• No results found

En del av grisens kromosom 4 kan förklara fettansättning

En kvantitativ egenskap är en egenskap som påverkas av flera gener och miljön. Exempel på kvantitativa egenskaper är fettansättning, längd och vikt. Genom att använda Quantitative Trait Locus (QTL) analys kan man koppla en kvantitativ egenskap till en del av en kromosom. För att kunna genomföra denna analys krävs det att man korsar två raser som skiljer sig åt i den egenskap man är intresserad av. Man följer sedan hur egenskapen nedärvs i flera generationer. De domesticerade vita grisarna (Large White) är större, köttigare och har mindre fett än vildsvinet vilket beror på många års selektion för dessa egenskaper. De stora skillnaderna mellan den vita grisen och vildsvinet gör korsningen mellan dessa lämplig för en QTL analys.

Detta arbete är baserat på en korsning mellan den vita grisen och vildsvinet som genomfördes i slutet av 1980-talet. Då identifierades en region på kromosom 4 hos grisen vilken svarar för 20% av skillnaden i fettansättning mellan raserna. Syftet med min forskning har varit att karakterisera denna kromosomregion och att identifiera bakomliggande gener. Med hjälp av olika metoder har vi kunnat minska regionen och våra resultat visar att den innehåller två segment som påverkar bukfett respektive underhudsfett. Vi har hittat en förändring i DNA sekvensen (mutation) som skulle kunna förklara skillnaden i bukfett men fortsatta studier skall göras för att konfirmera detta fynd. Eftersom grisen genetiskt sett är mycket lik oss människor är vår forskning intressant både för köttproduktion och för forskning om fetma hos människor. Fetma är ett växande problem i världen och man har bl.a. sett samband mellan fetma, framförallt bukfett, och typ 2 diabetes.

Grisen saknar brun fettvävnad

Brun fettvävnad finns i stor utsträckning hos nyfödda däggdjur, gnagare och hos djur som går i ide. Denna vävnad hjälper till att bibehålla kroppstemperaturen. Vid fettnedbrytningen i vanlig fettvävnad produceras molekyler som lagrar energi, ATP. I brun fettvävnad frigörs nästan all energi i form av värme. Man har inte identifierat brun fettvävnad hos gris eller påvisat existensen av proteinet uncoupling protein 1 (UCP1) som är specifikt för brun fettvävnad. UCP1-proteinet är nödvändigt för att bilda värme i stället för ATP. Vi har sekvenserat UCP1-genen hos gris och visat att genen inaktiverades (slogs ut) för ca 20 miljoner år sedan. Avsaknaden av

UCP1-proteinet och brun fettvävnad kan förklara varför griskultingar huttrar för att hålla värmen. Vid svinuppfödning används värmelampor för att hålla nyfödda griskultingar varma. Grisen är också det enda klövdjur som bygger bo åt sina ungar.

Acknowledgements

The studies presented in this thesis were carried out at the Department of Animal Breeding and Genetics at the Swedish University of Agricultural Sciences and at the Department of Medical Biochemistry and Microbiology at Uppsala University.

The project was supported by the Foundation for Strategic Research and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning.

I would like to express my gratitude to all people that have supported and encouraged me during these years.

I would particularly like to thank:

Leif Andersson, main supervisor, for your guidance during this time. Your

expertise and passion for science is very inspiring! I have learnt very much from you.

Maria Moller, co-supervisor, for introducing me to the lab and for all help

and support during these years. Thank you for being an active supervisor even after moving from Uppsala. I really appreciate that.

Stefan Marklund, co-supervisor, for always taking the time to answer my

questions, for all assistance in the lab and for valuable discussions. See you at “Vasaloppet” next year?!

All co-authors for fruitful collaborations, especially Susanne Stern and

Kjell Andersson for statistical analyses, Susan Ansell for all the BAC’s and Emmanuelle Bourneuf, it has been struggling and stimulating, good luck

with your new position in France.

All former and present members of the lab for a good research atmosphere.

Keep it up!! Thank you for all your encouragement and many laughs. I have really enjoyed the time.

Ulle, my roommate, it has been so much fun sharing the office with you,

thanks for putting up with me -. We have had many talks about science and life. (What do we not know about each other?!..)

Lina and Susanne, for many valuable discussions about science and life,

pep talks and for generously sharing your experiences and knowledge. You have been a tremendous support during these years. Lina, it was a great idée to join the mentor-program, thanks.

Ulla Gustafson, for all sequences and lab support and Gudrun Wieslander,

for help with administrative matters and nice talks. The lab wouldn’t manage without you!

Ulla Schmidt and others at Lövsta for taking care of the pigs and providing

all the blood samples.

All friends and colleagues from the UGSBR year, what a fantastic year! Thanks to the SNiB-2005 committee, it was productive and fun working with you.

Helena Mannerfelt, my mentor, for all support, encouragement and

guidelines for my future career. I always felt full with self-confidence after our meetings.

To ALL my friends outside the “lab world”, for keeping my mind of science and for being fantastic friends. You all mean so much to me!

My dearest family, mum, dad and my sister Karin, thank you for always being there, you are the best family one can wish for.

Oskar, for your love and understanding and for always looking at life from

the bright side. When I am with you I feel happy and confident. You are my love, my friend and everything…

References

Algers, B. and Jensen, P. (1990). Thermal microclimate in winter farrowing nests of free-ranging domestic pigs. Livest Prod Sci 25: 177-181. Andersson-Eklund, L., Marklund, L., et al. (1998). Mapping quantitative trait loci for carcass and meat quality traits in a wild boar x Large White intercross. J Anim Sci 76: 694-700.

Andersson, L., Haley, C. S., et al. (1994). Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263: 1771-4. Archibald, A. L. and Haley, C. S. (1998). Genetic Linkage Maps. In: The

Genetics of the Pig. M. F. Rothschild and A. Ruvinsky. Oxon, UK,

CAB International: pp.265-294.

Archibald, A. L., Haley, C. S., et al. (1995). The PiGMaP consortium linkage map of the pig (Sus scrofa). Mamm Genome 6: 157-75. Berthon, D., Herpin, P., et al. (1995). Shivering is the main thermogenic

mechanism in cold-exposed newborn pigs. Proceedings of the

Nutrition Society. 54: 87.

Bidanel, J. P., Milan, D., et al. (2001). Detection of quantitative trait loci for growth and fatness in pigs. Genet Sel Evol 33: 289-309.

Boisserie, J. R., Lihoreau, F., et al. (2005). The position of Hippopotamidae within Cetartiodactyla. Proc Natl Acad Sci U S A 102: 1537-41. Briggs, H. M. (1983). International Pig Breed Encyclopedia. Indiana,

Elanco Products Company.

Brown, N. S., Smart, A., et al. (2000). Thyroid hormone resistance and increased metabolic rate in the RXR-Ȗ-deficient mouse. J Clin Invest

106: 73-9.

Cannon, B. and Nedergaard, J. (2004). Brown adipose tissue: function and physiological significance. Physiol Rev 84: 277-359.

Carlborg, O. and Haley, C. S. (2004). Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5: 618-25.

Chowdhary, B. P. (1998). Cytogenetics and Physical Chromosome Maps. In:

The Genetics of the Pig. M. F. Rothschild and A. Ruvinsky. Oxon,

UK, CAB International: pp. 199-264.

Cinti, S. (2005). The adipose organ. Prostaglandins Leukot Essent Fatty

Clutton-Brock, J. (1999). Pigs. In: A natural history of domesticared

mammals. J. Clutton-Brock. Cambridge, Cambridge University

Press: pp 91-99.

Cox, D. R., Burmeister, M., et al. (1990). Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250: 245-50.

Dauncey, M. J., Wooding, F. B., et al. (1981). Evidence for the presence of brown adipose tissue in the pig. Res Vet Sci 31: 76-81.

Despres, J. P. (2006). Is visceral obesity the cause of the metabolic syndrome? Ann Med 38: 52-63.

Diamond, J. (2002). Evolution, consequences and future of plant and animal domestication. Nature 418: 700-7.

Doerge, R. W. (2002). Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3: 43-52.

Edfors-Lilja, I., Wattrang, E., et al. (2000). Mapping quantitative trait loci for stress induced alterations in porcine leukocyte numbers and functions. Anim Genet 31: 186-93.

Edfors-Lilja, I., Wattrang, E., et al. (1998). Mapping quantitative trait loci for immune capacity in the pig. J Immunol 161: 829-35.

Ellegren, H., Chowdhary, B. P., et al. (1994). A primary linkage map of the porcine genome reveals a low rate of genetic recombination.

Genetics 137: 1089-100.

Enerback, S., Jacobsson, A., et al. (1997). Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387: 90-4.

Epstein, J. and Bichard, M., Eds. (1984). Evolution of Domesticated Animals. New York, Longman: pp 145-162.

Everts, R. E., Rothuizen, J., et al. (2000). Identification of a premature stop codon in the melanocyte-stimulating hormone receptor gene (MC1R) in Labrador and Golden retrievers with yellow coat colour. Anim

Genet 31: 194-9.

Freking, B. A., Murphy, S. K., et al. (2002). Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome

Res 12: 1496-506.

Goss, S. J. and Harris, H. (1975). New method for mapping genes in human chromosomes. Nature 255: 680-4.

Green, P., Falls, K., et al. (1990). Documentation of CRIMAP, ver. 2.4. St. Louis, Washington University School of Medicine, St. Louis. Haugen, B. R., Jensen, D. R., et al. (2004). Retinoid X receptor Ȗ-deficient

mice have increased skeletal muscle lipoprotein lipase activity and less weight gain when fed a high-fat diet. Endocrinology 145: 3679-85.

Hawken, R. J., Murtaugh, J., et al. (1999). A first-generation porcine whole-genome radiation hybrid map. Mamm Genome 10: 824-30.

Henningfield, M. F. and Swick, R. W. (1987). Immunochemical detection and quantitation of brown adipose tissue uncoupling protein.

Biochem Cell Biol 65: 245-51.

Jensen, P. (2002). Behaviour of pigs. In: The ethology of domestic animals -

an introductory text. P. Jensen. Wallingford, CABI: pp. 159-172.

Jeon, J. T., Carlborg, O., et al. (1999). A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus.

Nat Genet 21: 157-8.

Jones, G. F. (1998). Genetic Aspects of Domestication, Common Breeds and their Origin. In: The Genetic of the Pig. M. F. Rothschild and A. Ruvinsky. Oxon, UK, CAB International: pp. 17-50.

Kerje, S., Lind, J., et al. (2003). Melanocortin 1-receptor (MC1R) mutations are associated with plumage colour in chicken. Anim Genet 34: 241-8.

Kijas, J. M., Wales, R., et al. (1998). Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics 150: 1177-85.

Klungland, H., Vage, D. I., et al. (1995). The role of melanocyte-stimulating hormone (MSH) receptor in bovine coat color determination. Mamm

Genome 6: 636-9.

Knott, S. A., Marklund, L., et al. (1998). Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149: 1069-80.

Lai, L., Kang, J. X., et al. (2006). Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24: 435-6.

Lai, L., Kolber-Simonds, D., et al. (2002a). Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning.

Science 295: 1089-92.

Lai, L., Park, K. W., et al. (2002b). Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Mol Reprod Dev 62: 300-6.

Lander, E. S., Linton, L. M., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409: 860-921.

Larson, G., Dobney, K., et al. (2005). Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307: 1618-21.

Marklund, L., Johansson Moller, M., et al. (1996). A comprehensive linkage map of the pig based on a wild pig-Large White intercross. Anim

Genet 27: 255-69.

Marklund, L., Moller, M. J., et al. (1996). A missense mutation in the gene for melanocyte-stimulating hormone receptor (MC1R) is associated with the chestnut coat color in horses. Mamm Genome 7: 895-9. Marklund, L., Nystrom, P. E., et al. (1999). Confirmed quantitative trait loci

for fatness and growth on pig chromosome 4. Heredity 82: 134-41. Mercade, A., Estelle, J., et al. (2005). On growth, fatness, and form: a further

look at porcine chromosome 4 in an Iberian x Landrace cross.

Metzger, D., Imai, T., et al. (2005). Functional role of RXRs and PPARȖ in mature adipocytes. Prostaglandins Leukot Essent Fatty Acids 73: 51-8.

Milan, D., Hawken, R., et al. (2000). IMpRH server: an RH mapping server available on the Web. Bioinformatics 16: 558-9.

Milan, D., Jeon, J. T., et al. (2000). A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288: 1248-51.

Mount, L. E. (1968). The climatic physiology of the pig. London and Southhampton, UK, The Camelot Press Ltd: pp 76, 157.

Nachman, M. W. (2002). Variation in recombination rate across the genome: evidence and implications. Curr Opin Genet Dev 12: 657-63.

Newton, J. M., Wilkie, A. L., et al. (2000). Melanocortin 1 receptor variation in the domestic dog. Mamm Genome 11: 24-30.

Nezer, C., Moreau, L., et al. (1999). An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat

Genet 21: 155-6.

Niebert, M. and Tonjes, R. R. (2005). Evolutionary spread and

recombination of porcine endogenous retroviruses in the Suiformes.

J Virol 79: 649-54.

Onishi, A., Iwamoto, M., et al. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science 289: 1188-90.

Perez-Enciso, M., Clop, A., et al. (2000). A QTL on pig chromosome 4 affects fatty acid metabolism: evidence from an Iberian by Landrace intercross. J Anim Sci 78: 2525-31.

Prather, R. S., Hawley, R. J., et al. (2003). Transgenic swine for biomedicine and agriculture. Theriogenology 59: 115-23.

Robbins, L. S., Nadeau, J. H., et al. (1993). Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72: 827-34.

Rohrer, G. A., Alexander, L. J., et al. (1996). A comprehensive map of the porcine genome. Genome Res 6: 371-91.

Rohrer, G. A., Alexander, L. J., et al. (1994). A microsatellite linkage map of the porcine genome. Genetics 136: 231-45.

Ruvinsky, A. and Rothschild, M. F. (1998). Systematics and Evolution of the Pig. In: The Genetics of the Pig. M. F. Rothschild and A. Ruvinsky. Oxon, UK, CAB International: pp. 1-16.

Schmitz, A., Chaput, B., et al. (1992). Swine chromosomal DNA quantification by bivariate flow karyotyping and karyotype interpretation. Cytometry 13: 703-10.

Springer, M. S., Murphy, W. J., et al. (2003). Placental mammal

diversification and the Cretaceous-Tertiary boundary. Proc Natl

Acad Sci U S A 100: 1056-61.

Syvänen, A. C. (2005). Toward genome-wide SNP genotyping. Nat Genet

Trayhurn, P., Temple, N. J., et al. (1989). Evidence from immunoblotting studies on uncoupling protein that brown adipose tissue is not present in the domestic pig. Can J Physiol Pharmacol 67: 1480-5. Våge, D. I., Klungland, H., et al. (1999). Molecular and pharmacological

characterization of dominant black coat color in sheep. Mamm

Genome 10: 39-43.

Våge, D. I., Lu, D., et al. (1997). A non-epistatic interaction of agouti and extension in the fox, Vulpes vulpes. Nat Genet 15: 311-5.

Walling, G. A., Archibald, A. L., et al. (1998). Mapping of quantitative trait loci on porcine chromosome 4. Anim Genet 29: 415-24.

Van Laere, A. S., Nguyen, M., et al. (2003). A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425: 832-6.

Waterston, R. H., Lindblad-Toh, K., et al. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520-62. Venter, J. C., Adams, M. D., et al. (2001). The sequence of the human

genome. Science 291: 1304-51.

Ventura, M., Archidiacono, N., et al. (2001). Centromere emergence in evolution. Genome Res 11: 595-9.

Wernersson, R., Schierup, M. H., et al. (2005). Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing.

BMC Genomics 6: 70.

Yerle, M., Pinton, P., et al. (2002). Generation and characterization of a 12,000-rad radiation hybrid panel for fine mapping in pig. Cytogenet

Genome Res 97: 219-28.

Yerle, M., Pinton, P., et al. (1998). Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs.

Related documents