• No results found

POPULÄRVETENSKAPLIG SAMMANFATTNING PÅ SVENSKA Cellers samspel med omgivande proteiner

In document The Laminins and their Receptors (Page 45-67)

En vävnad består av celler men en stor del av vävnadens volym är också extracellulärt utrymme som fylls ut av något som kallas bindväv. Bindväven består av olika proteiner och polysackarider som utsöndras av cellerna. Dessa proteiner sätts ihop till ett nätverk i nära kontakt med cellerna som producerar dem. Man kan säga att bindväven utgör byggnadsstommen i kroppen. Beroende på vilket organ och i vilket utvecklingsstadium organet befinner sig varierar andelen bindväv och dess proteinuppsättning. Förutom att bindväven stabiliserar vävnaden så har den en mycket aktiv och komplex roll, och reglerar cellernas uppträdande, påverkar cellernas utveckling, förflyttning, delning, form och funktion.

Basalmembran är en specialiserad typ av bindväv. Basalmembran är ett tunt nätverk som omger muskel-, fett-, och nervceller, men finns också under andra celltyper som epitel- och endotelceller. Basalmembranet kan även dela upp vävnaden i olika delar och fungerar då som en barriär eller som ett filter för cellerna. Även basalmembranen innehåller olika proteiner beroende på vävnadstyp och i vilket utvecklingsstadium de är. Basalmembran består i huvudsak av två proteinfamiljer, laminin och kollagen typ IV, och det är dessa proteiner som bildar det tunna nätverket. Jag har främst studerat lamininfamiljen, som består av 15 medlemmar numrerade 1-15. Varje laminin är uppbyggd av tre proteinkedjor en α-, en β- och en γ-kedja, och tillsammans bildar de ett större korsliknande protein. Förändringar i generna för dessa kedjor leder till olika muskeldystrofier och flera olika hudsjukdomar, cancer och troligen också till nervsjukdomar. Det har även visat sig att bakterier och virus kan använda basalmembranet som en länk för att infektera celler. När man har tagit bort generna för olika lamininkedjor i möss, man har gjort en så kallad knockout vilket innebär att genen som kodar för ett visst protein är borta och proteinet kan inte bildas längre, har det visat sig att nästan alla kedjorna är livsviktiga för att mössen ska kunna överleva. Saknar de en av kedjorna dör mössen oftast redan innan födseln.

I avhandlingens första del har jag bland annat studerat var laminin α 1-kedjan är uttryckt i fullvuxna möss. Det visade sig att den endast fanns på ett fåtal ställen i kroppen medan den i musfoster var något mer uttryckt. I tidigare

igen en annan lamininkedja, nämligen laminin α5-kedjan. Detta har gjort att man länge trodde att laminin α1-kedjan fanns i stort sett i alla basalmembran vilket vi nu visat att så är det inte. Laminin-1, som består av kedjorna α1, β1 och γ1, använder sig ofta av en mottagare eller receptor på cellen som kallas för dystroglycan. Vi har också studerats var dystroglycan finns i den vuxna muskroppen. Dystroglycan visade sig finnas i flera organ, i vissa organ fanns den tillsammans med laminin α1-kedjan och i andra organ tillsammans med α 2-kedjan. Dystroglycan verkar vara en mycket viktig receptor som binder cellerna till basalmembranet.

I andra delen har vi studerat hur celler i odling reagerar när de träffar olika sorters laminin. Vi kunde se att cellerna fäste sig olika bra till de olika lamininerna och att de fick olika utseenden beroende på vilken lamininsort de fäste sig till. Vidare har vi studerat vilka receptorer cellerna använde för att fästa sig till respektive laminin och vi upptäckte att de använde olika receptorer beroende på vilket laminin de satte sig på.

Sista delen i avhandlingen handlar om hur laminin kommunicerar med cellerna, dvs. vilka signaler laminin skickar till dem. Man har länge trott att bindväv eller basalmembran endast stabiliserar cellen men så är det inte.

Receptorerna på cellen kopplar nämligen ihop proteinerna på utsidan av cellen med proteinerna på insidan. Vi kunde se att flera lamininer startade cellsignaleringen via vissa av cellernas receptorer som i sin tur aktiverade proteiner inuti cellen. Gav vi dessutom cellerna tillväxtfaktorer (vitaminer och aminosyror är exempel på tillväxtfaktorer) så påverkade dessa tillsammans med laminin cellernas delning. Det gick också att stoppa signaleringen om man tillsatte kända blockerande ämnen.

Cellernas kommunikation med sin omgivning är förmodligen mycket mer komplex än vi kan tänka oss, men med en ökad förståelse för hur cellerna i kroppen fungerar och interagerar med sin omgivning kommer vi bättre kunna förstå sjukdomsmekanismer och förhoppningsvis då också finna nya botemedel.

ACKNOWLEDGEMENTS

This work has been carried out at “Zoofys” (later ICM) at Uppsala University and at the section of Cell and Developmental Biology at Lund University. I would like to express my warmest thanks to my co-authors and all present and past colleges for all the nice times in and outside the lab, thank you all!

In particular I would like to express my sincere gratitude to:

Peter Ekblom, my supervisor and mentor, for excellent guidance and support, and your scientific enthusiasm. You always manage to put everything into an interesting perspective.

Madde for help and guidance in the beginning and for introducing me to the lab.

Elke for your excellent guidance into the protein and signaling world, and for a nice friendship.

My roommates, Susanne and Mange, for making the Lund period as good as it became.

Good luck!

All the people at the lab in Lund; Marja, Maria, Tord, Hao, Yu Chen, Jan, Ulrika, Siw, Jang, and Alexander for nice collaborations and friendship.

The Cartela people and Emma for creating such a nice atmosphere, for pub evenings and parties.

The people from “zoofys”, which remained at Uppsala; Erik, Mats, Anne-Marie, Calle, Teet, Agnetha, Maria W., Olle and Sigrid. Special thanks to Maria R. and Katta, for

“taking care” of me during my “visits” at Uppsala University and to Donald for all the answers.

All my friends outside the lab, for reminding me of the world outside the lab and for all the fun things we have done together. No one mentioned, no one forgotten.

Robban for his patience, love and support during this time. Finally!

My parents and my brother Martin, for always believing in me, and for your endless support and love.

REFERENCES

Akiyama, S. K., Yamada, S. S., Yamada, K. M., and LaFlamme, S. E. (1994).

Transmembrane signal transduction by integrin cytoplasmic domains expressed in single-subunit chimeras. J. Biol. Chem. 269, 15961-4.

Andac, Z., Sasaki, T., Mann, K., Brancaccio, A., Deutzmann, R., and Timpl, R. (1999).

Analysis of heparin, alpha dystroglycan and sulfatide binding to the G domain of the laminin alpha 1 chain by site directed mutagenesis. J. Mol. Biol. 287, 253-264.

Aplin, A. E., Howe, A., Alahari, S. K., and Juliano, R. L. (1998). Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev. 50, 197-263.

Aumailley, M., Gerl, M., Sonnenberg, A., Deutzmann, R., and Timpl, R. (1990).

Identification of the Arg-Gly-Asp sequence in laminin A chain as a latent cell-binding site being exposed in fragment P1. FEBS Lett. 262, 82-6.

Aumailley, M., Wiedemann, H., Mann, K., and Timpl, R. (1989). Binding of nidogen and the laminin-nidogen complex to basement membrane collagen type IV. Eur. J.

Biochem. 184, 241-8.

Bader, B. L., Rayburn, H., Crowley, D., and Hynes, R. O. (1998). Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 95, 507-19.

Beck, K., Dixon, T. W., Engle, J., and Parry, D. A. (1993). Ionic interactions in the coiled-coil domain of laminin determine the specificity of chain assembly. J. Mol. Biol.

231, 311-323.

Belkin, A. M., and Smalheiser, N. R. (1996). Localization of cranin (dystroglycan) at sites of cell-matrix and cell-cell contact: recruitment to focal adhesions is dependent upon extracellular ligands. Cell Adhesion Commoun. 4, 281-296.

Bondeva, T., Pirola, L., Bulgarelli-Leva, G., Rubio, I., Wetzker, R., and Wymann, M. P.

(1998). Bifurcation of lipid and protein kinase signals of PI3K gamma to the protein kinases PKB and MAPK. Science 282, 293-6.

Bouvard, D., Brakebusch, C., Gustafsson, E., Aszodi, A., Bengtsson, T., Berna, A., and Fassler, R. (2001). Functional consequences of integrin gene mutations in mice. Circ.

Res. 89, 211-23.

Brown, J. C., and Timpl, R. (1995). The collagen superfamily. Int. Arch. Allergy Immunol. 107, 484-90.

Burridge, K., and Chrzanowska-Wodnicka, M. (1996). Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12, 463-518.

Calalb, M. B., Polte, T. R., and Hanks, S. K. (1995). Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol. Cell Biol. 15, 954-63.

Cao, W., Henry, M. D., Borrow, P., Yamada, H., Elder, J. H., Ravkov, E. V., Nichol, S.

T., Compans, R. W., Campbell, K. P., and Oldstone, M. B. A. (1998). Identification of alpha-dystroglycan as a receptor for Lymphocytic Choriomeningitis virus and Lassa Fever virus. Science 282, 2079-2081.

Champliaud, M. F., Lunstrum, G. P., Rousselle, P., Nishiyama, T., Keene, D. R., and Burgeson, R. E. (1996). Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelia-stromal attachment. J. Cell Biol. 132, 1189-1198.

Champliaud, M. F., Virtanen, I., Tiger, C. F., Korhonen, M., Burgeson, R., and Gullberg, D. (2000). Posttranslational modifications, beta/gamma chain associations of human laminin a1 and a5 chains: purification of laminin-3 from placenta. Exp. Cell Res. 259, 326-335.

Chen, C. C., Mo, F. E., and Lau, L. F. (2001). The angiogenic factor Cyr61 activates a genetic program for wound healing in human skin fibroblasts. J. Biol. Chem. 276, 47329-37.

Cheng, Y. S., Champliaud, M. F., Burgeson, R. E., Marinkovich, M. P., and Yurchenco, P. D. (1997). Self-assembly of laminin isoforms. J. Biol. Chem. 272, 31525-32.

Christiano, A. M., and Uitto, J. (1996). Molecular complexity of the cutaneous basement membrane zone. Revelations from the paradigms of epidermolysis bullosa. Exp.

Dermatol. 5, 1-11.

Cobb, M. H. (1999). MAP kinase pathways. Prog. Biophys. Mol. Biol. 71, 479-500.

Cobb, M. H., and Goldsmith, E. J. (1995). How MAP kinases are regulated. J. Biol.

Colognato, H., and Yurchenco, P. D. (2000). Form and function: The laminin family of heterotrimers. Developmental Dynamics 218, 213-234.

Corbi, A. L., Garcia-Aguilar, J., and Springer, T. A. (1990). Genomic structure of an integrin alpha subunit, the leukocyte p150, 95 molecule. J. Biol. Chem. 265, 2782-8.

Corbi, A. L., Miller, L. J., O'Connor, K., Larson, R. S., and Springer, T. A. (1987).

cDNA cloning and complete primary structure of the alpha subunit of a leukocyte adhesion glycoprotein, p150, 95. EMBO J 6, 4023-8.

Cote, P. D., Moukhles, H., Lindenbaum, M., and Carbonetto, S. (1999). Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses. Nat. Genet 23, 338-42.

Dana, N., Fathallah, D. M., and Arnaout, M. A. (1991). Expression of a soluble and functional form of the human beta 2 integrin CD11b/CD18. PNAS 88, 3106-3110.

De Arcangelis, A., Lefebvre, O., Mechine-Neuville, A., Arnold, C., Klein, A., Remy, L., Kedinger, M., and Simon-Assmann, P. (2001). Overexpression of laminin alpha 1 chain in colonic cancer cells induces an increase in tumor growth. Int. J. Cancer 94, 44-53.

De Arcangelis, A., Mark, M., Kreidberg, J., Sorokin, L., and Georges-Labouesse, E.

(1999). Synergistic activites of the alpha 3 and alpha 6 integrins are required during apical ectodermal ridge formation and organogenesis in the mouse. Development 126, 3957-3968.

De Melker, A. A., Kramer, D., Kuikman, I., and Sonnenberg, A. (1997). The two phenylalanines in the GFFKR motif of the integrin alpha 6A subunit are essential for heterodimerization. Biochem. J. 328, 529-37.

De Melker, A. A., and Sonnenberg, A. (1999). Integrins: alternative splicing as a mechanism to regulate ligand binding and integrin signaling events. Bioessays 21, 499-509.

Delwel, G. O., Hogervorst, F., and Sonnenberg, A. (1996). Cleavage of the alpha6A subunit is essential for activation of the alpha 6A beta 1 integrin by phorbol 12-myristate 13-acetate. J. Biol. Chem. 271, 7293-6.

DiPersio, C. M., Hodivala-Dilke, K. M., Jaenisch, R., Kreidberg, J., and Hynes, R. O.

(1997). alpha 3 beta 1 integrin is required for normal development of epidermal basement membrane. J. Cell Biol. 137.

DiPersio, C. M., Shah, S., and Hynes, R. O. (1995). Alpha 3A beta 1 integrin localizes to focal contacts in response to diverse extracellular matrix proteins. J. Cell Sci. 108, 2321-2336.

Dowling, J., Yu, Q. C., and Fuchs, E. (1996). Beta 4 integrin is required for hemidesmosome formation, cell adhesion, and cell survival. J. Cell Biol. 134, 559-572.

Drago, J., Nurcombe, V., and Bartlett, P. F. (1991). Laminin through its long arm E8 fragment promotes the proliferation and differentiation of murine neuroepithelial cells in vitro. Exp. Cell Res. 192, 2562-65.

Durbeej, M., and Campbell, K. P. (1999). Biochemical characterization of the epithelial dystroglycan complex. J. Biol. Chem. 274, 26609-26616.

Durbeej, M., Fecker, L., Hjalt, T., Zhang, H. Y., Salmivirta, K., Klein, G., Timpl, R., Sorokin, L., Ebendal, T., Ekblom, P., and Ekblom, M. (1996). Expression of laminin alpha 1, alpha 5 and beta 2 chains during embryogenesis of the kidney and vasculature.

Matrix Biol. 15, 397-413.

Durbeej, M., Henry, M. D., and Campbell, K. P. (1998a). Dystroglycan in development and diseases. Curr. Opin. Cell Biol. 10, 594-601.

Durbeej, M., Henry, M. D., Ferletta, M., Campbell, K. P., and Ekblom, P. (1998b).

Distribution of dystroglycan in normal adult mouse tissue. J. Histochem. Cytochem. 46, 449-457.

Durbeej, M., Larsson, E., Ibraghimov-Beskrovnaya, O., Roberds, S. L., Campbell, K. P., and Ekblom, P. (1995). Non-muscle alpha-dystroglycan is involved in epithelial development. J. Cell Biol. 130, 79-91.

Durbeej, M., Talts, J. F., Henry, M. D., Yurchenco, P. D., Campbell, K. P., and Ekblom, P. (2001). Dystroglycan binding to laminin alpha1LG4 module influences epithelial morphogenesis of salivary gland and lung in vitro. Differentiation 69, 121-34.

Durkin, M. E., Chakravarti, S., Bartos, B. B., Liu, S. H., Friedman, R. L., and Chung, A.

E. (1988). Amino acid sequence and domain structure of entactin. Homology with

epidermal growth factor precursor and low density lipoprotein receptor. J. Cell Biol. 107, 2749-56.

Edgar, D. (1996). The laminins (Amsterdam, Harwood Academic Publishers).

Ekblom, M., Klein, G., and Mugrauer, G. (1990). Transient and locally restricted expression of laminin A chain mRNA by developing epithelial cells during kidney organogenesis. Cell 60, 337-346.

Ekblom, P. (1996). Receptors for laminins during epithelial morphogenesis. Curr. Opin.

Cell Biol. 8, 700-706.

Ekblom, P., Ekblom, M., Fecker, L., Klein, G., Zhang, H. Y., Kadoya, Y., Chu, M. L., Mayer, U., and Timpl, R. (1994). Role of mesenchymal nidogen for epithelial morphogenesis in vitro. Development 120, 2003-14.

Eliceiri, B. P., and Cheresch, D. A. (2001). Adhesion events in angiogenesis. Curr. Opin.

Cell biol. 13, 563-568.

Engvall, E., Davis, G. E., Dickerson, K., Ruoslshti, E., Varon, S., and Manthorpe, M.

(1986). Mapping of domains in human laminin using monoclonal antibodies:

localization of neurite-promoting site. J. Cell Biol. 103, 2457-2465.

Engvall, E., Earwicker, D., Haaparanta, T., Ruoslshti, E., and Sanes, J. R. (1990).

Distribution and isolation of four laminin variants; restrected tissue distribution and heterotrimers assembled from five different subunits. Cell Regul. 1, 731-740.

Erickson, A. C., and Couchman, J. R. (2000). Still more complexity in mammalian basement membranes. J. Histochem. Cytochem. 48, 1291-306.

Ervasti, J. M., and Campbell, K. P. (1991). Membrane organization of the dystrophin-glycoprotein complex. Cell 66, 1121-1131.

Ervasti, J. M., Ohlendieck, K., Kahl, S. D., Gaver, M. G., and Campbell, K. P. (1990).

Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345, 315-319.

Falk, M., Salmivirta, K., Durbeej, M., Larsson, E., Ekblom, M., Vestweber, D., and Ekblom, P. (1996). Integrin alpha 6B beta 1 is involved in kidney tubulogenesis in vitro.

J. Cell Sci. 109, 2801-10.

Fassler, R., and Meyer, M. (1995). Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev. 9, 1896-908.

Ferletta, M., and Ekblom, P. (1999). Identification of laminin-10/11 as a strong cell adhesive complex for a normal and a malignant human epithelial cell line. J. Cell Sci.

112, 1-10.

Fincham, V. J., James, M., Frame, M. C., and Winder, S. J. (2000). Active ERK/MAP kinase is targeted to newly forming cell-matrix adhesions by integrin engagement and v-Src. EMBO J. 19, 2911-23.

Fox, J. W., Mayer, U., Nischt, R., Aumailley, M., Reinhardt, D., Wiedemann, H., Mann, K., Timpl, R., Krieg, T., Engel, J., and et al. (1991). Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J.

10, 3137-46.

Gardner, H., Broberg, A., Pozzi, A., Laato, M., and Heino, J. (1999). Absence of integrin alpha1beta1 in the mouse causes loss of feedback regulation of collagen synthesis in normal and wounded dermis. J. Cell Sci. 112, 263-72.

Gardner, H., Kreidberg, J., Koteliansky, V., and Jaenisch, R. (1996). Deletion of integrin alpha 1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion. Dev. Biol. 175, 301-13.

Gee, S. H., Blacher, R. W., Douville, P. J., Provost, P. R., Yurchenco, P. D., and Carbonetto, S. (1993). Laminin-binding protein 120 from brain is closely related to the dystrophin-associated glycoprotein, dystroglycan, and binds with high affinity to the major heparin binding domain of laminin. J. Biol. Chem. 268, 14972-80.

Georges-Labouesse, E., Messaddeq, N., Yehia, G., Cadalbert, L., Dierich, A., and Le Meur, M. (1996). Absence of integrin alpha 6 leads to epidermolysis bullosa and neonatal death in mice. Nat. Genet. 13, 370-3.

Giancotti, F. G., and Ruoslahti, E. (1999). Integrin signaling. Science 285, 1028-32.

Gonzales, M., Haan, K., Baker, S. E., Fitchmun, M., Todorov, I., Weitzman, S., and Jones, J. C. (1999). A cell signal pathway involving laminin-5, alpha 3 beta 1 integrin, and mitogen-activated protein kinase can regulate epithelial cell proliferation. Mol. Biol.

Cell 10, 259-70.

Gu, Y., Sorokin, L., Durbeej, M., Hjalt, T., Jonsson, J. I., and Ekblom, M. (1999).

Characterization of bone marrow laminins and identification of alpha 5-containing laminins as adhesive proteins for multipotent hematopoietic FDCP-Mix cells. Blood 93, 2533-2542.

Halfter, W., Dong, S., Yip, L., Willem, M., and Mayer, U. (2001). Cortical dysplasia in a mouse with a deletion of the nidogen binding site of the laminin gamma 1 chain. In

"Abstract" 10th International Symposium on Basement Membranes.

Henry, M. D., and Campbell, K. P. (1998). A role for dystroglycan in basement membrane assembly. Cell 95, 859-870.

Hodivala-Dilke, K. M., McHugh, K. P., Tsakiris, D. A., Rayburn, H., Crowley, D., Ullman-Cullere, M., Ross, F. P., Coller, B. S., Teitelbaum, S., and Hynes, R. O. (1999).

Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Invest. 103, 229-38.

Hogervorst, F., Kuikman, I., van Kessel, A. G., and Sonnenberg, A. (1991). Molecular cloning of the human alpha 6 integrin subunit. Alternative splicing of alpha 6 mRNA and cromosomal localization of the alpha 6 and beta 4 genes. Eur. J. Biochem. 199, 425-433.

Hohenester, E., Tisi, D., Talts, J. F., and Timpl, R. (1999). The crystal structure of a laminin G-like module reveals the molecular basis of alpha-dystroglycan binding to laminins, perlecan, and agrin. Mol. Cell 4, 783-792.

Holtkotter, O., Nieswandt, B., Smyth, N., Muller, W., Hafner, M., Schulte, V., Krieg, T., and Eckes, B. (2002). Integrin alpha 2-deficient mice develop normally, are fertile, but display partially defective platelet interaction with collagen. J. Biol. Chem. 11, 11.

Huang, X. Z., Wu, J. F., Ferrando, R., Lee, J. H., Wang, Y. L., Farese, R. V., Jr., and Sheppard, D. (2000). Fatal bilateral chylothorax in mice lacking the integrin alpha 9 beta 1. Mol. Cell Biol. 20, 5208-15.

Hughes, S. E. (1996). Functional characterization of the spontaneously transformed human umbilical vein endothelial cell line ECV304: use in an in vitro model of angiogenesis. Exp. Cell Res. 225, 171-85.

Humphries, M. J. (2000). Integrin structure. Biochem. Soc. Trans. 28, 311-39.

Hynes, R. O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion.

Cell 69, 11-25.

Hynes, R. O. (1999). Cell adhesion: old and new questions. Trends. Cell Biol. 9, M33-7.

Ibraghimov-Beskrovnaya, O., Ervasti, J. M., Leveille, C. J., Slaughter, C. A., Sernett, S.

W., and Campbell, K. P. (1992). Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696-702.

Ibraghimov-Beskrovnaya, O., Milatovich, A., Ozcelik, T., Yang, B., Koepnick, K., Francke, U., and Campbell, K. P. (1993). Human dystroglycan: skeletal muscle cDNA, genomic structure, origin of tissue specific isoforms and chromosomal localization.

Hum. Mol. Genet. 2, 1651-1657.

Iivanainen, A., Morita, T., and Tryggvason, K. (1999). Molecular cloning and tissue-specific expression of a novel murine laminin gamma 3 chain. J. Biol. Chem. 274, 14107-14111.

Jiang, F. X., Georges-Labouesse, E., and Harrison, L. C. (2001). Regulation of laminin 1-induced pancreatic beta-cell differentiation by alpha 6 integrin and alpha-dystroglycan.

Mol. Med. 7, 107-14.

Kadoya, Y., Kadoya, K., Durbeej, M., Holmvall, K., Sorokin, L., and Ekblom, P. (1995).

Antibodies against domain E3 of laminin-1 and integrin alpha 6 subunit perturb branching epithelial morphogenesis of submandibular gland but by different modes. J.

Cell Biol. 129, 521-534.

Kadoya, Y., Salmivirta, K., Talts, J. F., Kadoya, K., Mayer, U., Timpl, R., and Ekblom, P. (1997). Importance of nidogen binding to laminin gamma1 for branching epithelial morphogenesis of the submandibular gland. Development 124, 683-91.

Kern, A., Briesewitz, R., Bank, I., and Marcantonio, E. E. (1994). The role of the I domain in ligand binding of the human integrin alpha 1 beta 1. J. Biol. Chem. 269, 22811-6.

Khan, K. M., and Falcone, D. J. (2000). Selective activation of MAPK (erk1/2) by laminin-1 peptide alpha1:Ser(2091)-Arg(2108) regulates macrophage degradative phenotype. J. Biol. Chem. 275, 4492-8.

Khokhlatchev, A. V., Canagarajah, B., Wilsbacher, J., Robinson, M., Atkinson, M., Goldsmith, E., and Cobb, M. H. (1998). Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93, 605-15.

Kikkawa, Y., Sanzen, N., Fujiwara, H., Sonnenberg, A., and Sekiguchi, K. (2000).

Integrin binding specificity of laminin-10/11: laminin-10/11 are recognized by alpha3beta1, alpha6beta1, and alpha 6 beta 4 integrins. J. Cell Sci. 113, 869-876.

Kikkawa, Y., Sanzen, N., and Sekiguchi, K. (1998). Isolation and characterization of laminin-10/11 secreted by human lung carcinoma cells. Laminin-10/11 mediates cell adhesion through integrin alpha 3 beta 1. J. Biol. Chem. 273, 15854-15859.

Kimura, N., Toyoshima, T., Kojima, T., and Shimane, M. (1998). Entactin-2: a new member of basement membrane protein with high homology to entactin/nidogen. Exp.

Cell Res. 241, 36-45.

Kivirikko, S., McGrath, J. A., Pulkkinen, L., Uitto, J., and Christiano, A. M. (1996).

Mutational hotspots in the LAMB3 gene in the lethal (Herlitz) type of junctional epidermolysis bullosa. Hum. Mol. Genetics 5, 231-237.

Koch, M., Olson, P. F., Albus, A., Jin, W., Hunter, D. D., Brunken, W. J., Burgeson, R.

E., and Champliaud, M. F. (1999). Characterization and expression of the laminin gamma 3 chain: a novel, non-basement membrane-associated, laminin chain. J. Cell Biol. 145, 605-18.

Kohfeldt, E., Sasaki, T., Gohring, W., and Timpl, R. (1998). Nidogen-2: a new basement membrane protein with diverse binding properties. J. Mol. Biol. 282, 99-109.

Kolch, W. (2000). Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J. 351 Pt 2, 289-305.

Kortesmaa, J., Yurchenco, P., and Tryggvason, K. (2000). Recombinant laminin-8 (alpha 4 beta 1 gamma 1). Production, purification,and interactions with integrins. J.

Biol. Chem. 275, 14853-9.

Kreidberg, J. A., Donovan, M. J., Goldstein, S. L., Rennke, H., Shepherd, K., Jones, R.

C., and Jaenisch, R. (1996). Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122, 3537-47.

Kuang, W., Xu, H., Vachon, P. H., and Engvall, E. (1998a). Disruption of the lama2 gene in embronic stem cells: Laminin alpha 2 is necessary for sustenance of mature muscle cells. Exp. Cell Res. 241, 117-125.

Kuang, W., Xu, H., Vachon, P. H., Liu, L., Loechel, F., Wewer, U. M., and Engvall, E.

(1998b). Merosin-deficient congenital muscular dystrophy. J. Clin. Invest. 102, 844-852.

Kuhn, K. (1995). Basement membrane (type IV) collagen. Matrix Biol. 14, 439-45.

Kunz, S., Sevilla, N., McGavern, D. B., Campbell, K. P., and Oldstone, M. B. (2001).

Molecular analysis of the interaction of LCMV with its cellular receptor alpha-dystroglycan. J. Cell Biol. 155, 301-10.

Kuster, J. E., Guarnieri, M. H., Ault, J. G., Flaherty, L., and Swiatek, P. J. (1997). IAP insertion in the murine LamB3 gene results in junctional epidermolysis bullosa. Mamm.

Genome 8, 673-681.

Lee, J. O., Rieu, P., Arnaout, M. A., and Liddington, R. (1995). Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 80, 631-8.

Lefebvre, O., Sorokin, L., Kedinger, M., and Simon-Assmann, P. (1999). Developmental expression of cellular origin of the laminin alpha 2, alpha 4, and alpha 5 chains in the intestine. Dev. Biol. 210, 135-150.

Lehmann, M., Rigot, V., Seidah, N. G., Marvaldi, J., and Lissitzky, J. C. (1996). Lack of integrin alpha-chain endoproteolytic cleavage in furin- deficient human colon adenocarcinoma cells LoVo. Biochem. J. 317, 803-9.

Levio, I. and Engvall, E. (1988). Merosin, a protein specific for basement membranes of Schwann cells, striated muscle, and trophoblast, is expressed late

Levio, I. and Engvall, E. (1988). Merosin, a protein specific for basement membranes of Schwann cells, striated muscle, and trophoblast, is expressed late

In document The Laminins and their Receptors (Page 45-67)

Related documents