• No results found

Från att du föds, genom hela din ungdomstid och fram till att du befinner dig i mitten av 20-årsåldern så utvecklas och mognar din hjärna. Under den här tiden är hjärnan även extra känslig för olika former av yttre påverkan. Två exempel på faktorer som kan ha negativ effekt på hjärnan är stress och expo-nering av droger. Om du växer upp i en otrygg och stressfylld miljö eller utsätts för upprepad exponering av droger i ung ålder så ökar exempelvis risken att du drabbas av en psykiatrisk sjukdom senare i livet.

Den här avhandlingen har undersökt hur två av hjärnans signalsubstanser, dopamin och endogena opioider (kroppsegna morfinliknande ämnen), på-verkas när en ung individ utsätts för stress eller upprepat intag av alkohol.

Dopamin och endogena opioider utgör en viktig del av hjärnans belönings-system och hjälper till att förmedla de positiva känslor som du upplever när du till exempel äter en god middag, har sex eller uppnår en framgång. Dessa positiva känslor kallas för naturlig belöning. Men det är inte bara vid naturlig belöning som aktiviteten av dopamin och endogena opioider ökar, även alla beroendeframkallande droger har den här egenskapen.

För att undersöka hur den unga hjärnan påverkas av droger eller stress an-vänds ofta djurmodeller. Anledningen är att dessa frågeställningar är svåra att besvara i människa på grund av etiska principer. I den här avhandlingen har därför djurmodeller använts för att simulera olika typer av negativa livs-händelser som förknippas med en otrygg uppväxtmiljö. I en av avhandling-ens studier stördes kontakten mellan mamman och ungarna genom tidsbe-gränsade separationer av nyfödda råttungar och i en annan av studierna pla-cerades unga råttor tidvis ensamma för att efterlikna en miljö med störd social kontakt. Alkohol gavs även till unga råttor för att undersöka hur alko-hol påverkar den unga hjärnan.

Resultaten från studierna visade bland annat att en otrygg uppväxtmiljö påverkade endogena opioider i dorsala striatum - en del av hjärnan som bland annat är kopplad till bildandet av vanor. En otrygg uppväxt förändrade även hur de endogena opioiderna svarade på alkoholintag i vuxen ålder. De endogena opioiderna påverkades även av en störd social miljö under ung-domstiden då minskade nivåer sågs i många av hjärnans olika regioner.

Kvarvarande förändringar i både endogena opioider och dopamin syntes efter att alkohol intagits under ungdomstiden. Intaget av alkohol i ung ålder hade ingen effekt på viljan att självadministrera amfetamin, däremot skiljde

sig dopaminaktiviteten åt i dorsala striatum efter en injektion av amfetamin i vuxen ålder.

Otrygghet, stress och alkohol formar med andra ord den unga hjärnan och förändrar dess belöningssystem. Detta kan, till viss del, förklara varför en otrygg uppväxtmiljö och upprepat intag av droger i ung ålder ökar risken för psykiatrisk sjukdom senare i livet.

Acknowledgment

Now this period of my life is finished, without my main supervisor Ingrid Nylander it would not have been possible. Thank you for believing in me!

To know that you have trust in what I do creates a stimulating environment to work in. Even if you have tons of work to do, you always try to find some time to help. I´m very happy to have had you as my main supervisor!

My co-supervisors. Anne-Lie Svensson, you are the gate-way to a PhD.

Without your fantastic supervision during SOFOSKO projects, many theses would not have been written. You are one of the most positive persons I know! Maria Ellgren, I have missed you a lot since you left the academia, you were a wonderful support when you worked here. Erika Roman, for all the knowledge that you willingly share about animals, without that, this the-sis would be full of caveats.

To all the members of the NAB-group, thanks for being great colleagues.

Lova, you are a fantastic person, who does so much for others. I don’t know a single person in the department who haven´t been helped by you. You de-serve the best. Stina and Nikita, it was good to have some familiar PhD-faces when coming back to the lab, keep up the good work. Victoria and Lena, for help and support with teaching and students. Åsa, for being an energy injec-tion! Marita, for all the help with animal work. Carin, for taking care of the everyday maintenance of lab stuff. Sam, a lot of fun left the lab when you headed back to England, you ́re missed! Sara and Loudin, thanks for intro-ducing and welcoming me as a new PhD student and for all the travelling to conferences! Shima, for being my light and laughter in the office for the first years. The distance between Norrland and Middle East has never been so small. To all the students who has helped me in my projects.

The Comasco-group, Erika, Aniruddah, Megha and Maria, for your hard work and fruitful discussions!

The staff in department of Pharmaceutical Biosciences for helping out with everyday problems. Especially to all PhD students, the past ones (Alfhild, Anna, Anneli, Erika, Helen, Inga, Jenny, Jonathan, Mats, Oskar, Patrik) for showing it is possible and to the present ones (Lisa (You go!), Erik, Sofia)

for doing it. Lena (O ́Raili) for being a reliable source of knowledge, the solid rocks in the department.

One “Blaj” a day keeps the doctor away! Shima, thanks for introducing me to the fantastic group of friends you have. That you having fantastic friends is off course no surprise! Emelie, you are wise, fun and helpful, what else can one ask for? Srebrenka, why didn’t we hang out more during the phar-macy program? I’m glad we had a second chance, I love the way you ap-proach life! Sahar, the sweetest and toughest person I know. Sofie, the calm-ness and the (positive) nerdicalm-ness of your personality are a perfect match.

Maria, your ability of being both superfun an superserious is amazing!

Jenny, Alexandra and Mikka, we are having a 12 (!) years anniversary this year. I hope our 2017-babies will share the same friendship.

To all the babies of the next generation (Alma, Abbe, Astrid, Evy, Iris, Greta and Sigge) that decided to be born around the time I was on maternal leave. I had so many great parents to hang out with because of you. I hope I can fol-low you through your lives. An extra thank to Abbe, it has been great to have your mom (Elin) to run beside in the last miles of the PhD-marathon.

To my family for being the foundation of my wellbeing, you are the best! I could not have asked for a better environment to grew up in, I really hope I can pass it forward. My PhD period would not have gone this smoothly without being raised of the master of organization and the lifestyle without procrastination, i.e., my mom. I have also tried to apply the calmness that my dad always brings to any situation. To know that the two of you always have my back makes it easier to go through life. My sister Erika for always (or at least before kids came into the picture…) having time to talk and analyzing things and for being inspiring in the way that you really loves your job, if every teacher were as you are there would not be any crisis in the Swedish school system! Per, you have been in our family for such a long time that I almost cannot recall the time before, I´m happy you are a part of “the Granholms”. Bastian, the families little whirlwind, your energy will take you far! My grandmother, the most inspiring 92-year old I know, if I will be half as you are in your age I will be happy. I love you all!

My own little family that I love so much. Tobias, for always letting me be me, for spoiling me with great food every day, letting me whine as much as I want, for always remembering me of the funny things in life and making me forget work as soon as I come home. Ebbe, my funniest person in the world, for you being you is the best thing I know. To see you grow up is a privilege, but please can we slow down the time for a while now!

References

Aalto S, Ingman K, Alakurtti K, Kaasinen V, Virkkala J, Nagren K, et al. (2015).

Intravenous ethanol increases dopamine release in the ventral striatum in humans: PET study using bolus-plus-infusion administration of [(11)C]raclopride. J Cereb Blood Flow Metab 35(3): 424-431.

Abernathy K, Chandler LJ, Woodward JJ (2010). Alcohol and the prefrontal cortex.

Int Rev Neurobiol 91: 289-320.

Ahlenius S, Carlsson A, Engel J, Svensson T, Sodersten P (1973). Antagonism by alpha methyltyrosine of the ethanol-induced stimulation and euphoria in man.

Clin Pharmacol Ther 14(4): 586-591.

Alaux-Cantin S, Warnault V, Legastelois R, Botia B, Pierrefiche O, Vilpoux C, et al. (2013). Alcohol intoxications during adolescence increase motivation for alcohol in adult rats and induce neuroadaptations in the nucleus accumbens.

Neuropharmacology 67: 521-531.

Allen RG, Peng B, Pellegrino MJ, Miller ED, Grandy DK, Lundblad JR, et al.

(2001). Altered processing of orphanin FQ/nociceptin and pro-opiomelanocortin-derived peptides in the brains of mice expressing defective prohormone convertase 2. J Neurosci 21(16): 5864-5870.

Amodeo LR, Kneiber D, Wills DN, Ehlers CL (2017). Alcohol drinking during adolescence increases consumptive responses to alcohol in adulthood in Wistar rats. Alcohol 59: 43-51.

Atwood BK, Kupferschmidt DA, Lovinger DM (2014). Opioids induce dissociable forms of long-term depression of excitatory inputs to the dorsal striatum. Nat Neurosci 17(4): 540-548.

Avegno EM, Salling MC, Borgkvist A, Mrejeru A, Whitebirch AC, Margolis EB, et al. (2016). Voluntary adolescent drinking enhances excitation by low levels of alcohol in a subset of dopaminergic neurons in the ventral tegmental area.

Neuropharmacology 110(Pt A): 386-395.

Aziz AM, Brothers S, Sartor G, Holm L, Heilig M, Wahlestedt C, et al. (2016). The nociceptin/orphanin FQ receptor agonist SR-8993 as a candidate therapeutic for alcohol use disorders: validation in rat models. Psychopharmacology (Berl) 233(19-20): 3553-3563.

Badanich KA, Maldonado AM, Kirstein CL (2007). Chronic ethanol exposure during adolescence increases basal dopamine in the nucleus accumbens septi during adulthood. Alcohol Clin Exp Res 31(5): 895-900.

Baker M (2012). Digital PCR hits its stride. Nature Methods 9(6): 541-544.

Banghart MR, Neufeld SQ, Wong NC, Sabatini BL (2015). Enkephalin Disinhibits Mu Opioid Receptor-Rich Striatal Patches via Delta Opioid Receptors. Neuron 88(6): 1227-1239.

Bank A, Terada M, Metafora S, Dow L, Marks PA (1972). In vitro synthesis of DNA components of human genes for globins. Nat New Biol 235(58): 167-169.

Barr CS, Schwandt ML, Lindell SG, Higley JD, Maestripieri D, Goldman D, et al.

(2008). Variation at the mu-opioid receptor gene (OPRM1) influences

attachment behavior in infant primates. Proc Natl Acad Sci U S A 105(13):

5277-5281.

Bart G, Schluger JH, Borg L, Ho A, Bidlack JM, Kreek MJ (2005). Nalmefene induced elevation in serum prolactin in normal human volunteers: partial kappa opioid agonist activity? Neuropsychopharmacology 30(12): 2254-2262.

Bayon A, Shoemaker WJ, Bloom FE, Mauss A, Guillemin R (1979). Perinatal development of the endorphin- and enkephalin-containing systems in the rat brain. Brain Res 179(1): 93-101.

Beatty WW, Costello KB (1982). Naloxone and play fighting in juvenile rats.

Pharmacol Biochem Behav 17(5): 905-907.

Beaulieu JM, Gainetdinov RR (2011). The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1): 182-217.

Becker HC (2013). Animal models of excessive alcohol consumption in rodents.

Curr Top Behav Neurosci 13: 355-377.

Belin D, Deroche-Gamonet V (2012). Responses to novelty and vulnerability to cocaine addiction: contribution of a multi-symptomatic animal model. Cold Spring Harb Perspect Med 2(11).

Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ (2009). Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res 199(1): 89-102.

Bell RL, Hauser SR, Liang T, Sari Y, Maldonado-Devincci A, Rodd ZA (2017). Rat animal models for screening medications to treat alcohol use disorders.

Neuropharmacology 122: 201-243.

Berdoy M (2003). The Laboratory Rat: A Natural History:

http://www.ratlife.com.

Berson SA, Yalow RS (1968). General principles of radioimmunoassay. Clin Chim Acta 22(1): 51-69.

Berube P, Laforest S, Bhatnagar S, Drolet G (2013). Enkephalin and dynorphin mRNA expression are associated with resilience or vulnerability to chronic social defeat stress. Physiol Behav 122: 237-245.

Berube P, Poulin JF, Laforest S, Drolet G (2014). Enkephalin knockdown in the basolateral amygdala reproduces vulnerable anxiety-like responses to chronic unpredictable stress. Neuropsychopharmacology 39(5): 1159-1168.

Björklund A, Dunnett SB (2007). Dopamine neuron systems in the brain: an update.

Trends Neurosci 30(5): 194-202.

Blanchard BA, Steindorf S, Wang S, Glick SD (1993). Sex differences in ethanol-induced dopamine release in nucleus accumbens and in ethanol consumption in rats. Alcohol Clin Exp Res 17(5): 968-973.

Boileau I, Assaad JM, Pihl RO, Benkelfat C, Leyton M, Diksic M, et al. (2003).

Alcohol promotes dopamine release in the human nucleus accumbens. Synapse 49(4): 226-231.

Bridges RS, Grimm CT (1982). Reversal of morphine disruption of maternal behavior by concurrent treatment with the opiate antagonist naloxone. Science 218(4568): 166-168.

Brunson KL, Khan N, Eghbal-Ahmadi M, Baram TZ (2001). Corticotropin (ACTH) acts directly on amygdala neurons to down-regulate corticotropin-releasing hormone gene expression. Ann Neurol 49(3): 304-312.

Bunzow JR, Saez C, Mortrud M, Bouvier C, Williams JT, Low M, et al. (1994).

Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS Lett 347(2-3): 284-288.

Calcagnetti DJ, Schechter MD (1992). Place conditioning reveals the rewarding aspect of social interaction in juvenile rats. Physiol Behav 51(4): 667-672.

CAN (2017). Skolelevers drogvanor 2017 - CAN rapport 170. Stockholm:

Centralförbundet för alkohol- och narkotikaupplysning (CAN).

Cao L, Cui X, Hu J, Li Z, Choi JR, Yang Q, et al. (2017). Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications.

Biosens Bioelectron 90: 459-474.

Carden SE, Hofer MA (1990a). Independence of benzodiazepine and opiate action in the suppression of isolation distress in rat pups. Behav Neurosci 104(1): 160-166.

Carden SE, Hofer MA (1990b). Socially mediated reduction of isolation distress in rat pups is blocked by naltrexone but not by Ro 15-1788. Behav Neurosci 104(3): 457-463.

Carlsson A, Lindqvist M, Magnusson T (1957). 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180(4596): 1200.

Carr CP, Martins CMS, Stingel AM, Lemgruber VB, Juruena MF (2013). The Role of Early Life Stress in Adult Psychiatric Disorders A Systematic Review According to Childhood Trauma Subtypes. Journal of Nervous and Mental Disease 201(12): 1007-1020.

Christensson-Nylander I, Herrera-Marschitz M, Staines W, Hokfelt T, Terenius L, Ungerstedt U, et al. (1986). Striato-nigral dynorphin and substance P pathways in the rat. I. Biochemical and immunohistochemical studies. Exp Brain Res 64(1): 169-192.

Christensson-Nylander I, Nyberg F, Ragnarsson U, Terenius L (1985). A general procedure for analysis of proenkephalin B derived opioid peptides. Regul Pept 11(1): 65-76.

Chu Sin Chung P, Keyworth HL, Martin-Garcia E, Charbogne P, Darcq E, Bailey A, et al. (2015). A novel anxiogenic role for the delta opioid receptor expressed in GABAergic forebrain neurons. Biol Psychiatry 77(4): 404-415.

Chu Sin Chung P, Kieffer BL (2013). Delta opioid receptors in brain function and diseases. Pharmacol Ther 140(1): 112-120.

Ciccocioppo R, de Guglielmo G, Hansson AC, Ubaldi M, Kallupi M, Cruz MT, et al. (2014). Restraint stress alters nociceptin/orphanin FQ and CRF systems in the rat central amygdala: significance for anxiety-like behaviors. J Neurosci 34(2): 363-372.

Ciccocioppo R, Economidou D, Fedeli A, Angeletti S, Weiss F, Heilig M, et al.

(2004). Attenuation of ethanol self-administration and of conditioned reinstatement of alcohol-seeking behaviour by the antiopioid peptide nociceptin/orphanin FQ in alcohol-preferring rats. Psychopharmacology (Berl) 172(2): 170-178.

Ciccocioppo R, Martin-Fardon R, Weiss F (2002). Effect of selective blockade of mu(1) or delta opioid receptors on reinstatement of alcohol-seeking behavior by drug-associated stimuli in rats. Neuropsychopharmacology 27(3): 391-399.

Ciccocioppo R, Panocka I, Polidori C, Regoli D, Massi M (1999). Effect of nociceptin on alcohol intake in alcohol-preferring rats. Psychopharmacology (Berl) 141(2): 220-224.

Copeland WE, Sun H, Costello EJ, Angold A, Heilig MA, Barr CS (2011). Child mu-opioid receptor gene variant influences parent-child relations.

Neuropsychopharmacology 36(6): 1165-1170.

Corbit LH, Nie H, Janak PH (2012). Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biol Psychiatry 72(5): 389-395.

Cox BM, Goldstein A, Hi CH (1976). Opioid activity of a peptide, beta-lipotropin-(61-91), derived from beta-lipotropin. Proc Natl Acad Sci U S A 73(6): 1821-1823.

Crabbe JC, Harris RA, Koob GF (2011). Preclinical studies of alcohol binge drinking. Ann N Y Acad Sci 1216: 24-40.

Criado JR, Ehlers CL (2013). Effects of adolescent onset voluntary drinking followed by ethanol vapor exposure on subsequent ethanol consumption during protracted withdrawal in adult Wistar rats. Pharmacol Biochem Behav 103(3):

622-630.

Cruz MT, Herman MA, Kallupi M, Roberto M (2012). Nociceptin/orphanin FQ blockade of corticotropin-releasing factor-induced gamma-aminobutyric acid release in central amygdala is enhanced after chronic ethanol exposure. Biol Psychiatry 71(8): 666-676.

Curley JP, Champagne FA (2016). Influence of maternal care on the developing brain: Mechanisms, temporal dynamics and sensitive periods. Front Neuroendocrinol 40: 52-66.

Dahlstrom A, Fuxe K (1964). Localization of monoamines in the lower brain stem.

Experientia 20(7): 398-399.

Daoura L, Nylander I (2011). The response to naltrexone in ethanol-drinking rats depends on early environmental experiences. Pharmacol Biochem Behav 99(4):

626-633.

de Waele JP, Gianoulakis C (1993). Effects of single and repeated exposures to ethanol on hypothalamic beta-endorphin and CRH release by the C57BL/6 and DBA/2 strains of mice. Neuroendocrinology 57(4): 700-709.

Dehaene-Lambertz G, Spelke ES (2015). The Infancy of the Human Brain. Neuron 88(1): 93-109.

Devine DP, Leone P, Pocock D, Wise RA (1993). Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies. J Pharmacol Exp Ther 266(3): 1236-1246.

Devine DP, Wise RA (1994). Self-administration of morphine, DAMGO, and DPDPE into the ventral tegmental area of rats. J Neurosci 14(4): 1978-1984.

DeWit DJ, Adlaf EM, Offord DR, Ogborne AC (2000). Age at first alcohol use: a risk factor for the development of alcohol disorders. Am J Psychiatry 157(5):

745-750.

Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, et al. (2004).

Dopamine and drug addiction: the nucleus accumbens shell connection.

Neuropharmacology 47 Suppl 1: 227-241.

Di Chiara G, Imperato A (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85(14): 5274-5278.

Di Chiara G, Imperato A (1985). Ethanol preferentially stimulates dopamine release in the nucleus accumbens of freely moving rats. Eur J Pharmacol 115(1): 131-132.

Ding ZM, Ingraham CM, Rodd ZA, McBride WJ (2015). The reinforcing effects of ethanol within the nucleus accumbens shell involve activation of local GABA and serotonin receptors. J Psychopharmacol 29(6): 725-733.

Douglas LA, Varlinskaya EI, Spear LP (2004). Rewarding properties of social interactions in adolescent and adult male and female rats: impact of social versus isolate housing of subjects and partners. Dev Psychobiol 45(3): 153-162.

Dunbar RI (2010). The social role of touch in humans and primates: behavioural function and neurobiological mechanisms. Neurosci Biobehav Rev 34(2): 260-268.

Duzzioni M, Duarte FS, Leme LR, Gavioli EC, De Lima TC (2011). Anxiolytic-like effect of central administration of NOP receptor antagonist UFP-101 in rats submitted to the elevated T-maze. Behav Brain Res 222(1): 206-211.

Economidou D, Cippitelli A, Stopponi S, Braconi S, Clementi S, Ubaldi M, et al.

(2011). Activation of brain NOP receptors attenuates acute and protracted alcohol withdrawal symptoms in the rat. Alcoholism-Clinical and Experimental Research 35(4): 747-755.

Emmerson PJ, Liu MR, Woods JH, Medzihradsky F (1994). Binding affinity and selectivity of opioids at mu, delta and kappa receptors in monkey brain membranes. J Pharmacol Exp Ther 271(3): 1630-1637.

Engel J, Strombom U, Svensson TH, Waldeck B (1974). Suppression by alpha-methyltyrosine of ethanol-induced locomotor stimulation: partial reversal by L-dopa. Psychopharmacologia 37(3): 275-279.

Engel JA, Jerlhag E (2014). Alcohol: mechanisms along the mesolimbic dopamine system. Dopamine 211: 201-233.

Engleman EA, Ding ZM, Oster SM, Toalston JE, Bell RL, Murphy JM, et al.

(2009). Ethanol is self-administered into the nucleus accumbens shell, but not the core: evidence of genetic sensitivity. Alcoholism-Clinical and Experimental Research 33(12): 2162-2171.

Esteve-Arenys A, Gracia-Rubio I, Cantacorps L, Pozo OJ, Marcos J, Rodriguez-Arias M, et al. (2017). Binge ethanol drinking during adolescence modifies cocaine responses in mice. J Psychopharmacol 31(1): 86-95.

Everitt BJ, Robbins TW (2016). Drug Addiction: Updating Actions to Habits to Compulsions Ten Years On. Annu Rev Psychol 67: 23-50.

Everitt BJ, Robbins TW (2013). From the ventral to the dorsal striatum: Devolving views of their roles in drug addiction. Neuroscience and Biobehavioral Reviews 37(9): 1946-1954.

Fahlke C, Hansen S, Engel JA, Hard E (1994). Effects of ventral striatal 6-OHDA lesions or amphetamine sensitization on ethanol consumption in the rat.

Pharmacol Biochem Behav 47(2): 345-349.

Felicio LF, Mann PE, Bridges RS (1991). Intracerebroventricular cholecystokinin infusions block beta-endorphin-induced disruption of maternal behavior.

Felicio LF, Mann PE, Bridges RS (1991). Intracerebroventricular cholecystokinin infusions block beta-endorphin-induced disruption of maternal behavior.

Related documents