• No results found

En människas metabolom består av en rad olika småmolekyler, s.k.

metaboliter. Exempel på metaboliter kan vara aminosyror, vitaminer och sockerarter. Sammansättningen av en människas metabolom påverkas dels av det genetiska arvet, men också av allt en kropp kan tänkas utsättas för såsom mat, dryck, gifter och sjukdomar. Genom att studera förändringar i metabolomet, s.k. metabolomik, kan man få en uppfattning om vad som försiggår i kroppen. Informationen från en metabolomikstudie kan således användas för att till exempel försöka förstå mekanismen bakom en sjukdom eller för att få en inblick i hur en viss kost påverkar kroppen. För att öka chansen att upptäcka en eventuell förändring i metabolomet har de flesta mätmetoder inom metabolomik utvecklats för att kunna bestämma så många metaboliter som möjligt. Tyvärr har denna prioritering oftast gjorts utan reflektion över vilken kvalité varje enskild metabolit mäts med.

Selektivitet är en parameter som är av stor vikt när det kommer till mätkvalitet.

Selektivitet skulle kunna liknas vid ett mått på andelen störande ämnen (interferenser) vid bestämning av en metabolit. Trots denna viktiga aspekt negligeras oftast selektivitet inom metabolomikforskning. Problematiken med att åsidosätta selektivitet skulle kunna liknas vid att man var ute efter att väga en gammelgädda i en sjö, men att man inte reflekterar över att man vid invägningen av gäddan samtidigt har en brax eller mört på vågen. Denna avhandling avser att belysa betydelsen av selektivitet samt att utveckla en metod för att kunna mäta selektivitet i metabolomik.

För att minimera effekten av interferenser på mätningen av metaboliter är det brukligt att prover förbehandlas innan själva mätningen utförs. Eftersom de flesta metabolomikmetoder har utvecklats för att detektera så många metaboliter som möjligt används oftast väldigt generella förbehandlingar av provet. Det leder till att en förhållandevis stor andel av interferenser är kvar i provet vid mätning. I avhandlingen studeras flera olika förberedelsertekniker och dess effekt på selektivitet. Genomgående upptäcktes en rad interferenser störa bestämningen av metaboliter som ett resultat av en alltför dålig selektivitet. Denna effekt kan ha stor betydelse i en metabolomikstudie då en observerad mätförändring hos en molekyl de facto kan vara en sekundär effekt av en förändring i en interferens. Till exempel visade det sig att salthalten i proverna hade stor inverkan på mätningarna och effekten har visats kunna ge

en upp till 30 ggr förändring i respons hos metaboliter. Detta kan i en metabolomikstudie vara förödande då det sedan länge är känt att salthalten i t.ex. urin tenderar att fluktuera både mellan individer och tid på dygnet.

En metabolomikstudie består av en rad steg där följande oftast är inkluderade:

generering av prover, provupparbetning, mätning, dataanalys och tolkning av resultat. Varje steg i flödet kan utföras på olika sätt, vilket i sin tur kommer att ha mer eller mindre påverkan på metabolitpresentationen av metabolomet.

Därför behövs det bra tillvägagångsätt för att kunna utvärdera olika metoder för varje enskilt steg. I avhandlingen presenteras ett nytt och unikt tillvägagångsätt för att bestämma selektivitet i metabolomikstudier.

Tillvägagångsättet går ut på att det för varje enskild metabolit beräknas en kvot som anger hur stor andel den aktuella metabolitens respons utgör av den totala responsen vid just den mätningen (dvs. en fisks viktsandel av den totala vikten på vågen). Ett värde på 1 betyder hög selektivitet då det bara är en metabolit som mäts vid just den tidpunkten. Vid ett värde nära 0 så gäller det omvända och metaboliten i fråga mäts uppenbarligen med en väldigt låg selektivitet. Detta värde skulle därmed kunna liknas vid ett mått på hur hög kvalitet varje enskild metabolit kan mätas med. Tillvägagångsättet kan därför vara användbart vid jämförelser mellan metoder och hjälpa till att välja den mest lämpliga.

Eftersom varje metabolomikstudie oftast är unik kan man anta att interferenserna i stor utsträckning också är unika. Det är därför författarens uppfattning att generiska metoder bör undvikas och varje steg i metabolomikflödet bör optimeras med avseende på nyckelmetaboliter och förväntade interferenser i det studerade provet. Selektivitet bör betraktas som en viktig parameter i metabolomikstudier eftersom dess länk till mätkvalitet är tydligare än när man t.ex. mäter antalet detekterbara metaboliter. En allmänt förbättrad selektivitet inom metabolomikfältet bör leda till ökad kvalitet inom fältet. Detta skulle kunna leda till att färre falska positiva/negativa resultat genereras vilket i sin tur skulle spara både tid och resurser.

Acknowledgments

The work of this thesis was carried out at the Division of Analytical Pharmaceutical Chemistry at Uppsala University, Sweden. I would like to express my sincere gratitude and appreciation to the following persons, I wouldn’t have managed without you;

First of all I would like to thank my main supervisor prof. Curt Pettersson for recruiting and guiding me throughout these years. I am very grateful for your straightforward manner and for always having time for even the smallest things. Even though I’ve been part of teams throughout my entire life, it is not until now I understand the true concept of being part of a team. I would also like to thank prof. Torbjörn Arvidsson, my co-supervisor, for always staying positive and for always trying to see things from another perspective.

All former and present colleagues:

Mikael Engskog and Jakob Haglöf, thanks for all the stimulating discussions. It has been a real pleasure and a privilege being part of the same research group for more than 6 years. Ylva Hedeland, thank you for all advices, both technology and teaching related; I wouldn’t have managed without them. Mikael Hedeland, thank you for being a role model when it comes to critical thinking, a true inspiration source. The present members of the A-team; Alfred and Annelie, thanks for the friendship during these years, it wouldn’t have been the same without you guys. I have truly valued our relaxed discussions, both the scientific and the non-scientific ones, and I’m really looking forward to our next trip. The former members of the A-team;

Alexander and Axel, thanks for climbing the ‘teaching ladder’ together. I still remember the first course we supervised together, it was insane. Victoria, thanks for being an inspiration source when it comes to orderliness and, even though I try, I will never reach your caliber. Olle, thanks for all tips and chats over these years, I have enjoyed them all. Ida, thanks for valid tips during our group meetings and special thanks for not participating in the ‘Blodomloppet 2016’, I really needed to ‘win’ something that year. Kristian, my roommate, thanks for pleasant company, nice chats and for the quick fixes with my computer and Excel. To all the other current and former colleagues at the division, thanks for making this trip enjoyable and for all the help I have

received. Also big thanks to all other colleagues at the department, for assistance and for the lunch and coffee breaks during these years.

This thesis would not have been possible without the expertise and contribution from my co-authors, all of whom I greatly thank. I would also like to thank the current and former employees at the Medical product agency that I unfortunate don’t meet every day. Torgny, Kalle, Birgit, Andreas, Ahmad and Monika, thanks for all the tips and for always staying positive.

Special thanks to Ian McEwen, for inspiring me to go into research and introducing me to NMR spectroscopy.

Smålands nation and The Swedish Academy of Pharmaceutical Sciences (Apotekarsocieteten), thanks for traveling grants and scholarships enabling me to participate in international courses and conferences.

Friends and family;

Åke, thanks for all weird topics we have discussed during these years and for being a good friend. I still enjoy your company, even though we have swapped the bouldering hall, our playground, to a playground for children. Jonas, thanks for once in a while reminding me the importance of having a ‘semla’

or ‘smågodis’. Big thanks to all friends outside the university, helping me to relax and enjoy life. Lars-Göran and Berit Nilsson, thanks for all support during these years and for welcoming me into your family with open arms.

My parents Lisa and Lars, and my siblings Nina, Josefin and Freja, thanks for support and for all wide discussions at the kitchen table; they have enlarged my perspective and built my character.

Finally I would like to thank the most important ones in my life, Ellinor, Myra and Ture. Thanks for making my worst days feel much better and for giving me the energy to pull through. Ellinor, it’s an understatement when I say that I wouldn't have managed without you. Our family is the best reason for looking forward and I love you with all of my heart.

Albert,

Uppsala, April 2017

References

1. J.K. Nicholson, J.C. Lindon, E. Holmes, “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data.

Xenobiotica. 29 (1999) 1181–1189.

2. O. Fiehn, Metabolomics--the link between genotypes and phenotypes. Plant Mol.

Biol. 48 (2002) 155–171.

3. S.G. Oliver, M.K. Winson, D.B. Kell, F. Baganz, Systematic functional analysis of the yeast genome. Trends Biotechnol. 16 (1998) 373–378.

4. M. Coen, E. Holmes, J.C. Lindon, J.K. Nicholson, NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology.

Chem. Res. Toxicol. 21 (2008) 9–27.

5. J.L. Griffin, R.A. Kauppinen, Tumour metabolomics in animal models of human cancer, J. Proteome Res. 6 (2007) 498–505.

6. S. Rezzi, Z. Ramadan, L.B. Fay, S. Kochhar, Nutritional metabonomics:

applications and perspectives. J. Proteome Res. 6 (2007) 513–525.

7. J.K. Nicholson, J. Connelly, J.C. Lindon, E. Holmes, Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1 (2002) 153–161.

8. A. Roux, D. Lison, C. Junot, J.F. Heilier, Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: A review, Clin. Biochem. 44 (2011) 119–135.

9. D. Vuckovic, Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry, Anal. Bioanal.

Chem. 403 (2012) 1523–48.

10. F. Calbiani, M. Careri, L. Elviri, A. Mangia, I. Zagnoni, Matrix effects on accurate mass measurements of low-molecular weight compounds using liquid chromatography-electrospray-quadrupole time-of-flight mass spectrometry, J.

Mass Spectrom. 41 (2006) 289–294.

11. Y.F. Xu, W. Lu, J.D. Rabinowitz, Avoiding misannotation of in-source fragmentation products as cellular metabolites in liquid chromatography-mass spectrometry-based metabolomics, Anal. Chem. 87 (2015) 2273–2281.

12. P.A. Guy, I. Tavazzi, S.J. Bruce, Z. Ramadan, S. Kochhar, Global metabolic profiling analysis on human urine by UPLC – TOFMS : Issues and method validation in nutritional metabolomics, 871 (2008) 253–260.

13. G.J. Patti, Separation strategies for untargeted metabolomics, J. Sep. Sci. 34 (2011) 3460–3469.

14. C. Stella, B. Beckwith-hall, O. Cloarec, E. Holmes, J.C. Lindon, J. Powell, F.

Van Der Ouderaa, S. Bingham, A.J. Cross, J.K. Nicholson, Susceptibility of Human Metabolic Phenotypes to Dietary Modulation research articles, (2006) 2780–2788.

15. E.M. Lenz, I.D. Wilson, Analytical strategies in metabonomics, J. Proteome Res.

6 (2007) 443–458.

16. H.G. Gika, G.A. Theodoridis, R.S. Plumb, I.D. Wilson, Current practice of liquid chromatography–mass spectrometry in metabolomics and metabonomics, J.

Pharm. Biomed. Anal. 87 (2014) 12–25.

17. D.S. Wishart, Advances in metabolite identification, Bioanalysis. 3 (2011) 1769–

1782.

18. O. Karlsson, K. Kultima, H. Wadensten, A. Nilsson, E. Roman, P.E. Andrén, E.B.

Brittebo, Correction for Neurotoxin-Induced Neuropeptide Perturbations in Striatum of Neonatal Rats, J. Proteome Res. 12 (2013) 2321–2321.

19. F. Rosqvist, D. Iggman, J. Kullberg, J. Cedernaes, H.E. Johansson, A. Larsson, L. Johansson, H. Ahlström, P. Arner, I. Dahlman, U. Risérus, Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans, Diabetes. 63 (2014) 2356–2368.

20. J.R. Denery, A.A.K. Nunes, T.J. Dickerson, Characterization of Differences between Blood Sample Matrices in Untargeted Metabolomics, Anal. Chem. 83 (2011) 1040–1047.

21. N. Stojiljkovic, A. Paris, P. Garcia, M.A. Popot, Y. Bonnaire, J.C. Tabet, C.

Junot, Evaluation of horse urine sample preparation methods for metabolomics using LC coupled to HRMS, Bioanalysis. 6 (2014) 785–803.

22. W.B. Dunn, D.I. Broadhurst, H.J. Atherton, R. Goodacre, J.L. Griffin, Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy, Chem. Soc. Rev. 40 (2011) 387–426.

23. J.L. Luque-Garcia, T. a Neubert, Sample preparation for serum/plasma profiling and biomarker identification by mass spectrometry, J. Chromatogr. A. 1153 (2007) 259–276.

24. B. Jørgenrud, S. Jäntti, I. Mattila, P. Pöhö, K.S. Rønningen, H. Yki-Järvinen, M.

Orešič, T. Hyötyläinen, The influence of sample collection methodology and sample preprocessing on the blood metabolic profile, Bioanalysis. 7 (2015) 991–

1006.

25. P. Yin, R. Lehmann, G. Xu, Effects of pre-analytical processes on blood samples used in metabolomics studies, Anal. Bioanal. Chem. 407 (2015) 4879–4892.

26. C.A Daykin, P.J.D. Foxall, S.C. Connor, J.C. Lindon, J.K. Nicholson, The comparison of plasma deproteinization methods for the detection of low-molecular-weight metabolites by (1)H nuclear magnetic resonance spectroscopy, Anal. Biochem. 304 (2002) 220–230.

27. H.J. Issaq, Q.N. Van, T.J. Waybright, G.M. Muschik, T.D. Veenstra, Analytical and statistical approaches to metabolomics research., J. Sep. Sci. 32 (2009) 2183–

2199.

28. D.G. Sitnikov, C.S. Monnin, D. Vuckovic, Systematic Assessment of Seven Solvent and Solid-Phase Extraction Methods for Metabolomics Analysis of Human Plasma by LC-MS, Sci. Rep. 6 (2016) 38885.

29. N.G. Mahieu, X. Huang, Y.J. Chen, G.J. Patti, Credentialing features: A platform to benchmark and optimize untargeted metabolomic methods, Anal. Chem. 86 (2014) 9583–9589.

30. M. Calderón-Santiago, F. Priego-Capote, M.D.L. de Castro, Enhancing detection coverage in untargeted metabolomics analysis by solid-phase extraction on-line coupled to LC-MS/MS, Electrophoresis. 36 (2015) 2179–2187.

31. P. Masson, A.C. Alves, T.M.D. Ebbels, J.K. Nicholson, E.J. Want, Optimization and evaluation of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC-MS, Anal. Chem. 82 (2010) 7779–7786.

32. F.M. Geier, E.J. Want, A.M. Leroi, J.G. Bundy, Cross-platform comparison of caenorhabditis elegans tissue extraction strategies for comprehensive metabolome coverage, Anal. Chem. 83 (2011) 3730–3736.

33. S. Tufi, M.H. Lamoree, J. De Boer, P.E.G. Leonards, Cross-platform metabolic profiling: Application to the aquatic model organism Lymnaea stagnalis, Anal.

Bioanal. Chem. 407 (2015) 1901–1912.

34. Z. León, J.C. García-Cañaveras, M.T. Donato, A. Lahoz, Mammalian cell metabolomics: Experimental design and sample preparation., Electrophoresis.

(2013) 1–29.

35. M. Engskog, M. Björklund, J. Haglöf, T. Arvidsson, M. Shoshan, C. Pettersson, Metabolic profiling of epithelial ovarian cancer cell lines : evaluation of harvesting protocols for profiling using NMR spectroscopy, Bioanalysis. 7 (2015) 157–166.

36. J. Folch, M. Lees, G.H. Sloane, A simple method for the isolation and purification of total lipides from animal tissues, J. Biol. Chem. 226 (1956) 497–509.

37. K. Dettmer, N. Nürnberger, H. Kaspar, M. a Gruber, M.F. Almstetter, P.J. Oefner, Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols., Anal.

Bioanal. Chem. 399 (2011) 1127–1139.

38. E. Zelena, W.B. Dunn, D. Broadhurst, S. Francis-McIntyre, K.M. Carroll, P.

Begley, S. O’Hagan, J.D. Knowles, A. Halsall, I.D. Wilson, D.B. Kell, D.B. Kell, Development of a Robust and Repeatable UPLC−MS Method for the Long-Term Metabolomic Study of Human Serum, Anal. Chem. 81 (2009) 1357–1364.

39. I. Kohler, A. Verhoeven, R.J. Derks, M. Giera, Analytical pitfalls and challenges in clinical metabolomics, Bioanalysis. 8 (2016) 1509–1532.

40. A. Van Eeckhaut, K. Lanckmans, S. Sarre, I. Smolders, Y. Michotte, Validation of bioanalytical LC–MS/MS assays: Evaluation of matrix effects, J. Chromatogr.

B. 877 (2009) 2198–2207.

41. J.K. Nicholson, P.J. Foxall, M. Spraul, R.D. Farrant, J.C. Lindon, 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma, Anal. Chem. 67 (1995) 793–811.

42. B.M.C. Potts, A.J. Deese, G.J. Stevens, M.D. Reily, D.G. Robertson, J. Theiss, NMR of biofluids and pattern recognition: assessing the impact of NMR parameters on the principal component analysis of urine from rat and mouse, J.

Pharm. Biomed. Anal. 26 (2001) 463–476.

43. A.J. Alpert, M. Shukla, A.K. Shukla, L.R. Zieske, S.W. Yuen, M.A.J. Ferguson, A. Mehlert, M. Pauly, R. Orlando, Hydrophilic-interaction chromatography of complex carbohydrates, J. Chromatogr. A. 676 (1994) 191–202.

44. P. Jandera, Stationary and mobile phases in hydrophilic interaction chromatography: a review, Anal. Chim. Acta. 692 (2011) 1–25.

45. A. Craig, O. Cloarec, E. Holmes, J.K. Nicholson, J.C. Lindon, Scaling and normalization effects in NMR spectroscopic metabonomic data sets, Anal. Chem.

78 (2006) 2262–2267.

46. B.A. Ejigu, D. Valkenborg, G. Baggerman, M. Vanaerschot, E. Witters, J.C.

Dujardin, T. Burzykowski, M. Berg, Evaluation of normalization methods to pave the way towards large-scale LC-MS-based metabolomics profiling experiments, OMICS. 17 (2013) 473–485.

47. R. Smith, D. Ventura, J.T. Prince, LC-MS alignment in theory and practice: A comprehensive algorithmic review, Brief. Bioinform. 16 (2013) 104–117.

48. N.G. Mahieu, J.L. Genenbacher, G.J. Patti, A roadmap for the XCMS family of software solutions in metabolomics, Curr. Opin. Chem. Biol. 30 (2016) 87–93.

49. Y. Wu, L. Li, Sample normalization methods in quantitative metabolomics, J.

Chromatogr. A. 1430 (2016) 80–95.

50. S. Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemom. Intell.

Lab. Syst. 2 (1987) 37–52.

51. D.S. Wishart, D. Tzur, C. Knox, R. Eisner, A.C. Guo, N. Young, D. Cheng, K.

Jewell, D. Arndt, S. Sawhney, C. Fung, L. Nikolai, M. Lewis, M.-A. Coutouly, I.

Forsythe, P. Tang, S. Shrivastava, K. Jeroncic, P. Stothard, G. Amegbey, D.

Block, D.D. Hau, J. Wagner, J. Miniaci, M. Clements, M. Gebremedhin, N. Guo, Y. Zhang, G.E. Duggan, G.D. Macinnis, A.M. Weljie, R. Dowlatabadi, F.

Bamforth, D. Clive, R. Greiner, L. Li, T. Marrie, B.D. Sykes, H.J. Vogel, L.

Querengesser, HMDB: the Human Metabolome Database, Nucleic Acids Res. 35 (2007) D521-6.

52. C. A Smith, G. O’Maille, E.J. Want, C. Qin, S. A Trauger, T.R. Brandon, D.E.

Custodio, R. Abagyan, G. Siuzdak, METLIN: a metabolite mass spectral database, Ther Drug Monit. 27 (2005) 747–751.

53. L.W. Sumner, T. Samuel, R. Noble, S.D. Gmbh, D. Barrett, M.H. Beale, N.

Hardy, Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI), Metabolomics. 3 (2007) 211–221.

54. W.B. Dunn, The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans, Bioanalysis 4 (2012) 2249–2264.

55. S. Tulipani, R. Llorach, M. Urpi-Sarda, C. Andres-Lacueva, Comparative analysis of sample preparation methods to handle the complexity of the blood fluid metabolome: When less is more, Anal. Chem. 85 (2013) 341–348.

56. C. Bylda, R. Thiele, U. Kobold, D. A Volmer, Recent advances in sample preparation techniques to overcome difficulties encountered during quantitative analysis of small molecules from biofluids using LC-MS/MS., Analyst. 139 (2014) 2265–2276.

57. S. Zhang, G. a Nagana Gowda, T. Ye, D. Raftery, Advances in NMR-based biofluid analysis and metabolite profiling, Analyst. 135 (2010) 1490–1498.

58. O. Beckonert, H.C. Keun, T.M.D. Ebbels, J. Bundy, E. Holmes, J.C. Lindon, J.K.

Nicholson, Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts, Nat. Protoc. 2 (2007) 2692–2703.

59. J.D. Bell, J.C. Brown, G. Kubal, P.J. Sadler, NMR-invisible lactate in blood plasma, FEBS Lett. 235 (1988) 81–86.

60. C.B. Newgard, J. An, J.R. Bain, M.J. Muehlbauer, R.D. Stevens, L.F. Lien, A.M.

Haqq, S.H. Shah, M. Arlotto, C. a Slentz, J. Rochon, D. Gallup, O. Ilkayeva, B.R.

Wenner, W.S. Yancy, H. Eisenson, G. Musante, R.S. Surwit, D.S. Millington, M.D. Butler, L.P. Svetkey, A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance, Cell Metab. 9 (2009) 311–326.

61. B. Laferrère, D. Reilly, S. Arias, N. Swerdlow, P. Gorroochurn, B. Bawa, M.

Bose, J. Teixeira, R.D. Stevens, B.R. Wenner, J.R. Bain, M.J. Muehlbauer, A.

Haqq, L. Lien, S.H. Shah, L.P. Svetkey, C.B. Newgard, Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss, Sci. Transl. Med. 3 (2011) 80re2.

62. A.C. Shin, M. Fasshauer, N. Filatova, L. a Grundell, E. Zielinski, J.Y. Zhou, T.

Scherer, C. Lindtner, P.J. White, A.L. Lapworth, O. Ilkayeva, U. Knippschild, A.M. Wolf, L. Scheja, K.L. Grove, R.D. Smith, W.J. Qian, C.J. Lynch, C.B.

Newgard, C. Buettner, Brain Insulin Lowers Circulating BCAA Levels by Inducing Hepatic BCAA Catabolism, Cell Metab. 20 (2014) 898–909.

63. A. Ekdahl, M.C. Johansson, M. Ahnoff, Tracing and separating plasma components causing matrix effects in hydrophilic interaction chromatography–

electrospray ionization mass spectrometry, J. Chromatogr. B. 923 (2013) 83–91.

64. K. Ortmayr, T.J. Causon, S. Hann, G. Koellensperger, Increasing selectivity and coverage in LC-MS based metabolome analysis, TrAC - Trends Anal. Chem. 82 (2016) 358–366.

65. X. Guo, E. Lankmayr, Phospholipid-based matrix effects in LC – MS bioanalysis, Bioanalysis. 3 (2011) 349–352.

66. R. Weaver, R.J. Riley, Identification and reduction of ion suppression effects on pharmacokinetic parameters by polyethylene glycol 400, Rapid Commun. Mass Spectrom. 20 (2006) 2559–2564.

67. S. Bouatra, F. Aziat, R. Mandal, A.C. Guo, M.R. Wilson, C. Knox, T.C.

Bjorndahl, R. Krishnamurthy, F. Saleem, P. Liu, Z.T. Dame, J. Poelzer, J. Huynh, F.S. Yallou, N. Psychogios, E. Dong, R. Bogumil, C. Roehring, D.S. Wishart, The Human Urine Metabolome, PLoS One. 8 (2013) e73076.

68. S.U. Bajad, W. Lu, E.H. Kimball, J. Yuan, C. Peterson, J.D. Rabinowitz, Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry, J. Chromatogr. A. 1125 (2006) 76–88.

69. K. Contrepois, L. Jiang, M. Snyder, Optimized Analytical Procedures for the Untargeted Metabolomic Profiling of Human Urine and Plasma by Combining Hydrophilic Interaction (HILIC) and Reverse-Phase Liquid Chromatography (RPLC)–Mass Spectrometry, Mol. Cell. Proteomics. 14 (2015) 1684–1695.

70. V. V Tolstikov, O. Fiehn, Analysis of Highly Polar Compounds of Plant Origin:

Combination of Hydrophilic Interaction Chromatography and Electrospray Ion Trap Mass Spectrometry, Anal. Biochem. 301 (2002) 298–307.

71. S. Wernisch, S. Pennathur, Evaluation of coverage, retention patterns, and selectivity of seven liquid chromatographic methods for metabolomics, Anal.

Bioanal. Chem. 408 (2016) 6079–6091.

72. R. Zhang, D.G. Watson, L. Wang, G.D. Westrop, G.H. Coombs, T. Zhang, Evaluation of mobile phase characteristics on three zwitterionic columns in hydrophilic interaction liquid chromatography mode for liquid chromatography-high resolution mass spectrometry based untargeted metabolite profiling of Leishmania parasites, J. Chromatogr. A. 1362 (2014) 168–179.

73. D.P. Kloos, H. Lingeman, W.M.A. Niessen, A.M. Deelder, M. Giera, O.A.

Mayboroda, Evaluation of different column chemistries for fast urinary metabolic profiling, J. Chromatogr. B. 927 (2013) 90–96.

74. T. Zhang, D.J. Creek, M.P. Barrett, G. Blackburn, D.G. Watson, Evaluation of Coupling Reversed Phase, Aqueous Normal Phase, and Hydrophilic Interaction Liquid Chromatography with Orbitrap Mass Spectrometry for Metabolomic Studies of Human Urine, Anal. Chem. 84 (2012) 1994–2001.

75. R. Dams, M.A. Huestis, W.E. Lambert, C.M. Murphy, Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: Influence of ionization type, sample preparation, and biofluid, J. Am. Soc. Mass Spectrom. 14 (2003) 1290–1294.

76. O.A. Ismaiel, T. Zhang, R.G. Jenkins, H.T. Karnes, Investigation of endogenous blood plasma phospholipids, cholesterol and glycerides that contribute to matrix effects in bioanalysis by liquid chromatography/mass spectrometry, J.

Chromatogr. B Anal. Technol. Biomed. Life Sci. 878 (2010) 3303–3316.

77. P.A. Vorkas, G. Isaac, M.A. Anwar, A.H. Davies, E.J. Want, J.K. Nicholson, E.

Holmes, Untargeted UPLC-MS profiling pipeline to expand tissue metabolome coverage: Application to cardiovascular disease, Anal. Chem. 87 (2015) 4184–

4193.

78. M. Eliasson, S. Rännar, R. Madsen, M.A. Donten, E. Marsden-Edwards, T.

Moritz, J.P. Shockcor, E. Johansson, J. Trygg, Strategy for Optimizing LC-MS Data Processing in Metabolomics: A Design of Experiments Approach, Anal.

Chem. 84 (2012) 6869–6876.

Related documents