• No results found

15. Saladin, K.S., S.J. Sullivan, and C.A. Gan, Anatomy & physiology : the unity of form and function. 2015.

16. Pasparakis, M., I. Haase, and F.O. Nestle, Mechanisms regulating skin immu-nity and inflammation. Nat Rev Immunol, 2014. 14(5): p. 289-301.

17. Desruisseaux, M.S., et al., Adipocyte, adipose tissue, and infectious disease.

Infect Immun, 2007. 75(3): p. 1066-78.

18. Driskell, R.R., et al., Defining dermal adipose tissue. Exp Dermatol, 2014.

23(9): p. 629-31.

19. Egawa, G. and K. Kabashima, Barrier dysfunction in the skin allergy. Allergol Int, 2018. 67(1): p. 3-11.

20. Ali, N. and M.D. Rosenblum, Regulatory T cells in skin. Immunology, 2017.

152(3): p. 372-381.

21. Streilein, J.W., Skin-associated lymphoid tissues (SALT): origins and func-tions. J Invest Dermatol, 1983. 80 Suppl: p. 12s-16s.

22. Bos, J.D. and M.L. Kapsenberg, The skin immune system Its cellular con-stituents and their interactions. Immunol Today, 1986. 7(7-8): p. 235-40.

23. Sarzi-Puttini, P., The skin in systemic autoimmune diseases. 2006, Amsterdam;

Boston: Elsevier.

24. Steinman, R.M., The dendritic cell system and its role in immunogenicity.

Annu Rev Immunol, 1991. 9: p. 271-96.

25. Clark, R.A., et al., The vast majority of CLA+ T cells are resident in normal skin. J Immunol, 2006. 176(7): p. 4431-9.

26. Zhang, N. and M.J. Bevan, CD8(+) T cells: foot soldiers of the immune sys-tem. Immunity, 2011. 35(2): p. 161-8.

27. Jiang, X., et al., Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature, 2012. 483(7388): p. 227-31.

28. Nelson, A.M., et al., dsRNA Released by Tissue Damage Activates TLR3 to Drive Skin Regeneration. Cell Stem Cell, 2015. 17(2): p. 139-51.

29. Gregorio, J., et al., Plasmacytoid dendritic cells sense skin injury and pro-mote wound healing through type I interferons. J Exp Med, 2010. 207(13):

p. 2921-30.

30. Steinman, R.M., et al., The sensitization phase of T-cell-mediated immunity.

Ann N Y Acad Sci, 1988. 546: p. 80-90.

31. Peters, J.H., et al., Co-culture of healthy human keratinocytes and T-cells promotes keratinocyte chemokine production and RORgammat-positive IL-17 producing T-cell populations. J Dermatol Sci, 2013. 69(1): p. 44-53.

32. Netea, M.G., et al., From the Th1/Th2 paradigm towards a Toll-like receptor/T-helper bias. Antimicrob Agents Chemother, 2005. 49(10): p. 3991-6.

33. Lai, Y. and R.L. Gallo, Toll-like receptors in skin infections and inflammatory diseases. Infect Disord Drug Targets, 2008. 8(3): p. 144-55.

34. Albanesi, C., et al., The Interplay Between Keratinocytes and Immune Cells in the Pathogenesis of Psoriasis. Front Immunol, 2018. 9: p. 1549.

35. Coll, R.C., et al., A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med, 2015. 21(3): p. 248-55.

36. Pivarcsi, A., et al., Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol, 2003. 15(6): p. 721-30.

37. Lebre, M.C., et al., Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol, 2007. 127(2): p. 331-41.

38. Lowes, M.A., M. Suarez-Farinas, and J.G. Krueger, Immunology of psoriasis.

Annu Rev Immunol, 2014. 32: p. 227-55.

39. Witte, E., et al., IL-19 is a component of the pathogenetic IL-23/IL-17 cascade in psoriasis. J Invest Dermatol, 2014. 134(11): p. 2757-2767.

40. Krueger, J.G., et al., IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. J Allergy Clin Immunol, 2012. 130(1):

p. 145-54 e9.

41. Frohm, M., et al., The expression of the gene coding for the antibacterial pep-tide LL-37 is induced in human keratinocytes during inflammatory disorders.

J Biol Chem, 1997. 272(24): p. 15258-63.

42. Albanesi, C., et al., Keratinocytes in inflammatory skin diseases. Curr Drug Targets Inflamm Allergy, 2005. 4(3): p. 329-34.

43. Nedoszytko, B., et al., Chemokines and cytokines network in the pathogen-esis of the inflammatory skin diseases: atopic dermatitis, psoriasis and skin mastocytosis. Postepy Dermatol Alergol, 2014. 31(2): p. 84-91.

44. Marzano, A.V., et al., A Comprehensive Review of Neutrophilic Diseases.

Clin Rev Allergy Immunol, 2018. 54(1): p. 114-130.

45. Leliefeld, P.H., L. Koenderman, and J. Pillay, How Neutrophils Shape Adaptive Immune Responses. Front Immunol, 2015. 6: p. 471.

46. Manfredi, A.A., et al., The Neutrophil’s Choice: Phagocytose vs Make Neutrophil Extracellular Traps. Front Immunol, 2018. 9: p. 288.

47. Shao, S., et al., Neutrophil Extracellular Traps Promote Inflammatory Responses in Psoriasis via Activating Epidermal TLR4/IL-36R Crosstalk.

Front Immunol, 2019. 10: p. 746.

48. Melo, R.C., et al., Eosinophil-derived cytokines in health and disease: unrave-ling novel mechanisms of selective secretion. Allergy, 2013. 68(3): p. 274-84.

49. Ito, Y., et al., Basophil recruitment and activation in inflammatory skin dis-eases. Allergy, 2011. 66(8): p. 1107-13.

50. Iki, M., et al., Basophil tryptase mMCP-11 plays a crucial role in IgE-mediated, delayed-onset allergic inflammation in mice. Blood, 2016. 128(25):

p. 2909-2918.

51. Yanez, D.A., et al., The role of macrophages in skin homeostasis. Pflugers Arch, 2017. 469(3-4): p. 455-463.

52. Kolter, J., et al., A Subset of Skin Macrophages Contributes to the Surveillance and Regeneration of Local Nerves. Immunity, 2019. 50(6): p. 1482-1497 e7.

53. Kabashima, K., et al., Biomarkers for evaluation of mast cell and basophil activation. Immunol Rev, 2018. 282(1): p. 114-120.

54. Gupta, K. and I.T. Harvima, Mast cell-neural interactions contribute to pain and itch. Immunol Rev, 2018. 282(1): p. 168-187.

55. Bourgeois, E., et al., The pro-Th2 cytokine IL-33 directly interacts with invari-ant NKT and NK cells to induce IFN-gamma production. Eur J Immunol, 2009. 39(4): p. 1046-55.

56. Riese, P., et al., Activated NKT cells imprint NK-cell differentiation, function-ality and education. Eur J Immunol, 2015. 45(6): p. 1794-807.

57. McKee, S.J., S.R. Mattarollo, and G.R. Leggatt, Immunosuppressive roles of natural killer T (NKT) cells in the skin. J Leukoc Biol, 2014. 96(1): p. 49-54.

58. Kim, B.S., Innate lymphoid cells in the skin. J Invest Dermatol, 2015. 135(3):

p. 673-678.

59. Monticelli, L.A., et al., Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol, 2011. 12(11): p. 1045-54.

60. Chiricozzi, A., et al., Scanning the Immunopathogenesis of Psoriasis. Int J Mol Sci, 2018. 19(1).

61. Stohl, W., Systemic lupus erythematosus: a blissless disease of too much BLyS (B lymphocyte stimulator) protein. Curr Opin Rheumatol, 2002. 14(5):

p. 522-8.

62. Lee, K.H., et al., VCAM-1-, ELAM-1-, and ICAM-1-independent adhesion of melanoma cells to cultured human dermal microvascular endothelial cells. J Invest Dermatol, 1992. 98(1): p. 79-85.

63. Li, J., Y.P. Zhang, and R.S. Kirsner, Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech, 2003. 60(1):

p. 107-14.

64. Hayden, M.S. and S. Ghosh, Regulation of NF-kappaB by TNF family cytokines.

Semin Immunol, 2014. 26(3): p. 253-66.

65. Liu, F., et al., IKK biology. Immunol Rev, 2012. 246(1): p. 239-53.

66. Sun, S.C. and S.C. Ley, New insights into NF-kappaB regulation and func-tion. Trends Immunol, 2008. 29(10): p. 469-78.

67. Pahl, H.L., Activators and target genes of Rel/NF-kappaB transcription fac-tors. Oncogene, 1999. 18(49): p. 6853-66.

68. Huang, B., et al., Posttranslational modifications of NF-kappaB: another layer of regulation for NF-kappaB signaling pathway. Cell Signal, 2010. 22(9): p.

1282-90.

69. Perkins, N.D., Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene, 2006. 25(51): p.

6717-30.

70. Perkins, N.D., Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol, 2007. 8(1): p. 49-62.

71. Sun, S.C., The non-canonical NF-kappaB pathway in immunity and inflam-mation. Nat Rev Immunol, 2017. 17(9): p. 545-558.

72. Bos, J.D., et al., Psoriasis: dysregulation of innate immunity. Br J Dermatol, 2005. 152(6): p. 1098-107.

73. Buske-Kirschbaum, A., et al., Altered distribution of leukocyte subsets and cytokine production in response to acute psychosocial stress in patients with psoriasis vulgaris. Brain Behav Immun, 2007. 21(1): p. 92-9.

74. Zhou, X., et al., Novel mechanisms of T-cell and dendritic cell activation revealed by profiling of psoriasis on the 63,100-element oligonucleotide array. Physiol Genomics, 2003. 13(1): p. 69-78.

75. Boguniewicz, M. and D.Y. Leung, Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev, 2011. 242(1): p. 233-46.

76. Kapp, A., et al., Altered production of immuno-modulating cytokines in patients with atopic dermatitis. Acta Derm Venereol Suppl (Stockh), 1989. 144: p.

97-9.

77. Gonzalez, H., C. Hagerling, and Z. Werb, Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev, 2018.

32(19-20): p. 1267-1284.

78. Bose, A., et al., Dysregulation in immune functions is reflected in tumor cell cytotoxicity by peripheral blood mononuclear cells from head and neck squa-mous cell carcinoma patients. Cancer Immun, 2008. 8: p. 10.

79. NationalPsoriasisFoundation-Statistics. National Psoriasis Foundation.

Statistics [cited 2020 April]; Available from: https://www.psoriasis.org/

content/statistics.

80. Parisi, R., et al., Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol, 2013. 133(2): p. 377-85.

81. Feldman, S.R., et al., The Challenge of Managing Psoriasis: Unmet Medical Needs and Stakeholder Perspectives. Am Health Drug Benefits, 2016. 9(9):

p. 504-513.

82. Kimball, A.B., et al., The psychosocial burden of psoriasis. Am J Clin Dermatol, 2005. 6(6): p. 383-92.

83. Bhosle, M.J., et al., Quality of life in patients with psoriasis. Health Qual Life Outcomes, 2006. 4: p. 35.

84. Menter, A., et al., Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J Am Acad Dermatol, 2008. 58(5):

p. 826-50.

85. Raychaudhuri, S.K., E. Maverakis, and S.P. Raychaudhuri, Diagnosis and classification of psoriasis. Autoimmun Rev, 2014. 13(4-5): p. 490-5.

86. Kavli, G., et al., Psoriasis: familial predisposition and environmental factors.

Br Med J (Clin Res Ed), 1985. 291(6501): p. 999-1000.

87. Liu, Y., J.G. Krueger, and A.M. Bowcock, Psoriasis: genetic associations and immune system changes. Genes Immun, 2007. 8(1): p. 1-12.

88. Nestle, F.O., D.H. Kaplan, and J. Barker, Psoriasis. N Engl J Med, 2009.

361(5): p. 496-509.

89. Dand, N., et al., Psoriasis and Genetics. Acta Derm Venereol, 2020. 100(3):

p. adv00030.

90. Finlay, A.Y. and G.K. Khan, Dermatology Life Quality Index (DLQI)--a simple practical measure for routine clinical use. Clin Exp Dermatol, 1994. 19(3):

p. 210-6.

91. Griffiths, C.E., et al., A classification of psoriasis vulgaris according to phe-notype. Br J Dermatol, 2007. 156(2): p. 258-62.

92. Grone, A., Keratinocytes and cytokines. Vet Immunol Immunopathol, 2002.

88(1-2): p. 1-12.

93. Benhadou, F., D. Mintoff, and V. Del Marmol, Psoriasis: Keratinocytes or Immune Cells - Which Is the Trigger? Dermatology, 2019. 235(2): p. 91-100.

94. Sarac, G., T.T. Koca, and T. Baglan, A brief summary of clinical types of psoriasis. North Clin Istanb, 2016. 3(1): p. 79-82.

95. Bhutani Tina, L.W., Nakamura Mio, Evidence-Based Psoriasis: diagnosis and treatment. 2019, [S.l.]: SPRINGER.

96. Lonnberg, A.S., et al., Genetic Factors Explain Variation in the Age at Onset of Psoriasis: A Population-based Twin Study. Acta Derm Venereol, 2016.

96(1): p. 35-8.

97. Bataille, V., M. Lens, and T.D. Spector, The use of the twin model to investigate the genetics and epigenetics of skin diseases with genomic, transcriptomic and methylation data. J Eur Acad Dermatol Venereol, 2012. 26(9): p. 1067-73.

98. Farber, E.M. and M.L. Nall, The natural history of psoriasis in 5,600 patients.

Dermatologica, 1974. 148(1): p. 1-18.

99. Swanbeck, G., et al., Genetic counselling in psoriasis: empirical data on pso-riasis among first-degree relatives of 3095 psoriatic probands. Br J Dermatol, 1997. 137(6): p. 939-42.

100. Chandran, V., et al., Familial aggregation of psoriatic arthritis. Ann Rheum Dis, 2009. 68(5): p. 664-7.

101. Tsoi, L.C., et al., Identification of 15 new psoriasis susceptibility loci high-lights the role of innate immunity. Nat Genet, 2012. 44(12): p. 1341-8.

102. Strange, A., et al., A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet, 2010. 42(11): p. 985-90.

103. Ellinghaus, E., et al., Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat Genet, 2010. 42(11): p. 991-5.

104. Stuart, P.E., et al., Genome-wide Association Analysis of Psoriatic Arthritis and Cutaneous Psoriasis Reveals Differences in Their Genetic Architecture.

Am J Hum Genet, 2015. 97(6): p. 816-36.

105. Capon, F., The Genetic Basis of Psoriasis. Int J Mol Sci, 2017. 18(12).

106. Nair, R.P., et al., Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am J Hum Genet, 2006. 78(5): p. 827-51.

107. Okada, Y., et al., Fine mapping major histocompatibility complex associa-tions in psoriasis and its clinical subtypes. Am J Hum Genet, 2014. 95(2): p.

162-72.

108. Veal, C.D., et al., Family-based analysis using a dense single-nucleotide polymorphism-based map defines genetic variation at PSORS1, the major psoriasis-susceptibility locus. Am J Hum Genet, 2002. 71(3): p. 554-64.

109. Luszczek, W., et al., Strong association of HLA-Cw6 allele with juvenile psoriasis in Polish patients. Immunol Lett, 2003. 85(1): p. 59-64.

110. Feng, B.J., et al., Multiple Loci within the major histocompatibility complex confer risk of psoriasis. PLoS Genet, 2009. 5(8): p. e1000606.

111. Bowes, J., et al., Cross-phenotype association mapping of the MHC identi-fies genetic variants that differentiate psoriatic arthritis from psoriasis. Ann Rheum Dis, 2017. 76(10): p. 1774-1779.

112. Eder, L., et al., Differential human leucocyte allele association between pso-riasis and psoriatic arthritis: a family-based association study. Ann Rheum Dis, 2012. 71(8): p. 1361-5.

113. Enlund, F., et al., Analysis of three suggested psoriasis susceptibility loci in a large Swedish set of families: confirmation of linkage to chromosome 6p (HLA region), and to 17q, but not to 4q. Hum Hered, 1999. 49(1): p. 2-8.

114. Pasic, A., et al., The genetics of psoriasis--selected novelties in 2008. Acta Dermatovenerol Croat, 2009. 17(3): p. 176-81.

115. Jordan, C.T., et al., PSORS2 is due to mutations in CARD14. Am J Hum Genet, 2012. 90(5): p. 784-95.

116. Jordan, C.T., et al., Rare and common variants in CARD14, encoding an epi-dermal regulator of NF-kappaB, in psoriasis. Am J Hum Genet, 2012. 90(5):

p. 796-808.

117. Berki, D.M., et al., Activating CARD14 Mutations Are Associated with Generalized Pustular Psoriasis but Rarely Account for Familial Recurrence in Psoriasis Vulgaris. J Invest Dermatol, 2015. 135(12): p. 2964-2970.

118. Pivarcsi, A., M. Stahle, and E. Sonkoly, Genetic polymorphisms altering microRNA activity in psoriasis--a key to solve the puzzle of missing herit-ability? Exp Dermatol, 2014. 23(9): p. 620-4.

119. Duffin, K.C. and G.G. Krueger, Genetic variations in cytokines and cytokine receptors associated with psoriasis found by genome-wide association. J Invest Dermatol, 2009. 129(4): p. 827-33.

120. Marenholz, I., et al., Identification of human epidermal differentiation com-plex (EDC)-encoded genes by subtractive hybridization of entire YACs to a gridded keratinocyte cDNA library. Genome Res, 2001. 11(3): p. 341-55.

121. Henry, J., et al., Update on the epidermal differentiation complex. Front Biosci (Landmark Ed), 2012. 17: p. 1517-32.

122. de Cid, R., et al., Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat Genet, 2009. 41(2): p. 211-5.

123. Riveira-Munoz, E., et al., Meta-analysis confirms the LCE3C_LCE3B deletion as a risk factor for psoriasis in several ethnic groups and finds interaction with HLA-Cw6. J Invest Dermatol, 2011. 131(5): p. 1105-9.

124. Niehues, H., et al., Psoriasis-Associated Late Cornified Envelope (LCE) Proteins Have Antibacterial Activity. J Invest Dermatol, 2017. 137(11): p.

2380-2388.

125. Cai, Y., C. Fleming, and J. Yan, New insights of T cells in the pathogenesis of psoriasis. Cell Mol Immunol, 2012. 9(4): p. 302-9.

126. Kennedy-Crispin, M., et al., Human keratinocytes’ response to injury upregu-lates CCL20 and other genes linking innate and adaptive immunity. J Invest Dermatol, 2012. 132(1): p. 105-13.

127. Martin, D.A., et al., The emerging role of IL-17 in the pathogenesis of pso-riasis: preclinical and clinical findings. J Invest Dermatol, 2013. 133(1): p.

17-26.

128. Gaffen, S.L., Structure and signalling in the IL-17 receptor family. Nat Rev Immunol, 2009. 9(8): p. 556-67.

129. Greb, J.E., et al., Psoriasis. Nat Rev Dis Primers, 2016. 2: p. 16082.

130. Pasquali, L., et al., The Keratinocyte Transcriptome in Psoriasis: Pathways Related to Immune Responses, Cell Cycle and Keratinization. Acta Derm Venereol, 2019. 99(2): p. 196-205.

131. Srivastava, A., et al., Next-Generation Sequencing Identifies the Keratinocyte-Specific miRNA Signature of Psoriasis. J Invest Dermatol, 2019. 139(12): p.

2547-2550 e12.

132. Nestle, F.O., et al., Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med, 2005. 202(1): p. 135-43.

133. Lowes, M.A., et al., The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol, 2013. 34(4): p. 174-81.

134. Liang, S.C., et al., Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med, 2006. 203(10): p. 2271-9.

135. Rizzo, H.L., et al., IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J Immunol, 2011. 186(3): p. 1495-502.

136. Perera, G.K., P. Di Meglio, and F.O. Nestle, Psoriasis. Annu Rev Pathol, 2012. 7: p. 385-422.

137. Arakawa, A., et al., Melanocyte antigen triggers autoimmunity in human psoriasis. J Exp Med, 2015. 212(13): p. 2203-12.

138. Prinz, J.C., Melanocytes: Target Cells of an HLA-C*06:02-Restricted Autoimmune Response in Psoriasis. J Invest Dermatol, 2017. 137(10): p.

2053-2058.

139. Fuentes-Duculan, J., et al., Autoantigens ADAMTSL5 and LL37 are signifi-cantly upregulated in active Psoriasis and localized with keratinocytes, den-dritic cells and other leukocytes. Exp Dermatol, 2017. 26(11): p. 1075-1082.

140. Lande, R., et al., Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature, 2007. 449(7162): p. 564-9.

141. Lande, R., et al., The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun, 2014. 5: p. 5621.

142. Kim, J. and J.G. Krueger, The immunopathogenesis of psoriasis. Dermatol Clin, 2015. 33(1): p. 13-23.

143. Duvallet, E., et al., Interleukin-23: a key cytokine in inflammatory diseases.

Ann Med, 2011. 43(7): p. 503-11.

144. Teng, M.W., et al., IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat Med, 2015. 21(7):

p. 719-29.

145. Blauvelt, A. and A. Chiricozzi, The Immunologic Role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis. Clin Rev Allergy Immunol, 2018. 55(3):

p. 379-390.

146. Girolomoni, G., U. Mrowietz, and C. Paul, Psoriasis: rationale for targeting interleukin-17. Br J Dermatol, 2012. 167(4): p. 717-24.

147. Ortega, C., et al., IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J Leukoc Biol, 2009. 86(2): p. 435-43.

148. Harper, E.G., et al., Th17 cytokines stimulate CCL20 expression in keratino-cytes in vitro and in vivo: implications for psoriasis pathogenesis. J Invest Dermatol, 2009. 129(9): p. 2175-83.

149. Isailovic, N., et al., Interleukin-17 and innate immunity in infections and chronic inflammation. J Autoimmun, 2015. 60: p. 1-11.

150. O’Connor, W., Jr., et al., A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol, 2009. 10(6): p. 603-9.

151. Mengesha, B.G. and H.R. Conti, The Role of IL-17 in Protection against Mucosal Candida Infections. J Fungi (Basel), 2017. 3(4).

152. Eyerich, K., V. Dimartino, and A. Cavani, IL-17 and IL-22 in immunity:

Driving protection and pathology. Eur J Immunol, 2017. 47(4): p. 607-614.

153. Akimzhanov, A.M., X.O. Yang, and C. Dong, Chromatin remodeling of inter-leukin-17 (IL-17)-IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J Biol Chem, 2007. 282(9): p. 5969-72.

154. Choi, B.G., et al., The IL17F His161Arg polymorphism, a potential risk locus for psoriasis, increases serum levels of interleukin-17F in an Asian popula-tion. Sci Rep, 2019. 9(1): p. 18921.

155. Johansen, C., et al., Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br J Dermatol, 2009. 160(2): p. 319-24.

156. Soderstrom, C., et al., Ultra-Sensitive Measurement of IL-17A and IL-17F in Psoriasis Patient Serum and Skin. AAPS J, 2017. 19(4): p. 1218-1222.

157. Pantelyushin, S., et al., Rorgammat+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J Clin Invest, 2012.

122(6): p. 2252-6.

158. Johnston, A., et al., Keratinocyte overexpression of IL-17C promotes psori-asiform skin inflammation. J Immunol, 2013. 190(5): p. 2252-62.

159. Deleuran, M., et al., IL-25 induces both inflammation and skin barrier dys-function in atopic dermatitis. Chem Immunol Allergy, 2012. 96: p. 45-49.

160. Kim, B.E., et al., IL-25 enhances HSV-1 replication by inhibiting filaggrin expression, and acts synergistically with Th2 cytokines to enhance HSV-1 replication. J Invest Dermatol, 2013. 133(12): p. 2678-2685.

161. Senra, L., et al., Keratinocyte-Derived IL-17E Contributes to Inflammation in Psoriasis. J Invest Dermatol, 2016. 136(10): p. 1970-1980.

162. Suto, H., et al., IL-25 enhances TH17 cell-mediated contact dermatitis by promoting IL-1beta production by dermal dendritic cells. J Allergy Clin Immunol, 2018. 142(5): p. 1500-1509 e10.

163. Walter, M.R., The molecular basis of IL-10 function: from receptor structure to the onset of signaling. Curr Top Microbiol Immunol, 2014. 380: p. 191-212.

164. Wolk, K., et al., IL-22 increases the innate immunity of tissues. Immunity, 2004. 21(2): p. 241-54.

165. Boniface, K., et al., IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol, 2005. 174(6): p. 3695-702.

166. Rabeony, H., et al., Inhibition of keratinocyte differentiation by the synergistic effect of IL-17A, IL-22, IL-1alpha, TNFalpha and oncostatin M. PLoS One, 2014. 9(7): p. e101937.

167. Lew, W., A.M. Bowcock, and J.G. Krueger, Psoriasis vulgaris: cutaneous lymphoid tissue supports T-cell activation and “Type 1” inflammatory gene expression. Trends Immunol, 2004. 25(6): p. 295-305.

168. Kryczek, I., et al., Induction of IL-17+ T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis. J Immunol, 2008. 181(7): p. 4733-41.

169. Abdallah, M.A., et al., Serum interferon-gamma is a psoriasis severity and prognostic marker. Cutis, 2009. 84(3): p. 163-8.

170. Hassan-Zahraee, M., J. Wu, and J. Gordon, Rapid synthesis of IFN-gamma by T cells in skin may play a pivotal role in the human skin immune system.

Int Immunol, 1998. 10(11): p. 1599-612.

171. Zielinski, C.E., et al., Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature, 2012. 484(7395): p.

514-8.

172. Grajewski, R.S., et al., Activation of invariant NKT cells ameliorates experi-mental ocular autoimmunity by a mechanism involving innate IFN-gamma production and dampening of the adaptive Th1 and Th17 responses. J Immunol, 2008. 181(7): p. 4791-7.

173. Lowes, M.A., et al., Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol, 2008. 128(5): p. 1207-11.

174. Ramana, C.V., et al., Stat1-dependent and -independent pathways in IFN-gamma-dependent signaling. Trends Immunol, 2002. 23(2): p. 96-101.

175. Bashir, M.M., M.R. Sharma, and V.P. Werth, TNF-alpha production in the skin. Arch Dermatol Res, 2009. 301(1): p. 87-91.

176. Kock, A., et al., Human keratinocytes are a source for tumor necrosis factor alpha: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. J Exp Med, 1990. 172(6): p. 1609-14.

177. Vassalli, P., The pathophysiology of tumor necrosis factors. Annu Rev Immunol, 1992. 10: p. 411-52.

178. Gearing, A.J., et al., Matrix metalloproteinases and processing of pro-TNF-alpha. J Leukoc Biol, 1995. 57(5): p. 774-7.

179. Mehta, N.N., et al., IFN-gamma and TNF-alpha synergism may provide a link between psoriasis and inflammatory atherogenesis. Sci Rep, 2017. 7(1):

p. 13831.

180. Nograles, K.E., et al., Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br J Dermatol, 2008. 159(5): p. 1092-102.

181. Chiricozzi, A., et al., Integrative responses to IL-17 and TNF-alpha in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis.

J Invest Dermatol, 2011. 131(3): p. 677-87.

182. Banno, T., A. Gazel, and M. Blumenberg, Effects of tumor necrosis factor-alpha (TNF factor-alpha) in epidermal keratinocytes revealed using global tran-scriptional profiling. J Biol Chem, 2004. 279(31): p. 32633-42.

183. Rizvi, S., K. Chaudhari, and B.A. Syed, The psoriasis drugs market. Nat Rev Drug Discov, 2015. 14(11): p. 745-6.

184. Gooderham, M., et al., A Review of Psoriasis, Therapies, and Suicide. J Cutan Med Surg, 2016. 20(4): p. 293-303.

185. Menter, A., The status of biologic therapies in the treatment of moderate to severe psoriasis. Cutis, 2009. 84(4 Suppl): p. 14-24.

186. Laws, P.M. and H.S. Young, Topical treatment of psoriasis. Expert Opin Pharmacother, 2010. 11(12): p. 1999-2009.

187. Tartar, D., et al., Update on the immunological mechanism of action behind phototherapy. J Drugs Dermatol, 2014. 13(5): p. 564-8.

188. Belge, K., J. Bruck, and K. Ghoreschi, Advances in treating psoriasis.

F1000Prime Rep, 2014. 6: p. 4.

189. Gollnick, H.P., Oral retinoids--efficacy and toxicity in psoriasis. Br J Dermatol, 1996. 135 Suppl 49: p. 6-17.

190. Sbidian, E., et al., Efficacy and safety of oral retinoids in different psoriasis subtypes: a systematic literature review. J Eur Acad Dermatol Venereol, 2011.

25 Suppl 2: p. 28-33.

191. Carretero, G., et al., [Guidelines on the use of methotrexate in psoriasis].

Actas Dermosifiliogr, 2010. 101(7): p. 600-13.

192. Amor, K.T., C. Ryan, and A. Menter, The use of cyclosporine in dermatology:

part I. J Am Acad Dermatol, 2010. 63(6): p. 925-46; quiz 947-8.

193. Raposo, I. and T. Torres, Palmoplantar Psoriasis and Palmoplantar Pustulosis:

Current Treatment and Future Prospects. Am J Clin Dermatol, 2016. 17(4):

p. 349-58.

194. Schafer, P., Apremilast mechanism of action and application to psoriasis and psoriatic arthritis. Biochem Pharmacol, 2012. 83(12): p. 1583-90.

195. Ghoreschi, K., et al., Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J Exp Med, 2011. 208(11): p. 2291-303.

196. Swindell, W.R., et al., Psoriasis drug development and GWAS interpretation through in silico analysis of transcription factor binding sites. Clin Transl Med, 2015. 4: p. 13.

197. Eberle, F.C., et al., Recent advances in understanding psoriasis. F1000Res, 2016. 5.

198. Zaba, L.C., et al., Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. J Allergy Clin Immunol, 2009. 124(5): p. 1022-10 e1-395.

199. Mease, P.J., et al., Etanercept in the treatment of psoriatic arthritis and pso-riasis: a randomised trial. Lancet, 2000. 356(9227): p. 385-90.

200. Mease, P.J., et al., Etanercept treatment of psoriatic arthritis: safety, efficacy, and effect on disease progression. Arthritis Rheum, 2004. 50(7): p. 2264-72.

201. Li, S.J., L.M. Perez-Chada, and J.F. Merola, TNF Inhibitor-Induced Psoriasis:

Proposed Algorithm for Treatment and Management. J Psoriasis Psoriatic Arthritis, 2019. 4(2): p. 70-80.

202. Feldman, S.R., et al., Infliximab treatment results in significant improvement in the quality of life of patients with severe psoriasis: a double-blind placebo-controlled trial. Br J Dermatol, 2005. 152(5): p. 954-60.

203. Alwawi, E.A., S.L. Mehlis, and K.B. Gordon, Treating psoriasis with adali-mumab. Ther Clin Risk Manag, 2008. 4(2): p. 345-51.

204. Dattola, A., et al., Certolizumab Pegol in the Treatment of Psoriasis and Psoriatic Arthritis: Preliminary Real-Life Data. Dermatol Ther (Heidelb), 2017. 7(4): p. 485-492.

205. O’Neill, J.L. and R.E. Kalb, Ustekinumab in the therapy of chronic plaque psoriasis. Biologics, 2009. 3: p. 159-68.

206. Machado, A. and T. Torres, Guselkumab for the Treatment of Psoriasis.

BioDrugs, 2018. 32(2): p. 119-128.

207. Galluzzo, M., et al., Tildrakizumab for treating psoriasis. Expert Opin Biol Ther, 2017. 17(5): p. 645-657.

208. Haugh, I.M., et al., Risankizumab: an anti-IL-23 antibody for the treatment of psoriasis. Drug Des Devel Ther, 2018. 12: p. 3879-3883.

209. Gordon, K.B., et al., Efficacy and safety of risankizumab in moderate-to-severe plaque psoriasis (UltIMMa-1 and UltIMMa-2): results from two double-blind, randomised, placebo-controlled and ustekinumab-controlled phase 3 trials.

Lancet, 2018. 392(10148): p. 650-661.

210. Reich, K., et al., Efficacy and safety of mirikizumab (LY3074828) in the treat-ment of moderate-to-severe plaque psoriasis: results from a randomized phase II study. Br J Dermatol, 2019. 181(1): p. 88-95.

211. Papp, K.A., et al., Dual neutralization of both interleukin 17A and interleukin 17F with bimekizumab in patients with psoriasis: Results from BE ABLE 1, a 12-week randomized, double-blinded, placebo-controlled phase 2b trial. J Am Acad Dermatol, 2018. 79(2): p. 277-286 e10.

Related documents