available from: http://goldcopd.org/

68. Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 2011;378(9795):1015-26.

69. Salvi SS, Barnes PJ. Chronic obstructive pulmonary disease in non-smokers. Lancet.

2009;374(9691):733-43.

70. Pirozzi C, Scholand MB. Smoking cessation and environmental hygiene. Med Clin North Am. 2012;96(4):849-67.

71. Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol. 2009;4:435-59.

72. The definition of emphysema. Report of a National Heart, Lung, and Blood Institute, Division of Lung Diseases workshop. Am Rev Respir Dis. 1985;132(1):182-5.

73. Ekberg-Aronsson M, Pehrsson K, Nilsson JA, Nilsson PM, Lofdahl CG. Mortality in GOLD stages of COPD and its dependence on symptoms of chronic bronchitis.

Respir Res. 2005;6:98.

74. de Oca MM, Halbert RJ, Lopez MV, Perez-Padilla R, Talamo C, Moreno D, et al.

The chronic bronchitis phenotype in subjects with and without COPD: the PLATINO study. Eur Respir J. 2012;40(1):28-36.

75. Vestbo J, Prescott E, Lange P. Association of chronic mucus hypersecretion with FEV1 decline and chronic obstructive pulmonary disease morbidity. Copenhagen City Heart Study Group. Am J Respir Crit Care Med. 1996;153(5):1530-5.

76. Saetta M. Airway inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160(5 Pt 2):S17-20.

77. Fairclough L, Urbanowicz RA, Corne J, Lamb JR. Killer cells in chronic obstructive pulmonary disease. Clin Sci (Lond). 2008;114(8):533-41.

78. Urbanowicz RA, Lamb JR, Todd I, Corne JM, Fairclough LC. Enhanced effector function of cytotoxic cells in the induced sputum of COPD patients. Respir Res.

2010;11:76.

79. Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet. 2004;364(9435):709-21.

80. Finkelstein R, Fraser RS, Ghezzo H, Cosio MG. Alveolar inflammation and its relation to emphysema in smokers. Am J Respir Crit Care Med. 1995;152(5 Pt 1):1666-72.

81. Soler-Cataluna JJ, Martinez-Garcia MA, Roman Sanchez P, Salcedo E, Navarro M, Ochando R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax. 2005;60(11):925-31.

82. Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med. 2008;359(22):2355-65.

83. Almyroudis NG, Grimm MJ, Davidson BA, Rohm M, Urban CF, Segal BH. NETosis and NADPH oxidase: at the intersection of host defense, inflammation, and injury.

Frontiers in Immunology. 2013;4.

84. Chernick WS, Barbero GJ. Composition of tracheobronchial secretions in cystic fibrosis of the pancreas and bronchiectasis. Pediatrics. 1959;24:739-45.

85. Matthews LW, Spector S, Lemm J, Potter JL. Studies on Pulmonary Secretions. I.

The over-All Chemical Composition of Pulmonary Secretions from Patients with Cystic Fibrosis, Bronchiectasis, and Laryngectomy. Am Rev Respir Dis.

1963;88:199-204.

86. Raskin P. Bronchospasm after inhalation of pancreatic dornase. Am Rev Respir Dis.

1968;98(4):697-8.

87. Shak S, Capon DJ, Hellmiss R, Marsters SA, Baker CL. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci U S A.

1990;87(23):9188-92.

88. Fuchs HJ, Borowitz DS, Christiansen DH, Morris EM, Nash ML, Ramsey BW, et al.

Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group. N Engl J Med. 1994;331(10):637-42.

89. Brown SP, Cornforth DM, Mideo N. Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol. 2012;20(7):336-42.

90. Defez C, Fabbro-Peray P, Bouziges N, Gouby A, Mahamat A, Daures JP, et al. Risk factors for multidrug-resistant Pseudomonas aeruginosa nosocomial infection. J Hosp Infect. 2004;57(3):209-16.

91. Ferroni A, Nguyen L, Pron B, Quesne G, Brusset MC, Berche P. Outbreak of nosocomial urinary tract infections due to Pseudomonas aeruginosa in a paediatric surgical unit associated with tap-water contamination. J Hosp Infect. 1998;39(4):301-7.

92. Koch C, Hoiby N. Pathogenesis of cystic fibrosis. Lancet. 1993;341(8852):1065-9.

93. Riou M, Carbonnelle S, Avrain L, Mesaros N, Pirnay JP, Bilocq F, et al. In vivo development of antimicrobial resistance in Pseudomonas aeruginosa strains isolated from the lower respiratory tract of Intensive Care Unit patients with nosocomial pneumonia and receiving antipseudomonal therapy. Int J Antimicrob Agents.

2010;36(6):513-22.

94. Sheppard DN, Welsh MJ. Structure and function of the CFTR chloride channel.

Physiol Rev. 1999;79(1 Suppl):S23-45.

95. Carlsson M, Shukla S, Petersson AC, Segelmark M, Hellmark T. Pseudomonas aeruginosa in cystic fibrosis: pyocyanin negative strains are associated with BPI-ANCA and progressive lung disease. J Cyst Fibros. 2011;10(4):265-71.

96. Smith JJ, Travis SM, Greenberg EP, Welsh MJ. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell. 1996;85(2):229-36.

97. Potempa M, Potempa J. Protease-dependent mechanisms of complement evasion by bacterial pathogens. Biol Chem. 2012;393(9):873-88.

98. van der Plas MJ, Bhongir RK, Kjellstrom S, Siller H, Kasetty G, Morgelin M, et al.

Pseudomonas aeruginosa elastase cleaves a C-terminal peptide from human thrombin that inhibits host inflammatory responses. Nat Commun. 2016;7:11567.

Related documents