• No results found

Sammanfattning När ett läkemedel har tagits upp i kroppen och utövat sin effekt, bryts det ned för att

slutligen lämna kroppen genom utsöndring. Nedbrytning av kroppsfrämmande ämnen såsom läkemedel kallas för metabolism. Läkemedelsmetabolism betraktas ofta som en process som förändrar läkemedel till ofarliga, vattenlösliga nedbrytningsprodukter som lätt kan lämna kroppen, t.ex. via urinen. Läkemedel kan emellertid även omvandlas till reaktiva och potentiellt toxiska nedbrytningsprodukter (metaboliter) genom meta-bolism. Sådana reaktiva metaboliter kan binda till olika proteiner eller till DNA i kroppen, vilket kan ge biverkningar och skador hos patienter. Reaktiva metaboliter försvårar på detta sätt användandet och utvecklingen av nya läkemedel. Det är därför viktigt att utveckla metoder för att tidigt i utvecklingen av läkemedel identifiera samt undvika reaktiva metaboliter.

Denna avhandling utreder hur elektrokemiska metoder kan användas för att studera reaktiva metaboliter. I delarbete I vidareutvecklades och förfinades metoder för att efterlikna metabolismen av läkemedel i kroppen med hjälp av tre olika kemiska system. Systemen kompletterade varandra och alla relevanta typer av metaboliska reaktioner efterliknades med minst ett av de tre systemen. I delarbete II och III studerades metabolismen av två välkända läkemedel, amodiakin och haloperidol. Amodiakin var ett malarialäkemedel som blev indraget från marknaden på grund av dess allvarliga biverkningar. I detta arbete identifierades hittills okända metaboliter som skulle kunna orsaka eller bidra till amodiakins biverkningar. Elektrokemisk framställning av en av metaboliterna i tillräckliga mängder, möjliggjorde att metabolitens struktur kunde bestämmas. Haloperidol är ett läkemedel som används i behandling av schizofreni och svåra psykoser. Idag är användandet av detta läkemedel begränsat på grund av dess oönskade biverkningar, som tros bero på en av haloperidols metaboliter. I delarbete

III studerades bildningen av denna metabolit och nya, kortlivade produkter

observerades som visade på mellansteg i denna bildning.

Om man i utvecklingen av ett läkemedel upptäcker att en eller flera reaktiva eller toxiska metaboliter bildas vid nedbrytningen i kroppen, finns det olika sätt att hantera problemet. Ett exempel är att på olika sätt ändra på läkemedlets struktur. I delarbete

IV ändrades haloperidols struktur för att undvika att den toxiska metaboliten bildas

Acknowledgements

I would like to express my sincere gratitude to the following people, you have all in different ways contributed to the preparation of this thesis:

My supervisors Dr Lars Weidolf and Dr Ulrik Jurva for giving me the great opportunity to perform my master thesis work in your group and later for taking me on as a Ph.D. student.

Dr Lars Weidolf for always being able to see the overall picture and for contributing with your large knowledge. Thank you for sharing interesting project problems, thorough proofreading of manuscripts and for taking on the responsibility as main supervisor. You have been acting as my mentor as well as my supervisor.

Dr Ulrik Jurva for your endless enthusiasm and encouragement! Thank you for sharing your knowledge of electrochemistry and mass spectrometry, and for always taking time to discuss results or experimental problems. You are one of the most helpful, positive and kindest persons I know!

Dr Kristina Luthman for support and encouragement, always with a warm and positive attitude.

To the Biotransformation group, the old and the new one, for showing interest in my work and for helping me with equipment and questions. Especially thanks to Bo Lindmark, Carina Leandersson and Anna Abrahamsson for answering many questions about the QTOF instruments. Thanks also to Emre Isin for clarifying reactivity issues. Dr Jennie Georgsson for your patient guidance during the synthetic work. Although it did not lead to any publication, I am now able to claim that I have synthesized 200 compounds. Thanks also to the group at KK2 during that time.

Dr Gunnar Grönberg for always being very helpful and open to new, exciting ideas. We did get some really nice NMR spectra!

Dr Collen Masimirembwa for a nice collaboration on the amodiaquine paper. Nothing is impossible when you work with Collen!

Professor Reinhold Tacke for the fruitful collaboration on the sila-compounds. Professor Neal Castagnoli, Jr. for contributing with your knowledge of haloperidol and MS/MS fragmentation, and for generously providing synthetic reference compounds. Dr Martin Kjerrulf for help with setting up a method for isolation of human leukocytes.

Ingvar Nilsson for helping me with the lyophilization with a happy smile!

Dr Anders Tunek, Dr Richard Thompson and Dr Hugues Dolgos for supporting this project.

To all the people that I have worked with during these years, thank you for your support and guidance but also for making the time at AstraZeneca interesting and joyful.

My family and friends:

Jag skulle vilja tacka alla mina släktingar och vänner för ert stöd och för att ni får mig att tänka på andra saker än arbetet.

Uppsalaflickorna, våra årliga träffar har gett mig välbehövlig energi och det är alltid lika trevligt att umgås med er.

Tack till min familj, för stöd i tuffa perioder och för firande av glada stunder. Pappa och Elisabet för att ni alltid lyssnar, stöttar och tror på mig. Min mamma Grethe, du finns alltid i mina tankar och jag önskar att du fick uppleva det här.

Mormor, du betyder så mycket för mig.

Mailis och Niilo, för er omtanke, stöd och intresse i mitt arbete.

Samuel, utan dig hade detta inte varit möjligt. Tack för att du alltid tror på mig, stöttar när det är svårt och gläds när det går bra. Du uppmuntrade mig att söka doktorandtjänsten och du har peppat mig hela vägen. You and me, me and you.

The Swedish Academy of Pharmaceutical Sciences, Stiftelsen Kjellbergska Flickskolans Donationer, Adlerbertska Foundation Travel Grant for travel and conference support.

References

1. Testa, B., Krämer, S.D. (2008) The Biochemistry of Drug Metabolism: Principles,

Redox reactions, Hydrolyses. Verlag Helvetica Chimica Acta, Zürich.

2. Groves, J.T., Han, Y.Z. (2005) Models and Mechanisms of Cytochrome P450 Action. In Cytochrome P450, Structure, Mechanism, and Biochemistry. (Ortiz de Montellano, P.R., Ed.) pp. 1-43, Kluwer Academic/Plenum Publishers, New York. 3. Sono M., Roach M.P., Coulter E.D., Dawson J.H. (1996) Heme-containing

oxygenases. Chem Rev, 96, 2841-2887.

4. Ortiz de Montellano, P.R., De Voss, J.J. (2005) Substrate Oxidation by Cytochrome P450 Enzymes. In Cytochrome P450 Structure, Mechanism, and Biochemistry. (Ortiz de Montellano, P.R., Ed.) pp. 183-245, Kluwer Academic/Plenum Publishers, New York.

5. Meunier B., de Visser S.P., Shaik S. (2004) Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev, 104, 3947-3980.

6. Caldwell G.W., Yan Z.Y. (2006) Screening for reactive intermediates and toxicity assessment in drug discovery. Curr Opin Drug Discov Dev, 9, 47-60.

7. Irving, C.C. (1978) Reactivity of conjugates of N-hydroxylated arylamines and arylamides. In Biological oxidation of nitrogen. (Gorrod, J.W., Ed.) pp. 325, Elsevier, Amsterdam.

8. Kalgutkar A.S., Soglia J.R. (2005) Minimising the potential for metabolic activation in drug discovery. Expert Opin Drug Metabol Toxicol, 1, 91-142, and references therein.

9. Evans E.C., Watt A.P., Nicoll-Griffith D.A., Baillie T.A. (2004) Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol, 17, 3-16.

10. Lohmann W., Karst U. (2008) Biomimetic modeling of oxidative drug metabolism: strategies, advantages and limitations. Anal Bioanal Chem, 391, 79-96.

11. Mansuy D. (2007) A brief history of the contribution of metalloporphyrin models to cytochrome P450 chemistry and oxidation catalysis. Comptes Rendus Chimie, 10, 392-413.

12. Brillas E., Sirés I., Oturan M.A. (2009) Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chem Rev, 109, 6570-6631.

13. Oturan M.A., Pinson J. (1995) Hydroxylation by electrochemically generated OH radicals. Mono- and polyhydroxylation of benzoic acid: products and isomers' distribution. J Phys Chem, 99, 13948-13954.

14. Ghiselli, A. (1998) Aromatic Hydroxylation: Salicylic Acid as a Probe for Measuring Hydroxyl Radical Production. In Methods in Molecular Biology: Free Radical and

Antioxidant Protocols. (Armstrong, D., Ed.) pp. 89-100, Humana Press Inc., Totowa.

15. Jurva U., Wikström H.V., Bruins A.P. (2002) Electrochemically assisted Fenton reaction: reaction of hydroxyl radicals with xenobiotics followed by on-line analysis with high-performance liquid chromatography/tandem mass spectrometry. Rapid

Commun Mass Spectrom, 16, 1934-1940.

16. Permentier H.P., Bruins A.P., Bischoff R. (2008) Electrochemistry-mass spectrometry in drug metabolism and protein research. Mini Rev Med Chem, 8, 46-56.

17. Guengerich F.P., Yun C., Macdonald T.L. (1996) Evidence for a 1-electron oxidation mechanism in N-dealkylation of N,N-dialkylanilines by cytochrome P450 2B1. Kinetic hydrogen isotope effects, linear free energy relationships, comparisons with horseradish peroxidase, and studies with oxygen surrogates. J Biol Chem, 271, 27321-27329.

18. Steckhan, E. (2001) Anoidic Oxidation of Nitrogen-Containing Compounds. In

Organic Electrochemistry. (Lund, H., Hammerich, O., Eds.) pp. 545-588, Marcel

Dekker Inc., New York.

19. Getek T.A., Korfmacher W.A., McRae T.A., Hinson J.A. (1989) Utility of solution electrochemistry mass spectrometry for investigation the formation and detection of biologically important conjugates of acetaminophen. J Chromatogr A, 474, 245-256.

20. Lohmann W., Karst U. (2006) Simulation of the detoxification of paracetamol using on-line electrochemistry/liquid chromatography/mass spectrometry. Anal

Bioanal Chem, 386, 1701-1708.

21. Madsen K.G., Olsen J., Skonberg C., Hansen S.H., Jurva U. (2007) Development and evaluation of an electrochemical method for studying reactive phase-I metabolites: correlation to in vitro drug metabolism. Chem Res Toxicol, 20, 821-831. 22. van Leeuwen S.M., Blankert B., Kauffmann J.M., Karst U. (2005) Prediction of

clozapine metabolism by on-line electrochemistry/liquid chromatography/mass spectrometry. Anal Bioanal Chem, 382, 742-750.

23. Xu R., Huang X., Kramer K.J., Hawley M.D. (1996) Characterization of products from the reactions of dopamine quinone with N-acetylcysteine. Bioorg Chem, 24, 110-126.

24. Zhang F., Dryhurst G. (1995) Influence of glutathione on the oxidation chemistry of the catecholaminergic neurotransmitter dopamine. J Electroanal Chem, 398, 117-128.

25. Huang X., Xu R., Hawley M.D., Hopkins T.L., Kramer K.J. (1998) Electrochemical oxidation of N-acyldopamines and regioselective reactions of their quinones with

N-acetylcysteine and thiourea. Arch Biochem Biophys, 352, 19-30.

26. Volk K.J., Yost R.A., Brajter-Toth A. (1992) Electrochemistry on line with mass spectrometry. Insight into biological redox reactions. Anal Chem, 64, 21A-33A. 27. Zhou F., Van Berkel G.J. (1995) Electrochemistry combined online with

electrospray mass spectrometry. Anal Chem, 67, 3643-3649.

28. Lohmann W., Karst U. (2007) Generation and identification of reactive metabolites by electrochemistry and immobilized enzymes coupled on-line to liquid chromatography/mass spectrometry. Anal Chem, 79, 6831-6839.

29. Jurva U., Holmén A., Grönberg G., Masimirembwa C.M., Weidolf L. (2008) Electrochemical generation of electrophilic drug metabolites: characterization of amodiaquine quinoneimine and cysteinyl conjugates by MS, IR, and NMR. Chem

Res Toxicol, 21, 928-935.

30. Madsen K.G., Skonberg C., Jurva U., Cornett C., Hansen S.H., Johansen T.N., Olsen J. (2008) Bioactivation of diclofenac in vitro and in vivo: correlation to electrochemical studies. Chem Res Toxicol, 21, 1107-1119.

31. Madsen K.G., Grönberg G., Skonberg C., Jurva U., Hansen S.H., Olsen J. (2008) Electrochemical oxidation of troglitazone: identification and characterization of the major reactive metabolite in liver microsomes. Chem Res Toxicol, 21, 2035-2041. 32. Lohmann W., Hayen H., Karst U. (2008) Covalent protein modification by reactive

drug metabolites using online electrochemistry/liquid chromatography/mass spectrometry. Anal Chem, 80, 9714-9719.

33. Doss G.A., Baillie T.A. (2006) Addressing metabolic activation as an integral component of drug design. Drug Metabol Rev, 38, 641-649.

34. Pussard E., Verdier F., Faurisson F., Scherrmann J.M., Le Bras J., Blayo M.C. (1987) Disposition of monodesethylamodiaquine after a single oral dose of amodiaquine and three regimens for prophylaxis against Plasmodium falciparum malaria. Eur J Clin Pharmacol, 33, 409-414.

35. Maggs J.L., Tingle M.D., Kitteringham N.R., Park B.K. (1988) Drug-protein conjugates - XIV. Mechanisms of formation of protein-arylating intermediates from amodiaquine, a myelotoxin and hepatotoxin in man. Biochem Pharmacol, 37, 303-311.

36. Christie G., Breckenridge A.M., Park B.K. (1989) Drug-protein conjugates-XVIII. Detection of antibodies towards the antimalarial amodiaquine and its quinone imine metabolite in man and the rat. Biochem Pharmacol, 38, 1451-1458.

37. Clarke J.B., Maggs J.L., Kitteringham N.R., Park B.K. (1990) Immunogenicity of amodiaquine in the rat. Int Arch Allergy Immunol, 91, 335-342.

38. Clarke J.B., Neftel K., Kitteringham N.R., Park B.K. (1991) Detection of antidrug IgG antibodies in patients with adverse drug reactions to amodiaquine. Int Arch

Allergy Immunol, 95, 369-375.

39. Harrison A.C., Maggs J.L., Kitteringham N.R., Park B.K. (1992) Metabolism and antigenicity of amodiaquine in the rat. Br J Clin Pharmacol, 33, 212P-213P.

40. Jewell H., Maggs J.L., Harrison A.C., O'Neill P.M., Ruscoe J.E., Park B.K. (1995) Role of hepatic metabolism in the bioactivition and detoxication of amodiaquine.

Xenobiotica, 25, 199-217.

41. Naisbitt D.J., Williams D.P., O'Neill P.M., Maggs J.L., Willock D.J., Pirmohamed M., Kevin Park B. (1998) Metabolism-dependent neutrophil cytotoxicity of amodiaquine: a comparison with pyronaridine and related antimalarial drugs. Chem

Res Toxicol, 11, 1586-1595.

42. Li X.Q., Bjorkman A., Andersson T.B., Ridderstrom M., Masimirembwa C.M. (2002) Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther, 300, 399-407.

43. Li X.Q., Bjorkman A., Andersson T.B., Gustafsson L.L., Masimirembwa C.M. (2003) Identification of human cytochrome P450s that metabolize anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J

Clin Pharmacol, 59, 429-442.

44. Chen C., Nelson W.L. (1982) N-dealkylation of propranolol: trapping of 3-(1-naphthoxy)-2-hydroxypropionaldehyde formed in rat liver microsomes. Drug Metab

Dispos, 10, 277-278.

45. Baer B.R., Rettie A.E., Henne K.R. (2005) Bioactivation of 4-ipomeanol by CYP4B1: adduct characterization and evidence for an enedial intermediate. Chem

46. Laurent F., Saivin S., Chretien P., Magnaval J.F., Peyron F., Sqalli A., Tufenkji A.E., Coulais Y., Baba H. (1993) Pharmacokinetic and pharmacodynamic study of amodiaquine and its two metabolites after a single oral dose in human volunteers.

Arzneim Forsch, 43, 612-616.

47. Hakkola J., Pasanen M., Pelkonen O., Hukkanen J., Evisalmi S., Anttila S., Rane A., Mantyla M., Purkunen R., Saarikoski S., Tooming M., Raunio H. (1997) Expression of CYP1B1 in human adult and fetal tissues and differential inducibility of CYP1B1 and CYP1A1 by Ah receptor ligands in human placenta and cultured cells.

Carcinogenesis, 18, 391-397.

48. Stiborová M., Martínek V., Rýdlová H., Hodek P., Frei E. (2002) Sudan I is a potential carcinogen for humans: evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes.

Cancer Res, 62, 5678-5684.

49. Stiborová M., Martínek V., Rýdlová H., Koblas T., Hodek P. (2005) Expression of cytochrome P450 1A1 and its contribution to oxidation of a potential human carcinogen 1-phenylazo-2-naphthol (Sudan I) in human livers. Cancer Lett, 220, 145-154.

50. Harrigan J.A., McGarrigle B.P., Sutter T.R., Olson J.R. (2006) Tissue specific induction of cytochrome P450 (CYP) 1A1 and 1B1 in rat liver and lung following in vitro (tissue slice) and in vivo exposure to benzo(a)pyrene. Toxicol in Vitro, 20, 426-438.

51. Stiborová M., Draÿinská H., Hájková J., Kadeőábková P., Frei E., Schmeiser H.H., Souÿek P., Phillips D.H., Arlt V.M. (2006) The environmental pollutant and carcingen 3-nitrobenzanthrone and its human metabolite 3-aminobenzanthrone are potent inducers of rat hepatic cytochromes P450 1A1 and 1A2 and NAD(P)H:quinone oxidoreductase. Drug Metab Dispos, 34, 1398-1405.

52. Caron E., Rioux N., Nicolas O., Lebel-Talbot H. (2005) Quantification of the expression and inducibility of 12 rat cytochrome P450 isoforms by quantitative RT-PCR. J Biochem Mol Toxicol, 19, 368-378.

53. Bowen W.P., Carey J.E., Miah A., McMurray H.F., Munday P.W., James R.S., Coleman R.A., Brown A.M. (2000) Measurement of cytochrome P450 gene induction in human hepatocytes using quantitative real-time reverse transcriptase-polymerase chain reaction. Drug Metab Dispos, 28, 781-788.

54. Otey C.R., Bandara G., Lalonde J., Takahashi K. (2006) Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochromes P450.

Biotechnol Bioeng, 93, 494-499.

55. Pushparajah D.S., Umachandran M., Nazir T., Plant K.E., Plant N., Lewis D.F.V., Ioannides C. (2008) Up-regulation of CYP1A/B in rat lung and liver, and human liver precision-cut slices by a series of polycyclic aromatic hydrocarbons;

association with the Ah locus and importance of molecular size. Toxicol In Vitro, 22, 128-145.

56. Janssen P.A.J., van de Westeringh C., Jageneau A.H.M., Demoen P.J.A., Hermans B.K.F., van Daele G.H.P., Schellekens K.H.L., van der Eycken C.A.M., Niemegeers C.J.E. (1959) Chemistry and pharmacology of CNS depressants related to 4-(4-hydroxy-4-phenylpiperidino)butyrophenone. I. Synthesis and screening data in mice. J Med Pharm Chem, 1, 281-297.

57. Levinson D.F. (1991) Pharmacologic treatment of schizophrenia. Clin Ther, 13, 326-352.

58. Dauer W., Przedborski S. (2003) Parkinson's disease: mechanisms and models.

Neuron, 39, 889-909.

59. Subramanyam B., Pond S.M., Eyles D.W., Whiteford H.A., Fouda H.G., Castagnoli N., Jr. (1991) Identification of potentially neurotoxic pyridinium metabolite in the urine of schizophrenic patients treated with haloperidol. Biochem Biophys Res

Commun, 181, 573-578.

60. Rollema H., Skolnik M., D'Engelbronner J., Igarashi K., Usuki E., Castagnoli N., Jr. (1994) MPP(+)-like neurotoxicity of a pyridinium metabolite derived from haloperidol: in vivo microdialysis and in vitro mitochondrial studies. J Pharmacol

Exp Ther, 268, 380-387.

61. Usuki E., Pearce R., Parkinson A., Castagnoli N., Jr. (1996) Studies on the conversion of haloperidol and its tetrahydropyridine dehydration product to potentially neurotoxic pyridinium metabolites by human liver microsomes. Chem

Res Toxicol, 9, 800-806.

62. Usuki E., Van der Schyf C.J., Castagnoli N., Jr. (1998) Metabolism of haloperidol and its tetrahydropyridine dehydration product HPTP. Drug Metabol Rev, 4, 809-826.

63. Usuki E., Bloomquist J.R., Freeborn E., Castagnoli K.P., Van der Schyf C.J., Castagnoli N., Jr. (2002) Metabolic studies on haloperidol and its tetrahydropyridinyl dehydration product (HPTP) in C57BL/6 mouse brain preparations. Neurotox Res, 4, 51-58.

64. Subramanyam B., Woolf T., Castagnoli N., Jr. (1991) Studies on the in vitro conversion of haloperidol to a potentially neurotoxic pyridinium metabolite. Chem

Res Toxicol, 4, 123-128.

65. Igarashi K., Kasuya F., Fukui M., Usuki E., Castagnoli N., Jr. (1995) Studies on the metabolism of haloperidol (HP): the role of CYP3A in the production of the neurotoxic pyridinium metabolite HPP+ found in rat brain following ip administration of HP. Life Sci, 57, 2439-2446.

66. Eyles D.W., McGrath J.J., Pond S.M. (1996) Formation of pyridinium species of haloperidol in human liver and brain. Psychopharmacology, 125, 214-219.

67. Avent K.M., Usuki E., Eyles D.W., Keeve R., Van der Schyf C.J., Castagnoli N., Jr., Pond S.M. (1996) Haloperidol and its tetrahydropyridine derivative (HPTP) are metabolized to potentially neurotoxic pyridinium species in the baboon. Life Sci, 59, 1473-1482.

68. Avent K.M., Riker R.R., Fraser G.L., Van Der Schyf C.J., Usuki E., Pond S.M. (1997) Metabolism of haloperidol to pyridinium species in patients receiving high doses intravenously: is HPTP an intermediate? Life Sci, 61, 2383-2390.

69. Avent K.M., DeVoss J.J., Gillam E.M.J. (2006) Cytochrome P450-mediated metabolism of haloperidol and reduced haloperidol to pyridinium metabolites.

Chem Res Toxicol, 19, 914-920.

70. Castagnoli N., Jr., Castagnoli K.P., Van der Schyf C.J., Usuki E., Igarashi K., Steyn S.J., Riker R.R. (1999) Enzyme-catalyzed bioactivation of cyclic tertiary amines to form potential neurotoxins. Pol J Pharmacol, 51, 31-38.

71. Miyazaki H., Matsunaga Y., Nambu K., Oh-e Y., Hashimoto M. (1986) Disposition and metabolism of [14C]-haloperidol in rats. Arzneim Forsch, 36, 443-452.

72. Forsman A., Fölsh G., Larsson M., Öhman R. (1977) On the metabolism of haloperidol in man. Curr Ther Res, 21, 606-617.

73. Gorrod J.W., Fang J. (1993) On the metabolism of haloperidol. Xenobiotica, 23, 495-508.

74. Fang J., McKay G., Song J., Remillrd A., Li X., Midha K. (2001) In vitro characterization of the metabolism of haloperidol using recombinant cytrochrome P450 and liver microsomes. Drug Metab Dispos, 12, 1638-1643.

75. Pan L.P., Wijnant P., Vriendt C.D., Rosseel M.T., Belpaire F.M. (1997) Characterization of the cytochrome P450 isoenzymes involved in the in vitroN-dealkylation of haloperidol. Br J Clin Pharmacol, 44, 557-564.

76. Kalgutkar A.S., Nguyen H.T. (2004) Identification of an N-methyl-4-phenylpyridinium-like metabolite of the antidiarrheal agent loperamide in human liver microsomes: underlying reason(s) for the lack of neurotoxicity despite the biactivation event. Drug Metab Dispos, 32, 943-952.

77. Tacke R., Heinrich T., Bertermann R., Burschka C., Hamacher A., Kassack M.U. (2004) Sila-haloperidol: a silicon analogue of the dopamine (D-2) receptor antagonist haloperidol. Organometallics, 23, 4468-4477.

78. Nguyen, B.T. (2009) Synthese silicumorganischer wirkstoffe und beiträge zur methodenentwicklung zum aufbau von silazepan- und silapyrrolidin-derivaten. Ph.D. Thesis, University of Würzburg, Würzburg, Germany.

79. Pooni P.K., Showell G.A. (2006) Silicon switches of marketed drugs. Mini-Rev Med

Chem, 6, 1169-1177.

80. Bains W., Tacke R. (2003) Silicon chemistry as a novel source of chemical diversity in drug design. Curr Opin Drug Discov Dev, 6, 526-543.

81. Gately S., West R. (2007) Novel therapeutics with enhanced biological activity generated by the strategic introduction of silicon isosteres into known drug scaffolds. Drug Dev Res, 68, 156-163.

Related documents