• No results found

Populärvetenskaplig sammanfattning på svenska

In document CD4+ T Lymphocytes (Page 43-56)

6 POPULÄRVETENSKAPLIG SAMMANFATTNING

förhindra inflammation, har ett metyleringsmönster som inte tillåter ett stabilt uttryck av FOXP3 genen. Denna upptäckt förklarar varför regulatoriska T celler är så unika i sin förmåga att uttrycka FOXP3-genen stabilt. Det unika metyleringsmönstret som vi upptäckte hos regulatoriska T celler kan även användas för att identifiera regulatoriska T celler i blodprover från patienter.

Vi fortsatte med att undersöka metyleringsmönster i T celler som återfinns inuti tjocktarmscancer. Vid cancer har det tidigare visat sig att det är fördelaktigt att ha T celler av Th1-typ. Th1 cellerna utsöndrar bland annat signaleringsproteinet IFNG som i sin tur kan medverka till att döda tumörceller.

När vi undersökte metyleringsmönstret hos IFNG genen i T celler från tjocktarmscancer så fann vi intressant nog att denna gen var nedtystad. Denna upptäckt skulle kunna förklara varför celler som återfinns i tumörer är så dåliga producenter av IFNG.

Eftersom metyleringsmönster hos arvsmassan kan förutspå genuttrycket i T cellerna utarbetade vi en metod för att kunna kartlägga T cellernas identitet utifrån deras epigenetiska förutsättningar för genuttryck. Genom att ta reda på vilka celler som finns närvarande i inflammerad vävnad hos patienter, kan man få ökad förståelse för de mekanismer som ligger till grund för sjukdomen, och på så vis kunna utarbeta bättre behandlingar. Med detta i åtanke använde vi vår metod för att kartlägga T celler från patienter med autoimmuna sjukdomar (reumatoid artrit och multipel skleros). Vi undersökte både T celler från blodprover, och även T celler från inflammerade leder. Vi fann att T cellerna inuti inflammerade leder från patienter med reumatism är av Th1 och T regulatorisk typ. I djurexperimentella modeller av reumatism och multipel skleros har man visat att T celler av Th17 typ är orsaken till inflammationen, men dessa celler återfanns inte i de prover som vi undersökte med vår metod.

Detta skulle kunna bero på att djurmodellerna inte korrekt återspeglar det inflammatoriska förloppet hos sjuka patienter.

I denna avhandlings sista projekt undersöktes hur små molekyler som uttrycks från arvsmassan i sin tur kan påverka uttrycket av andra gener. Vi upptäckte att mikro-RNA molekylen miR-155 kan styra uttrycket av proteinet CTLA-4. CTLA-4 är ett mycket viktigt protein som styr T cellernas delningshastighet. Det har bland annat visat sig att man kan behandla autoimmuna sjukdomar med mediciner som härmar CTLA-4 proteinets egenskaper. Eftersom miR-155 molekylen styr uttrycket av CTLA-4 kan man tänka sig att även denna molekyl kan utgöra en målmolekyl i syfte att behandla sjukdomar.

Sammanfattningsvis kan man säga att de projekt som är inkluderade i denna avhandling har bidragit till ökad förståelse för de mekanismer som ligger till grund för genuttryck hos T celler. Vi har hittat bidragande orsaker till varför immunförsvaret ibland inte kan bekämpa uppkomsten av tumörer. Vi har utarbetat en metod som kan kartlägga T cellernas identitet i patientprover, samt funnit ett mikro-RNA som styr delningshastigheten hos T cellerna.

7 ACKNOWLEDGEMENTS

Many people have contributed to the content of this book, not only the people directly involved in laboratory work and/or writing of manuscripts. I would like to send special thanks to the following people:

My supervisor Ola Winqvist, a visionary, a never ending source of inspiration and a wonderful person with contagious enthusiasm. Thank you for accepting me as a PhD student in your group and for being the best supervisor one can imagine. It never seize to amaze me how you always have a few extra minutes for a conversation, even though I know you are one of the busiest men on the planet.

Rolf Ohlsson, my co-supervisor, for introducing me into the epigenetic field of research, and for valuable education in your lab.

Per Marits, for being my teacher when working on my masters-thesis. I have learned so much from our discussions, and I am truly impressed by your immense knowledge in immunology.

Thank you Emma Lundgren, for being a great friend during these past years. I am so happy that we signed up for the ITG group at the same time.

Former and present colleagues of the ITG group; Signe Hässler and Mona Karlsson, for helping me out in the beginning. A special thanks to Mona for many laughs and op material arriving at my front door by taxi at 2 am. Johan Brännström, for nice company and for being my side-kick when harassing

“Milton”. My co-author Malin Winerdahl, for being more careful and deliberate than me during our mutual experiments, something I am very grateful for. Thanks to Petra Jones, for being such a gentle and kind person and for being a great company at morning coffee. Martina Jones, for nice company and for your spirited personality. Ludvig Linton, for great collaboration, those clown-school lessons really payed off!!! Emma Ahlén, for keeping track of things such as primer sheets etc that tend to disappear from me, and thank you for great collaboration. Michael Eberhardson, for an eccentric and entertaining personality, and for amusing stories about the suburban lifestyle on Lidingö.

The rest of the ITG group, including Evelina Lindmark, and Ali Zerakzadeh for creating a great atmosphere at work.

I would also like to thank my collaborators and coauthors Vivianne Malmström and Fredrik Piehl, for fruitful discussions and for your expertise in autoimmune diseases. Andor Pivarsci, for rewarding scientific collaboration and interesting discussions.

A special thanks to my mentor Hans Grönlund, for encouraging small talks and guidance in my scientific career.

All the rest of the staff at L2:04 for making every day at work enjoyable.

Ett alldeles speciellt tack till mina vänner och mina båda familjer:

Mina underbara systrar Barbro och Anna-Karin, för att ni alltid finns där. Min mamma Monica och min pappa Lennart för allt stöd och för att ni är så snälla och generösa. Jag vill även tacka Gunilla för all vänlighet och generositet.

Mina älsklingar Nadja och lilla Julia, som betyder allt för mig och som jag är så stolt över.

8 REFERENCES

1. Starr, T.K., Jameson, S.C., and Hogquist, K.A. 2003. Positive and negative selection of T cells. Annu Rev Immunol 21:139-176.

2. Apostolou, I., Sarukhan, A., Klein, L., and von Boehmer, H. 2002.

Origin of regulatory T cells with known specificity for antigen. Nat Immunol 3:756-763.

3. Bensinger, S.J., Bandeira, A., Jordan, M.S., Caton, A.J., and Laufer, T.M. 2001. Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4(+)25(+) immunoregulatory T cells. J Exp Med 194:427-438.

4. Jordan, M.S., Boesteanu, A., Reed, A.J., Petrone, A.L., Holenbeck, A.E., Lerman, M.A., Naji, A., and Caton, A.J. 2001. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide.

Nat Immunol 2:301-306.

5. Aschenbrenner, K., D'Cruz, L.M., Vollmann, E.H., Hinterberger, M., Emmerich, J., Swee, L.K., Rolink, A., and Klein, L. 2007. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 8:351-358.

6. Abbas, A.K., Murphy, K.M., and Sher, A. 1996. Functional diversity of helper T lymphocytes. Nature 383:787-793.

7. Grogan, J.L., Mohrs, M., Harmon, B., Lacy, D.A., Sedat, J.W., and Locksley, R.M. 2001. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14:205-215.

8. Afkarian, M., Sedy, J.R., Yang, J., Jacobson, N.G., Cereb, N., Yang, S.Y., Murphy, T.L., and Murphy, K.M. 2002. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat Immunol 3:549-557.

9. Szabo, S.J., Kim, S.T., Costa, G.L., Zhang, X., Fathman, C.G., and Glimcher, L.H. 2000. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655-669.

10. Thieu, V.T., Yu, Q., Chang, H.C., Yeh, N., Nguyen, E.T., Sehra, S., and Kaplan, M.H. 2008. Signal transducer and activator of transcription 4 is required for the transcription factor T-bet to promote T helper 1 cell-fate determination. Immunity 29:679-690.

11. Shi, M., Lin, T.H., Appell, K.C., and Berg, L.J. 2008. Janus-kinase-3-dependent signals induce chromatin remodeling at the Ifng locus during T helper 1 cell differentiation. Immunity 28:763-773.

12. Schmitz, J., Thiel, A., Kuhn, R., Rajewsky, K., Muller, W.,

Assenmacher, M., and Radbruch, A. 1994. Induction of interleukin 4 (IL-4) expression in T helper (Th) cells is not dependent on IL-4 from non-Th cells. J Exp Med 179:1349-1353.

13. Amsen, D., Blander, J.M., Lee, G.R., Tanigaki, K., Honjo, T., and Flavell, R.A. 2004. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117:515-526.

14. Kurata, H., Lee, H.J., O'Garra, A., and Arai, N. 1999. Ectopic expression of activated Stat6 induces the expression of Th2-specific cytokines and transcription factors in developing Th1 cells. Immunity 11:677-688.

15. Lee, H.J., Takemoto, N., Kurata, H., Kamogawa, Y., Miyatake, S., O'Garra, A., and Arai, N. 2000. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 192:105-115.

16. Kim, J.I., Ho, I.C., Grusby, M.J., and Glimcher, L.H. 1999. The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 10:745-751.

17. Ho, I.C., Hodge, M.R., Rooney, J.W., and Glimcher, L.H. 1996. The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85:973-983.

18. Murphy, C.A., Langrish, C.L., Chen, Y., Blumenschein, W.,

McClanahan, T., Kastelein, R.A., Sedgwick, J.D., and Cua, D.J. 2003.

Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951-1957.

19. Cua, D.J., Sherlock, J., Chen, Y., Murphy, C.A., Joyce, B., Seymour, B., Lucian, L., To, W., Kwan, S., Churakova, T., et al. 2003. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744-748.

20. Harrington, L.E., Hatton, R.D., Mangan, P.R., Turner, H., Murphy, T.L., Murphy, K.M., and Weaver, C.T. 2005. Interleukin 17-producing CD4+

effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123-1132.

21. Ivanov, II, McKenzie, B.S., Zhou, L., Tadokoro, C.E., Lepelley, A., Lafaille, J.J., Cua, D.J., and Littman, D.R. 2006. The orphan nuclear receptor RORgammat directs the differentiation program of

proinflammatory IL-17+ T helper cells. Cell 126:1121-1133.

22. Yang, X.O., Panopoulos, A.D., Nurieva, R., Chang, S.H., Wang, D., Watowich, S.S., and Dong, C. 2007. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282:9358-9363.

23. Yang, X.O., Pappu, B.P., Nurieva, R., Akimzhanov, A., Kang, H.S., Chung, Y., Ma, L., Shah, B., Panopoulos, A.D., Schluns, K.S., et al.

2008. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28:29-39.

24. Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L., and Kuchroo, V.K. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235-238.

25. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M., and Stockinger, B. 2006. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179-189.

26. Acosta-Rodriguez, E.V., Rivino, L., Geginat, J., Jarrossay, D., Gattorno, M., Lanzavecchia, A., Sallusto, F., and Napolitani, G. 2007. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8:639-646.

27. Wilson, N.J., Boniface, K., Chan, J.R., McKenzie, B.S., Blumenschein, W.M., Mattson, J.D., Basham, B., Smith, K., Chen, T., Morel, F., et al.

2007. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8:950-957.

28. Fontenot, J.D., Gavin, M.A., and Rudensky, A.Y. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330-336.

29. Hori, S., Nomura, T., and Sakaguchi, S. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057-1061.

30. Gambineri, E., Torgerson, T.R., and Ochs, H.D. 2003. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol 15:430-435.

31. Brunkow, M.E., Jeffery, E.W., Hjerrild, K.A., Paeper, B., Clark, L.B., Yasayko, S.A., Wilkinson, J.E., Galas, D., Ziegler, S.F., and Ramsdell, F. 2001. Disruption of a new forkhead/winged-helix protein, scurfin,

results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68-73.

32. Pacholczyk, R., Ignatowicz, H., Kraj, P., and Ignatowicz, L. 2006.

Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells.

Immunity 25:249-259.

33. Hsieh, C.S., Zheng, Y., Liang, Y., Fontenot, J.D., and Rudensky, A.Y.

2006. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat Immunol 7:401-410.

34. Fontenot, J.D., Rasmussen, J.P., Gavin, M.A., and Rudensky, A.Y.

2005. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6:1142-1151.

35. Tai, X., Cowan, M., Feigenbaum, L., and Singer, A. 2005. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 6:152-162.

36. Burchill, M.A., Yang, J., Vogtenhuber, C., Blazar, B.R., and Farrar, M.A. 2007. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 178:280-290.

37. Burchill, M.A., Yang, J., Vang, K.B., Moon, J.J., Chu, H.H., Lio, C.W., Vegoe, A.L., Hsieh, C.S., Jenkins, M.K., and Farrar, M.A. 2008. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28:112-121.

38. Lio, C.W., and Hsieh, C.S. 2008. A two-step process for thymic regulatory T cell development. Immunity 28:100-111.

39. Benson, M.J., Pino-Lagos, K., Rosemblatt, M., and Noelle, R.J. 2007.

All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 204:1765-1774.

40. Chen, W., Jin, W., Hardegen, N., Lei, K.J., Li, L., Marinos, N., McGrady, G., and Wahl, S.M. 2003. Conversion of peripheral

CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875-1886.

41. Xiao, S., Jin, H., Korn, T., Liu, S.M., Oukka, M., Lim, B., and Kuchroo, V.K. 2008. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol 181:2277-2284.

42. Kretschmer, K., Apostolou, I., Hawiger, D., Khazaie, K., Nussenzweig, M.C., and von Boehmer, H. 2005. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 6:1219-1227.

43. Taams, L.S., Palmer, D.B., Akbar, A.N., Robinson, D.S., Brown, Z., and Hawrylowicz, C.M. 2006. Regulatory T cells in human disease and their potential for therapeutic manipulation. Immunology 118:1-9.

44. Vukmanovic-Stejic, M., Zhang, Y., Cook, J.E., Fletcher, J.M.,

McQuaid, A., Masters, J.E., Rustin, M.H., Taams, L.S., Beverley, P.C., Macallan, D.C., et al. 2006. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 116:2423-2433.

45. Akbar, A.N., Vukmanovic-Stejic, M., Taams, L.S., and Macallan, D.C.

2007. The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat Rev Immunol 7:231-237.

46. Pillai, V., and Karandikar, N.J. 2007. Human regulatory T cells: a unique, stable thymic subset or a reversible peripheral state of differentiation? Immunol Lett 114:9-15.

47. Wang, J., Ioan-Facsinay, A., van der Voort, E.I., Huizinga, T.W., and Toes, R.E. 2007. Transient expression of FOXP3 in human activated

48. Hwang, E.S., Szabo, S.J., Schwartzberg, P.L., and Glimcher, L.H. 2005.

T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307:430-433.

49. Djuretic, I.M., Levanon, D., Negreanu, V., Groner, Y., Rao, A., and Ansel, K.M. 2007. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat Immunol 8:145-153.

50. Mullen, A.C., Hutchins, A.S., High, F.A., Lee, H.W., Sykes, K.J., Chodosh, L.A., and Reiner, S.L. 2002. Hlx is induced by and genetically interacts with T-bet to promote heritable T(H)1 gene induction. Nat Immunol 3:652-658.

51. Mikhalkevich, N., Becknell, B., Caligiuri, M.A., Bates, M.D., Harvey, R., and Zheng, W.P. 2006. Responsiveness of naive CD4 T cells to polarizing cytokine determines the ratio of Th1 and Th2 cell differentiation. J Immunol 176:1553-1560.

52. Kaminuma, O., Kitamura, F., Kitamura, N., Miyagishi, M., Taira, K., Yamamoto, K., Miura, O., and Miyatake, S. 2004. GATA-3 suppresses IFN-gamma promoter activity independently of binding to

cis-regulatory elements. FEBS Lett 570:63-68.

53. Usui, T., Nishikomori, R., Kitani, A., and Strober, W. 2003. GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12Rbeta2 chain or T-bet. Immunity 18:415-428.

54. Mantel, P.Y., Kuipers, H., Boyman, O., Rhyner, C., Ouaked, N., Ruckert, B., Karagiannidis, C., Lambrecht, B.N., Hendriks, R.W., Crameri, R., et al. 2007. GATA3-driven Th2 responses inhibit TGF-beta1-induced FOXP3 expression and the formation of regulatory T cells. PLoS Biol 5:e329.

55. Ouaked, N., Mantel, P.Y., Bassin, C., Burgler, S., Siegmund, K., Akdis, C.A., and Schmidt-Weber, C.B. 2009. Regulation of the foxp3 gene by the Th1 cytokines: the role of IL-27-induced STAT1. J Immunol 182:1041-1049.

56. Zhou, L., Lopes, J.E., Chong, M.M., Ivanov, II, Min, R., Victora, G.D., Shen, Y., Du, J., Rubtsov, Y.P., Rudensky, A.Y., et al. 2008. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453:236-240.

57. Yang, X.O., Nurieva, R., Martinez, G.J., Kang, H.S., Chung, Y., Pappu, B.P., Shah, B., Chang, S.H., Schluns, K.S., Watowich, S.S., et al. 2008.

Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44-56.

58. Berger, S.L. 2007. The complex language of chromatin regulation during transcription. Nature 447:407-412.

59. Wilson, C.B., Makar, K.W., Shnyreva, M., and Fitzpatrick, D.R. 2005.

DNA methylation and the expanding epigenetics of T cell lineage commitment. Semin Immunol 17:105-119.

60. Bruniquel, D., and Schwartz, R.H. 2003. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process.

Nat Immunol 4:235-240.

61. Kersh, E.N., Fitzpatrick, D.R., Murali-Krishna, K., Shires, J., Speck, S.H., Boss, J.M., and Ahmed, R. 2006. Rapid demethylation of the IFN-gamma gene occurs in memory but not naive CD8 T cells. J Immunol 176:4083-4093.

62. Jones, P.L., Veenstra, G.J., Wade, P.A., Vermaak, D., Kass, S.U., Landsberger, N., Strouboulis, J., and Wolffe, A.P. 1998. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription.

Nat Genet 19:187-191.

63. D'Alessio, A.C., and Szyf, M. 2006. Epigenetic tete-a-tete: the bilateral relationship between chromatin modifications and DNA methylation.

Biochem Cell Biol 84:463-476.

64. West, A.G., and Fraser, P. 2005. Remote control of gene transcription.

Hum Mol Genet 14 Spec No 1:R101-111.

65. Bell, A.C., West, A.G., and Felsenfeld, G. 1999. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98:387-396.

66. Maston, G.A., Evans, S.K., and Green, M.R. 2006. Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet 7:29-59.

67. Penix, L., Weaver, W.M., Pang, Y., Young, H.A., and Wilson, C.B.

1993. Two essential regulatory elements in the human interferon gamma promoter confer activation specific expression in T cells. J Exp Med 178:1483-1496.

68. Penix, L.A., Sweetser, M.T., Weaver, W.M., Hoeffler, J.P., Kerppola, T.K., and Wilson, C.B. 1996. The proximal regulatory element of the interferon-gamma promoter mediates selective expression in T cells. J Biol Chem 271:31964-31972.

69. Young, H.A., Ghosh, P., Ye, J., Lederer, J., Lichtman, A., Gerard, J.R., Penix, L., Wilson, C.B., Melvin, A.J., McGurn, M.E., et al. 1994.

Differentiation of the T helper phenotypes by analysis of the

methylation state of the IFN-gamma gene. J Immunol 153:3603-3610.

70. Murphy, K.M., Ouyang, W., Farrar, J.D., Yang, J., Ranganath, S., Asnagli, H., Afkarian, M., and Murphy, T.L. 2000. Signaling and transcription in T helper development. Annu Rev Immunol 18:451-494.

71. Soutto, M., Zhang, F., Enerson, B., Tong, Y., Boothby, M., and Aune, T.M. 2002. A minimal IFN-gamma promoter confers Th1 selective expression. J Immunol 169:4205-4212.

72. Lee, D.U., Avni, O., Chen, L., and Rao, A. 2004. A distal enhancer in the interferon-gamma (IFN-gamma) locus revealed by genome sequence comparison. J Biol Chem 279:4802-4810.

73. Shnyreva, M., Weaver, W.M., Blanchette, M., Taylor, S.L., Tompa, M., Fitzpatrick, D.R., and Wilson, C.B. 2004. Evolutionarily conserved sequence elements that positively regulate IFN-gamma expression in T cells. Proc Natl Acad Sci U S A 101:12622-12627.

74. Hatton, R.D., Harrington, L.E., Luther, R.J., Wakefield, T., Janowski, K.M., Oliver, J.R., Lallone, R.L., Murphy, K.M., and Weaver, C.T.

2006. A distal conserved sequence element controls Ifng gene expression by T cells and NK cells. Immunity 25:717-729.

75. Schoenborn, J.R., Dorschner, M.O., Sekimata, M., Santer, D.M.,

Shnyreva, M., Fitzpatrick, D.R., Stamatoyannopoulos, J.A., and Wilson, C.B. 2007. Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding

interferon-gamma. Nat Immunol 8:732-742.

76. Agarwal, S., and Rao, A. 1998. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation.

Immunity 9:765-775.

77. Zhang, F., and Boothby, M. 2006. T helper type 1-specific Brg1 recruitment and remodeling of nucleosomes positioned at the IFN-gamma promoter are Stat4 dependent. J Exp Med 203:1493-1505.

78. Chang, S., and Aune, T.M. 2005. Histone hyperacetylated domains across the Ifng gene region in natural killer cells and T cells. Proc Natl Acad Sci U S A 102:17095-17100.

79. Chang, S., and Aune, T.M. 2007. Dynamic changes in

histone-methylation 'marks' across the locus encoding interferon-gamma during the differentiation of T helper type 2 cells. Nat Immunol 8:723-731.

80. Spilianakis, C.G., Lalioti, M.D., Town, T., Lee, G.R., and Flavell, R.A.

2005. Interchromosomal associations between alternatively expressed loci. Nature 435:637-645.

81. Jones, B., and Chen, J. 2006. Inhibition of IFN-gamma transcription by site-specific methylation during T helper cell development. Embo J

IFN-gamma gene during Th1 and Th2 cell differentiation. J Immunol 179:6410-6415.

83. Tong, Y., Aune, T., and Boothby, M. 2005. T-bet antagonizes mSin3a recruitment and transactivates a fully methylated IFN-gamma promoter via a conserved T-box half-site. Proc Natl Acad Sci U S A 102:2034-2039.

84. Loots, G.G., Locksley, R.M., Blankespoor, C.M., Wang, Z.E., Miller, W., Rubin, E.M., and Frazer, K.A. 2000. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence

comparisons. Science 288:136-140.

85. Takemoto, N., Koyano-Nakagawa, N., Yokota, T., Arai, N., Miyatake, S., and Arai, K. 1998. Th2-specific DNase I-hypersensitive sites in the murine IL-13 and IL-4 intergenic region. Int Immunol 10:1981-1985.

86. Lee, G.R., Fields, P.E., and Flavell, R.A. 2001. Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity 14:447-459.

87. Mohrs, M., Blankespoor, C.M., Wang, Z.E., Loots, G.G., Afzal, V., Hadeiba, H., Shinkai, K., Rubin, E.M., and Locksley, R.M. 2001.

Deletion of a coordinate regulator of type 2 cytokine expression in mice.

Nat Immunol 2:842-847.

88. Agarwal, S., Avni, O., and Rao, A. 2000. Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo.

Immunity 12:643-652.

89. Solymar, D.C., Agarwal, S., Bassing, C.H., Alt, F.W., and Rao, A.

2002. A 3' enhancer in the IL-4 gene regulates cytokine production by Th2 cells and mast cells. Immunity 17:41-50.

90. Ansel, K.M., Greenwald, R.J., Agarwal, S., Bassing, C.H., Monticelli, S., Interlandi, J., Djuretic, I.M., Lee, D.U., Sharpe, A.H., Alt, F.W., et al. 2004. Deletion of a conserved Il4 silencer impairs T helper type 1-mediated immunity. Nat Immunol 5:1251-1259.

91. Lee, G.R., Fields, P.E., Griffin, T.J., and Flavell, R.A. 2003. Regulation of the Th2 cytokine locus by a locus control region. Immunity 19:145-153.

92. Avni, O., Lee, D., Macian, F., Szabo, S.J., Glimcher, L.H., and Rao, A.

2002. T(H) cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat Immunol 3:643-651.

93. Fields, P.E., Kim, S.T., and Flavell, R.A. 2002. Cutting edge: changes in histone acetylation at the IL-4 and IFN-gamma loci accompany

Th1/Th2 differentiation. J Immunol 169:647-650.

94. Fields, P.E., Lee, G.R., Kim, S.T., Bartsevich, V.V., and Flavell, R.A.

2004. Th2-specific chromatin remodeling and enhancer activity in the Th2 cytokine locus control region. Immunity 21:865-876.

95. Lee, D.U., Agarwal, S., and Rao, A. 2002. Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity 16:649-660.

96. Santangelo, S., Cousins, D.J., Winkelmann, N.E., and Staynov, D.Z.

2002. DNA methylation changes at human Th2 cytokine genes coincide with DNase I hypersensitive site formation during CD4(+) T cell differentiation. J Immunol 169:1893-1903.

97. Winders, B.R., Schwartz, R.H., and Bruniquel, D. 2004. A distinct region of the murine IFN-gamma promoter is hypomethylated from early T cell development through mature naive and Th1 cell

differentiation, but is hypermethylated in Th2 cells. J Immunol 173:7377-7384.

98. Spilianakis, C.G., and Flavell, R.A. 2004. Long-range

intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol 5:1017-1027.

99. Lee, G.R., Spilianakis, C.G., and Flavell, R.A. 2005. Hypersensitive site 7 of the TH2 locus control region is essential for expressing TH2

In document CD4+ T Lymphocytes (Page 43-56)

Related documents