• No results found

Tändernas funktion och integritet kan förstöras av karies eller olyckor. Efter avlägsnande av karies eller läkning av skada, krävs dentala cement för att återställa den saknade tandstrukturen. De dentala cementen placeras i en hård oral miljö där de utsätts för värmechocker, konstant kemisk korrosion, och upprepad tuggkraft. Det ideala dentala cementet bör därför ha över-lägsna mekaniska egenskaper, goda hanteringsegenskaper , biokompatibili-tet, utmärkta antibakteriella egenskaper, och god bioaktivitet.

Glasjonomercement (GJC) är en av de mest använda dentala cementen nuförtiden. Konventionell GJC är baserad på reaktionen mellan polyakryl-syra (PAS) och glasmjöl som innehåller kiseldioxid, kalciumoxid, alumini-umoxid och fluorid. GJC anses överlägsen andra typer av dentala cement främst på grund av dess estetik och fluoravgivning under en längre tidspe-riod. Nackdelarna med GJC inkluderar dess skörhet, känslighet för fukt, och ingen bioaktivitet på grund av utsläpp av oreagerad PAS. Denna avhandling presenterar vårt arbete med att utveckla dentala cement med förbättrade egenskaper. Det övergripande syftet var att öka bioaktiviteten och de anti-bakteriella egenskaperna hos dentala cement utan att påverka övriga egen-skaper.

Effekterna av kalciumsilikatmaterial på glasjonomercement undersöktes.

Resultaten visade att kalciumsilikatmaterial kan öka bioaktiviteten och minska cytotoxiciteten hos konventionella glasjonomercement utan att även-tyra dess härdning och mekaniska egenskaper. De antibakteriella egenskap-erna hos glasjonomercement skulle kunna ökas genom att införliva silverdo-pade hydroxyapatit- och monetitpartiklar. Ytterligare undersökning visade att pH-förändring, F--jon frigörelse, och koncentration av frigjorda Ag+-joner inte är ansvarigt för de förbättrade antibakteriella egenskaperna. Hyd-roxyapatit med ett högt sidoförhållande och tunt pärlemorskiktat monetitark syntetiserades. Nanohydroxyapatit med högt sidoförhållande syntetiserades med både utfällning och hydrotermiska metoder. Sänkning av pH resulterade i en ökning av sidoförhållandet. Nanohydroxyapatit (HA) partiklar med ett sidoförhållande på 50 kan syntetiseras genom både utfällning och hydroter-miska metoder. Tunna pärlemorskiktade monetitark syntetiserades genom en

utvärderades. I vår studie, visade hartsmodifierade glasjonomercement och hartsbaserad komposit överlägsen statisk tryckhållfasthet och utmattnings-gräns jämfört med konventionella glasjonomercement. Den statiska tryck-hållfastheten av dentala cement ökade med åldringstiden. Åldring hade emellertid ingen effekt på den kompressiva utmattningsgränsen av hartsmo-difierat glasjonomercement och hartsbaserad komposit. Tryckutmattnings-gränsen för konventionell glasjonomercement visade även en drastisk minskning efter åldring.

Acknowledgements

So many people have supported and helped me during my four years’ jour-ney in Uppsala and I would like to express my thanks to all of you.

To Håkan, my main supervisor, for providing me the opportunity to start the wonderful journey in Uppsala University and for giving me the freedom to explore in the lab. Your unique insights in the subjects are really impres-sive and I am always inspired by our discussions. To Wei, my co-supervisor, for your guidance on the experiments and your great patience. Your door is always open and I can find you whenever I need help. Special thanks to Gemma, my former officemate, for sharing your scientific experiences and your skills. I learned a lot from you on how to be a good researcher.

To Prof. Maria Strömme, for interviewing and recommending me to the MiM group. To Kristina, for providing accommodation when I first came to Uppsala. To Cristopher, for helping me so much during my first year in Sweden. I really cherish all the wonderful weekends we spent together in Örsundsbro.

I would like to thank all the members in the MiM group. To Caroline, for sharing your knowledge on micro-CT and fatigue measurement. To Cecilia, for helping me with statistical analysis issues. To Marjam, for involving me into the HA project. To Shiuli, for being a great collaborator and never give up sprits on the project. To Sara, for being so much fun in the lab and for giving me advices when I travelled to Italy and Spain. To Alejandro, for making the lab a better place to work. To Michael, for your optimism and great sense of humor. To Tao, for sharing the study and work information.

To Torbjörn, for helping me revise the students’ lab reports. To Ingrid, for always helping me with the Swedish files. To Johan, for being a great of-ficemate. I really enjoy the talks we have together. To Oscar, for the discus-sions on antibacterial test and for helping me with the Swedish summary. To Charlotte, Erik, Jun, Le, Dan, Xi, Thomas, Celine, Luimar, Lee, Susanne, Bang and other members in MiM group, thank you for all the great times. It has been great experiences to work with you together. Special thanks to our former group members, Carl, Johanna, Maryam, Maria, Bing for helping me with the equipments and measurements when I first came to the MiM group.

Steven R. Jefferies, for the suggestions on the fatigue project and for the interesting discussions during the MRS conference. To Habtom, for helping me with the BET test. To Dr. Jean Pettersson, for your help with ICP meas-urement.

I would like to thank Hu Li, Jiangwei Liu, Wen Huang, Mingzi Jiao, Yu-rong Hu, Yi Ren, Xiaowen Li, Peng Zhang, Yan Guo, Da Zhang, Man Song, Xi Chen, Hongji Yan, Jinbao Zhang, Li Yang, Lei Zhang, Liyang Shi, Jingyi Hong, Yu Zhang, Ming Gao, Ruijun Pan, Dou Du, Hailiang Fang, Zhen Qiu, Yuxia Ji, Meiyuan Guo, Wenxing Yang, Shihuai Wang, Weijia Yang, Chenjuan Liu, Liguo Wang, Wei Li, Jiaojiao Yang, Kai Hua, Ling Xie, Jiangtao Chu, Zhen Liao, Changgang Xu, Xiao Yang, Miao Zhang, Shaohui Chen, Jinxing Huo, Yingying Zhu, Fengzhen Sun, Jiajie Yan, Changqing Ruan, Yuanyuan Han. I have had great time with you in Uppsala.

I would like to say thanks to Prof. Yin Liu and Prof. Linhua Jiang for guiding me to the research. Special thanks to Prof. Xuhua Ren for your en-couragements and help.

Last but not the least, I would like to thank the support from my family.

To my wife Shu, for your love and for all the things we have experienced together. Also to my parents-in-law for your support and consideration. To my parents, for your tireless dedication, for giving me a family full of love, for trusting and supporting my every choice. 谢谢爸爸妈妈,我爱你们!

References

1. Featherstone JD. The continuum of dental caries-evidence for a dynamic disease process. Journal of dental research 2004;83 (Spec Iss C):C39-42.

2. Seemann R, Flury S, Pfefferkorn F, Lussi A, Noack MJ. Restorative dentistry and restorative materials over the next 20 years: a Delphi survey. Dental materials 2014;30(4):442-8.

3. Kokubo T. Bioactive glass ceramics: properties and applications. Biomaterials 1991;12(2):155-63.

4. Jefferies SR. Bioactive and biomimetic restorative materials: a comprehensive review. Part I. Journal of esthetic and restorative dentistry 2014;26(1):14-26.

5. Moshaverinia A, Roohpour N, Rehman IU. Synthesis and characterization of a novel fast-set proline-derivative-containing glass ionomer cement with enhanced mechanical properties. Acta biomaterialia 2009;5(1):498-507.

6. Kamitakahara M, Kawashita M, Kokubo T, Nakamura T. Effect of polyacrylic acid on the apatite formation of a bioactive ceramic in a simulated body fluid:

fundamental examination of the possibility of obtaining bioactive glass-ionomer cements for orthopaedic use. Biomaterials 2001;22(23):3191-6.

7. Moshaverinia A, Roohpour N, Chee WWL, Schricker SR. A review of powder modifications in conventional glass-ionomer dental cements. Journal of materials chemistry 2011;21(5):1319-28.

8. Moshaverinia A, Roohpour N, Chee WWL, Schricker SR. A review of polyelectrolyte modifications in conventional glass-ionomer dental cements.

Journal of materials chemistry 2012;22(7):2824.

9. Chen L, Shen H, Suh BI. Bioactive dental restorative materials: a review.

American journal of dentistry 2013;26(4):219-27.

10. International Organization for Standardization. Dentistry-polymer-based restorative materials. ISO 4049-2009; 2009.

11. International Organization for Standardization. Dentistry-water-based cements.

Part 1: Powder/liquid acid-base cements. ISO 9917-1; 2007.

12. Smith DC. Development of glass-ionomer cement systems. Biomaterials 1998;19(6):467-78.

13. Lucas ME, Arita K, Nishino M. Toughness, bonding and fluoride-release properties of hydroxyapatite-added glass ionomer cement. Biomaterials 2003;24(21):3787-94.

14. Yli-Urpo H, Lassila LV, Narhi T, Vallittu PK. Compressive strength and surface characterization of glass ionomer cements modified by particles of bioactive glass. Dental materials 2005;21(3):201-9.

15. Agha A, Parker S, Patel MP. Development of experimental resin modified glass ionomer cements (RMGICs) with reduced water uptake and dimensional

16. Bellis CA, Nobbs AH, O'Sullivan DJ, Holder JA, Barbour ME. Glass ionomer cements functionalised with a concentrated paste of chlorhexidine hexametaphosphate provides dose-dependent chlorhexidine release over at least 14 months. Journal of dentistry 2016;45:53-8.

17. Felemban NH, Ebrahim MI. Effects of adding silica particles on certain properties of resin-modified glass-ionomer cement. European journal of dentistry 2016;10(2):225-9.

18. Pierlot CM, Kiri L, Boyd D. Effect of Ge/Si ratio on genotoxicity of germanium-containing glass ionomer cements. Materials letters 2016;168:151-19. Fuss Z, Abramovitz I, Metzger Z. Sealing furcation perforations with silver 4.

glass ionomer cement: an in vitro evaluation. Journal of endodontics 2000;26(8):466-8.

20. Kim DA, Abo-Mosallam H, Lee HY, Lee JH, Kim HW, Lee HH. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO. Journal of applied oral science 2015;23(4):369-75.

21. Valanezhad A, Odatsu T, Udoh K, Shiraishi T, Sawase T, Watanabe I.

Modification of resin modified glass ionomer cement by addition of bioactive glass nanoparticles. Journal of materials science: Materials in medicine 2016;27(1):3.

22. Hench LL. The story of Bioglass. Journal of materials science: Materials in medicine 2006;17(11):967-78.

23. Kokubo T, Yamaguchi S. Novel Bioactive Materials Derived by Bioglass:

Glass-Ceramic A-W and Surface-Modified Ti Metal. International journal of applied glass science 2016;7(2):173-82.

24. Setbon HM, Devaux J, Iserentant A, Leloup G, Leprince JG. Influence of composition on setting kinetics of new injectable and/or fast setting tricalcium silicate cements. Dental materials 2014;30(12):1291-303.

25. Camilleri J. Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial. Dental materials 2011;27(8):836-44.

26. Camilleri J, Cutajar A, Mallia B. Hydration characteristics of zirconium oxide replaced Portland cement for use as a root-end filling material. Dental materials 2011;27(8):845-54.

27. Cutajar A, Mallia B, Abela S, Camilleri J. Replacement of radiopacifier in mineral trioxide aggregate; characterization and determination of physical properties. Dental materials 2011;27(9):879-91.

28. Heyder M, Kranz S, Volpel A, Pfister W, Watts DC, Jandt KD, et al.

Antibacterial effect of different root canal sealers on three bacterial species.

Dental materials 2013;29(5):542-9.

29. Prati C, Gandolfi MG. Calcium silicate bioactive cements: Biological perspectives and clinical applications. Dental materials 2015;31(4):351-70.

30. Gandolfi MG, Van Landuyt K, Taddei P, Modena E, Van Meerbeek B, Prati C.

Environmental scanning electron microscopy connected with energy dispersive x-ray analysis and Raman techniques to study ProRoot mineral trioxide aggregate and calcium silicate cements in wet conditions and in real time.

Journal of endodontics 2010;36(5):851-7.

31. Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dental materials 2013;29(5):580-93.

32. Vitti RP, Prati C, Sinhoreti MA, Zanchi CH, Souza ESMG, Ogliari FA, et al.

Chemical-physical properties of experimental root canal sealers based on butyl ethylene glycol disalicylate and MTA. Dental materials 2013;29(12):1287-94.

33. Tangboriboon N, Khongnakhon T, Kittikul S, Kunanuruksapong R, Sirivat A.

An innovative CaSiO3 dielectric material from eggshells by sol-gel process.

Journal of sol-gel science and technology 2010;58(1):33-41.

34. Lee Y. Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials 2004;25(5):787-93.

35. Han GS, Lee S, Kim DW, Kim DH, Noh JH, Park JH, et al. A simple method to control morphology of hydroxyapatite nano- and microcrystals by altering phase transition route. Crystal growth & design 2013;13(8):3414-8.

36. Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A.

Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta biomaterialia 2013;9(8):7591-621.

37. Zhang H, Darvell BW. Morphology and structural characteristics of hydroxyapatite whiskers: effect of the initial Ca concentration, Ca/P ratio and pH. Acta biomaterialia 2011;7(7):2960-8.

38. Kokubo T. Bioceramics and their clinical applications. Woodhead Publishing;

2008.

39. Tamimi F, Torres J, Bassett D, Barralet J, Cabarcos EL. Resorption of monetite granules in alveolar bone defects in human patients. Biomaterials 2010;31(10):2762-9.

40. Tamimi F, Torres J, Kathan C, Baca R, Clemente C, Blanco L, et al. Bone regeneration in rabbit calvaria with novel monetite granules. Journal of biomedical materials research Part A 2008;87(4):980-5.

41. Tas AC. Molten salt synthesis of calcium hydroxyapatite whiskers. Journal of the american ceramic society 2001;84(2):295-300.

42. Singh SP, Karmakar B. Mechanochemical synthesis of nano calcium silicate particles at room temperature. New journal of glass and ceramics 2011;01(02):49-52.

43. Zhang H, Wang Y, Yan Y, Li S. Precipitation of biocompatible hydroxyapatite whiskers from moderately acid solution. Ceramics international 2003;29(4):413-8.

44. Neira IS, Kolen'ko YV, Lebedev OI, Van Tendeloo G, Gupta HS, Guitian F, et al. An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis. Crystal growth & design 2009;9(1):466-74.

45. Zhang CM, Yang J, Quan ZW, Yang PP, Li CX, Hou ZY, et al.

Hydroxyapatite nano- and microcrystals with multiform morphologies:

Controllable synthesis and luminescence properties. Crystal growth & design 2009;9(6):2725-33.

46. Booncharoen W, Jaroenworaluck A, Stevens R. A synthesis route to nanoparticle dicalcium silicate for biomaterials research. Journal of biomedical materials research Part B, Applied biomaterials 2011;99(2):230-8.

47. Xia W, Chang J. Preparation and the phase transformation behavior of amorphous mesoporous calcium silicate. Microporous and mesoporous materials 2008;108(1-3):345-51.

48. Wu C, Chang J. A review of bioactive silicate ceramics. Biomedical materials

50. Sepulveda P, Jones JR, Hench LL. Bioactive sol-gel foams for tissue repair.

Journal of biomedical materials research 2002;59(2):340-8.

51. Neira IS, Guitián F, Taniguchi T, Watanabe T, Yoshimura M. Hydrothermal synthesis of hydroxyapatite whiskers with sharp faceted hexagonal morphology. Journal of materials science 2007;43(7):2171-8.

52. Guo X, Xiao P, Liu J, Shen Z. Fabrication of Nanostructured Hydroxyapatite via Hydrothermal Synthesis and Spark Plasma Sintering. Journal of the american ceramic society 2005;88(4):1026-9.

53. Corni I, Harvey TJ, Wharton JA, Stokes KR, Walsh FC, Wood RJ. A review of experimental techniques to produce a nacre-like structure. Bioinspiration &

biomimetics 2012;7(3):031001.

54. International Organization for Standardization. Biological evaluation of medical devices - Part 11: Tests for systemic toxicity. ISO 10993-11; 2006.

55. American Society for Testing and Materials. Standard test method for time and setting of hydraulic-cement paste by Gillmore needles. ASTM C266-03; 2000.

56. Hill RG WA. a rheological study of the role of additives on the setting of glass ionomer cements. Journal of dental research 1988;67(12):1446-50.

57. Rai S, Singh NB, Singh NP. Interaction of tartaric acid during hydration of Portland cement. Indian journal of chemical technology 2006;13(3):255-61.

58. Sayyedan FS, Fathi MH, Edris H, Doostmohammadi A, Mortazavi V, Hanifi A. Effect of forsterite nanoparticles on mechanical properties of glass ionomer cements. Ceramics international 2014;40(7):10743-8.

59. Lucksanasombool P, Higgs WA, Higgs RJ, Swain MV. Time dependence of the mechanical properties of GICs in simulated physiological conditions.

Journal of materials science: Materials in medicine 2002;13(8):745-50.

60. Braem MJ, Lambrechts P, Gladys S, Vanherle G. In vitro fatigue behavior of restorative composites and glass ionomers. Dental materials 1995;11(2):137-61. Lassila LV, Nohrstrom T, Vallittu PK. The influence of short-term water 41.

storage on the flexural properties of unidirectional glass fiber-reinforced composites. Biomaterials 2002;23(10):2221-9.

62. Lohbauer U, Frankenberger R, Kramer N, Petschelt A. Time-dependent strength and fatigue resistance of dental direct restorative materials. Journal of materials science: Materials in medicine 2003;14(12):1047-53.

63. Cattani-Lorente MA, Godin C, Meyer JM. Mechanical behavior of glass ionomer cements affected by long-term storage in water. Dental materials 1994;10(1):37-44.

64. Takadama H, Kim HM, Kokubo T, Nakamura T. Mechanism of biomineralization of apatite on a sodium silicate glass: TEM-EDX study in vitro. Chemistry of materials 2001;13(3):1108-13.

65. Liu X, Ding C, Chu PK. Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials 2004;25(10):1755-61.

66. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006;27(15):2907-15.

67. Mutlu I, Oktay E. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments. Materials science & engineering C: Materials for biological applications 2013;33(3):1125-31.

68. Gandolfi MG, Taddei P, Siboni F, Modena E, Ciapetti G, Prati C. Development of the foremost light-curable calcium-silicate MTA cement as root-end in oral surgery. Chemical-physical properties, bioactivity and biological behavior.

Dental materials 2011;27(7):e134-57.

69. Pan H, Zhao X, Darvell BW, Lu WW. Apatite-formation ability - predictor of

"bioactivity"? Acta biomaterialia 2010;6(11):4181-8.

70. Chen L, Shen H, Suh BI. Antibacterial dental restorative materials: a state-of-the-art review. American journal of dentistry 2012;25(6):337-46.

71. Imazato S. Antibacterial properties of resin composites and dentin bonding systems. Dental materials 2003;19(6):449-57.

72. Necula BS, van Leeuwen JP, Fratila-Apachitei LE, Zaat SA, Apachitei I, Duszczyk J. In vitro cytotoxicity evaluation of porous TiO(2)-Ag antibacterial coatings for human fetal osteoblasts. Acta biomaterialia 2012;8(11):4191-7.

73. Petrochenko PE, Zhang Q, Bayati R, Skoog SA, Phillips KS, Kumar G, et al.

Cytotoxic evaluation of nanostructured zinc oxide (ZnO) thin films and leachates. Toxicology in vitro 2014;28(6):1144-52.

74. Barkhordar RA, Kempler D, Pelzner RR, Stark MM. Technical note:

antimicrobial action of glass-ionomer lining cement on S. sanguis and S.

mutans. Dental materials 1989;5(4):281-2.

75. Fraga RC, Siqueira JF, Jr., de Uzeda M. In vitro evaluation of antibacterial effects of photo-cured glass ionomer liners and dentin bonding agents during setting. The journal of prosthetic dentistry 1996;76(5):483-6.

76. Lessa FC, Aranha AM, Hebling J, Costa CA. Cytotoxic effects of White-MTA and MTA-Bio cements on odontoblast-like cells (MDPC-23). Brazilian dental journal 2010;21(1):24-31.

77. Bouillaguet S. Biological Risks of Resin-Based Materials to the Dentin-Pulp Complex. Critical reviews in oral biology and medicine 2004;15(1):47-60.

78. Kanjevac T, Milovanovic M, Milosevic-Djordjevic O, Tesic Z, Ivanovic M, Lukic A. Cytotoxicity of glass ionomer cement on human exfoliated deciduous teeth stem cells correlates with released fluoride, strontium and aluminum ion concentrations. Archives of biological sciences 2015;67(2):619-30.

79. Lan WC, Lan WH, Chan CP, Hsieh CC, Chang MC, Jeng JH. The effects of extracellular citric acid acidosis on the viability, cellular adhesion capacity and protein synthesis of cultured human gingival fibroblasts. Australian dental journal 1999;44(2):123-30.

80. Keenan TJ, Placek LM, McGinnity TL, Towler MR, Hall MM, Wren AW.

Relating ion release and pH to in vitro cell viability for gallium-inclusive bioactive glasses. Journal of materials science 2015;51(2):1107-20.

81. Stanislawski L, Daniau X, Lauti A, Goldberg M. Factors responsible for pulp cell cytotoxicity induced by resin-modified glass ionomer cements. Journal of biomedical materials research 1999;48(3):277-88.

Related documents