• No results found

THE PRESENT INVESTIGATION

SAMMANFATTNING PÅ SVENSKA

Endogena retrovirus - våra inneboende virus Är de till nytta och/eller skada för människan?

Människans arvsmassa består av så kallat DNA, som i sin tur bygger upp våra gener. Gener överför olika egenskaper från generation till generation. De “inneboende” virus jag har undersökt, så kallade endogena virus, finns precis som gener i vår arvsmassa och ärvs på samma sätt. Kännetecknet för ett endogent virus är en viss kombination av olika gener av samma sort som finns hos retrovirus. Det mest kända exemplet på retrovirus är HIV, som ger den dödliga sjukdomen AIDS. HIV-viruset kan ta sig in i en cell och sätta sig i arvsmassan. Däremot kommer inte HIV att ärvas till nästa generation utan istället smitta från person till person. För att ett retrovirus ska bli ett av de inneboende retrovirusen krävs att en spermie eller ett ägg infekteras. Då kommer retroviruset vidare till nästa generation och kommer att finnas i varje cell.

De virus som vi redan bär på verkar inte vara farliga för oss människor. Istället kan vi se dem som spår efter urgamla infektioner som våra förfäder fick för flera miljoner år sedan. Det som är intressant med dessa “fotspår” är att en del fortfarande kan tillverka ämnen (virusproteiner) som behövs för att ett virus ska kunna förflytta sig, och således infektera en ny individ. En del forskningsresultat tyder på att de endogena virusen skulle kunna vara till nytta för oss. Efter att ha levt i symbios med “våra” virus så länge som flera miljoner år, kan det vara så att vi människor till slut dragit nytta av en del av virusets egenskaper.

I ett försök att komma närmare en lösning på vad retrovirus gör i arvsmassan hos människan har jag försökt besvara följande frågor;

1. Var finns virus i arvsmassan och hur många är de?

2. I vilka organ och vävnader är de aktiva (när tillverkar de virusämnen)? Hur mycket virusproteiner tillverkas i jämförelse med andra kända proteiner?

3. Vid vilka hälsotillstånd är de aktiva?

4. Kan svaren från ovanstående frågor ge en vägledning om de inneboende virus kan spela någon viktig roll för oss? Är de sjukdomsalstrande eller behöver vi dem för överlevad?

För att ta reda på om virus kan starta sjukdomar måste det först finnas uppgifter om vad som är normalt. Resultat jag fått fram i avhandlingen visar bl. a. hur aktiva virus är i friska individer och i vilka kroppsorgan. Det ger en bakgrundskunskap som är viktig

t.ex. vid eventuella framtida transplantationer. Kunskapen behövs för att kunna bedöma risken för att grisens inneboende virus kan smitta människa.

ACKNOWLEDGEMENTS

This work was carried out at the department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University Hospital. Financial support was provided by the Swedish Cancer Society, Lions Uppsala, and Selanders Foundation.

I would like to express my sincere gratitude to:

Prof. Erik Larsson, my supervisor, for your genuine enthusiasm concerning science and particularly endogenous retroviruses, for encouragement, for contributing to the other 50% of our research group, and for the many times you trusted me to represent it;

Prof. Jonas Blomberg, my part-time mentor for the last two years, for sharing your wide knowledge about retroviruses and bioinformatics; having time for discussions and for providing excellent virology seminars;

Associate Prof. Göran Andersson, my molecular biology-mentor, who, luckily, returned to Sweden, for co-authorship and good “HERV”-collaboration;

my collaborators and co-authors in alphabetical order;

Johan Botling, Anna Dimberg, Lars Eriksson, Graham Forrest, Jan Grawé, Simon Gronowitz, Fredrik Hedborg, Angela Horsfall, Patric Jern, Claes Källander, Per-Uno Malmström, Malik Merza, Ove Nilsson, Fredrik Pontén, Petter Ranefall, Shirley Rigby, Charlotte Rolny, Niclas Setterblad, Jürgen Scherer, Johan Sundström, Ann-Cathrin Svensson, Ralf Tönjes, Zhihong Yun and Fredrik Öberg;

Dr. Maurice Cohen, for the opportunity to visit you and your research group at Abbott Laboratories, Chicago; many thanks to you and your family;

Prof. Patrick Venables and PhD. Tracey Mitchell, for inviting me to the Kennedy Institute of Rheumatology, London, and for their hospitality, welcoming me in their home during my visits; Prof. Dixie Mager and PhD. Patrik Medstrand for their kind permission to use the HERV-tree in this thesis (Figure 3);

all people, from the Clinic and the University, who I had the pleasure to meet during my years at the unit of Pathology, Uppsala, among others; Görel, Ulrika L, Erik B., Pernilla E Ulf T. and Micke K;

William and Viktor for a variety of computer assistance, whenever needed, William also for have being a nice room mate;

Rehné E, Gunilla T, Gunilla Å, and especially Eva B, for all sorts of help concerning administration;

Frank Bittkowski for teaching micro photographing;

Annika Hermansson and Marianne Kastemar for your expertise in cell culture, among other things;

Sten-Sture lab; Anna D, Anna H, Lina, Inger, Karolina, Pernilla M, Fredrik, Thomas, Helena JW, Helen, Karin and Simon; for Friday gatherings and good company; especially I would like to thank Prof. Kenneth Nilsson for inviting me to the haematology lab, and together with Anna Dimberg, Fredrik Öberg and Inger Karlberg, having fruitful collaborations;

the Virology seminar group at the department of Clinical Virology; Patric, Anna F, Zhihong, Göran, Amal, Nahla, Dimitrij, Widar and others for a friendly atmosphere;

former members of “hörnfamiljen” The Busch-Larsson-lab, Ingrid Backlund, Eva Wahlund, Kenneth Wester, Lila Shokohideh, Ann-Christin Melén Boudin, Katarina Engström and Levent Akyürek for immunohistochemical expertise, friendship and a lot of humour throughout the years;

Kenneth Wester, for fruitful collaborations and co-authorship, a lot of fun conversations and for becoming a dear friend during our (sometimes long) way becoming PhD students;

Ann-Christin Melén Boudin, my sectioning mentor and sincere friend, for good times in the lab, horseback riding, and great hospitality from you and your family;

the “chicks” Mia and Marie for your happy lab-mood, and Mia also for being my WW friend; Åsa, Anna D, Göran and Thomas S for pep talks and company during late nights in the lab; Åsa also for our superb habit of having “fruktstunder”;

my room mates from “Kardborren”; Göran, Åsa, Magnus, Jessica and Lina;

the poker(?) club; Monica, Lotta, Susanne and the NY exile-members Lene and Ulrica for sharing fun and unpredictable evenings;

Carolina Rydin, Lene Uhrbom and Ulrica Westermark, all of which I first met in the lab, for dear friendship and fabulous family-dinners with a lot of bumping around in the kitchen;

Anna-Carin, Lena, and Karin, for friendship, countless hospital-lunches; and together with Dan, Peter and Erik, for a lot of fun and memorable times;

Maria and Viktoria, for “togetherness” and for keeping my dialect;

my relatives Mimmi, Ginge, Ecke, Kajsa Torbjörn, Liselotte, Lina, Ylva and Therese for pleasant family events at Tallmas and elsewhere;

the Lorant family, Gizella, Stefan, Eva, Urban, and Margit for welcoming me in their family and for taking so good care of me;

my parents Boel and Rolf for your love and encouragement; my brother Niklas for being just the brother I want; Anna-Karin, my dear sister in law, for taking good care of Niklas and Lovisa; Tomas, with lots of love, for your support and for being the one you are.

REFERENCES

Adams, S. E., Rathjen, P. D., Stanway, C. A., Fulton, S. M., Malim, M. H., Wilson, W., Ogden, J., King, L., Kingsman, S. M., and Kingsman, A. J. (1988). Complete nucleotide sequence of a mouse VL30 retro-element, Mol Cell Biol 8, 2989-2998.

An, D. S., Xie, Y., and Chen, I. S. (2001). Envelope gene of the human endogenous retrovirus HERV-W encodes a functional retrovirus envelope, J Virol 75, 3488-3489.

Andersson, A.-C., Merza, M., Venables, P., Ponten, F., Sundström, J., Cohen, M., and Larsson, E. (1996a). Elevated levels of the endogenous retrovirus ERV3 in human sebaceous glands, J Invest Dermatol 106, 125-128.

Andersson, A.-C., Svensson, A.-C., Rolny, C., Andersson, G., and Larsson, E. (1998a). Expression of human endogenous retrovirus ERV3 (HERV-R) mRNA in normal and neoplastic tissues, Int J Oncol 12, 309-313.

Andersson, G., Svensson, A. C., Setterblad, N., and Rask, L. (1998b). Retroelements in the human MHC class II region, Trends Genet 14, 109-114.

Andersson, M.-L., Lindeskog, M., Medstrand, P., Westley, B., May, F., and Blomberg, J. (1999). Diversity of human endogenous retrovirus class II-like sequences, J Gen Virol 80, 255-260. Andersson, M. L., Mager, D. L., Blomberg, J., and Medstrand, P. (2001). Human endogenous

retroviral class II elements: expression in dbEST libraries and evolutionary relationships. In Thesis: human endogenouas retroviruses: expression and evolutionary relationships (Lund), pp. 1-27.

Andersson, M. L., Medstrand, P., Yin, H., and Blomberg, J. (1996b). Differential expression of human endogenous retroviral sequences similar to mouse mammary tumor virus in normal peripheral blood mononuclear cells, AIDS Res Hum Retroviruses 12, 833-840.

Arvidsson, A. K., Svensson, A. C., Widmark, E., Andersson, G., Rask, L., and Larhammar, D. (1995). Characterization of three separated exons in the HLA class II DR region of the human major histocompatibility complex, Hum Immunol 42, 254-264.

Badenhoop, K., Donner, H., Neumann, J., Herwig, J., Kurth, R., Usadel, K. H., and Tonjes, R. R. (1999). IDDM patients neither show humoral reactivities against endogenous retroviral envelope protein nor do they differ in retroviral mRNA expression from healthy relatives or normal individuals, Diabetes 48, 215-218.

Baltimore, D. (1985). Retroviruses and retrotransposons: the role of reverse transcription in shaping the eukaryotic genome, Cell 40, 481-482.

Baltimore, D. (1988). Gene therapy. Intracellular immunization, Nature 335, 395-396.

Barbany, G., Hagberg, A., Olsson-Stromberg, U., Simonsson, B., Syvanen, A. C., and Landegren, U. (2000). Manifold-assisted reverse transcription-PCR with real-time detection for measurement of the BCR-ABL fusion transcript in chronic myeloid leukemia patients, Clin Chem 46, 913-920.

Becker, Y. (1996). Retrovirus and Filovirus "Immunosuppressive motif" and the evolution of virus pathogenicity in HIV-1 and HIV-2, and Ebola viruses, Virus Genes 11, 191-195. Benit, L., Dessen, P., and Heidmann, T. (2001). Identification, phylogeny, and evolution of

Benit, L., Lallemand, J. B., Casella, J. F., Philippe, H., and Heidmann, T. (1999). ERV-L elements: a family of endogenous retrovirus-like elements active throughout the evolution of mammals, J Virol 73, 3301-3308.

Benomar, A., Ming, W. J., Taraboletti, G., Ghezzi, P., Balotta, C., Cianciolo, G. J., Snyderman, R., Dore, J. F., and Mantovani, A. (1987). Chemotactic factor and P15E-related chemotaxis inhibitor in human melanoma cell lines with different macrophage content and tumorigenicity in nude mice, J Immunol 138, 2372-2379.

Berkhout, B., Jebbink, M., and Zsiros, J. (1999). Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus, J Virol 73, 2365-2375. Best, S., Le Tissier, P., Towers, G., and Stoye, J. P. (1996). Positional cloning of the mouse

retrovirus restriction gene Fv1, Nature 382, 826-829.

Bittner, J. J. (1942). The milk influence of breast tumours in mice, Science 95, 462-463.

Blond, J. L., Beseme, F., Duret, L., Bouton, O., Bedin, F., Perron, H., Mandrand, B., and Mallet, F. (1999). Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family, J Virol 73, 1175-1185.

Blond, J. L., Lavillette, D., Cheynet, V., Bouton, O., Oriol, G., Chapel-Fernandes, S., Mandrand, B., Mallet, F., and Cosset, F. L. (2000). An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor, J Virol 74, 3321-3329.

Boeke, J. D., and Stoye, J. P. (1997). Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In Retroviruses, J. M. Coffin, S. H. Hughes, and H. E. Varmus, eds. (Cold Spring Harbour, Cold Spring Harbour Laboratory Press), pp. 343-435.

Boese, A., Sauter, M., Galli, U., Best, B., Herbst, H., Mayer, J., Kremmer, E., Roemer, K., and Müeller-Lantzsch, N. (2000). Human endogenous retrovirus protein cORF supports cell transformation and associates with the promyelocytic leukemia zinc finger protein, Oncogene 19, 4328-4336.

Boller, K., Konig, H., Sauter, M., Müeller-Lantzsch, N., Löwer, R., Löwer, J., and Kurth, R. (1993). Evidence that HERV-K is the endogenous retrovirus sequence that codes for the human teratocarcinoma-derived retrovirus HTDV, Virology 196, 349-353.

Boyd, M. T., Bax, C. M., Bax, B. E., Bloxam, D. L., and Weiss, R. A. (1993). The human endogenous retrovirus ERV-3 is upregulated in differentiating placental trophoblast cells, Virology 196, 905-909.

Bustin, S. A. (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays, J Mol Endocrinol 25, 169-193.

Cho, K. R., and Vogelstein, B. (1992). Genetic alterations in the adenoma--carcinoma sequence, Cancer 70, 1727-1731.

Chong, H., Starkey, W., and Vile, R. G. (1998). A replication-competent retrovirus arising from a split-function packaging cell line was generated by recombination events between the vector, one of the packaging constructs, and endogenous retroviral sequences, J Virol 72, 2663-2670.

Choudhry, R., Hodgins, M. B., Van der Kwast, T. H., Brinkmann, A. O., and Boersma, W. J. (1992). Localization of androgen receptors in human skin by immunohistochemistry:

implications for the hormonal regulation of hair growth, sebaceous glands and sweat glands, J Endocrinol 133, 467-475.

Christensen, T., Dissing Sørensen, P., Riemann, H., Hansen, H. J., Munch, M., Haahr, S., and Møller-Larsen, A. (2000). Molecular characterization of HERV-H variants associated with multiple sclerosis, Acta Neurol Scand 101, 229-238.

Coffin, J. M. (1992). Structure and classification of retroviruses. In The retroviridae, J. A. Levy, ed. (New York and London, Plenum Press New York), pp. 19-49.

Cohen, M., Kato, N., and Larsson, E. (1988). ERV3 human endogenous provirus mRNAs are expressed in normal and malignant tissues and cells, but not in choriocarcinoma tumor cells, J Cell Biochem 36, 121-128.

Cohen, M., and Larsson, E. (1988). Human endogenous retroviruses, Bioessays 9, 191-196. Cohen, M., Powers, M., O'Connell, C., and Kato, N. (1985). The nucleotide sequence of the env

gene from the human provirus ERV3 and isolation and characterization of an ERV3- specific cDNA, Virology 147, 449-458.

Conrad, B. (1998). In response to Murphy et al., Löwer et al., and Lan et al., Cell 95, discussion16.

Conrad, B., Weissmahr, R. N., Böni, J., Arcari, R., Schüpbach, J., and Mach, B. (1997). A human endogenous retroviral superantigen as candidate autoimmune gene in type I diabetes, Cell 90, 303-313.

Cousineau, B., Lawrence, S., Smith, D., and Belfort, M. (2000). Retrotransposition of a bacterial group II intron, Nature 404, 1018-1021.

Crow, T. J. (1984). A re-evaluation of the viral hypothesis: is psychosis the result of retroviral integration at a site close to the cerebral dominance gene?, Br J Psychiatry 145, 243-253. Daniel, J. C. J., and Chilton, B. S. (1978). Virus-like particles in embryos and female

reproductive tract. In Development in mammals, M. H. Johnson, ed. (Amsterdam, Elsevier/North-Holland Biomedical Press), pp. 131-187.

de Parseval, N., Forrest, G., Venables, P. J., and Heidmann, T. (1999). ERV-3 envelope expression and congenital heart block: what does a physiological knockout teach us [published erratum appears in Autoimmunity 1999;31(2):149], Autoimmunity 30, 81-83. de Parseval, N., and Heidmann, T. (1998). Physiological knockout of the envelope gene of the

single-copy ERV-3 human endogenous retrovirus in a fraction of the Caucasian population, J Virol 72, 3442-3445.

Deb-Rinker, P., Klempan, T. A., O'Reilly, R. L., Torrey, E. F., and Singh, S. M. (1999). Molecular characterization of a MSRV-like sequence identified by RDA from monozygotic twin pairs discordant for schizophrenia, Genomics 61, 133-144.

Di Cristofano, A., Strazullo, M., Longo, L., and La Mantia, G. (1995). Characterization and genomic mapping of the ZNF80 locus: expression of this zinc-finger gene is driven by a solitary LTR of ERV9 endogenous retroviral family, Nucleic Acids Res 23, 2823-2830. Dimberg, A., Karlberg, I., Nilsson, K., and Öberg, F. (2002). Serine-727 phosphorylated Stat1 is

required for ATRA-induced G0/G1 arest of U-937 cells and the associated regulation of

cyclins and p27Kip1

. In Department of Genetics and Pathology (Uppsala, Uppsala University), pp. Thesis, Paper III, 1-28.

Dimberg, A., Nilsson, K., and Oberg, F. (2000). Phosphorylation-deficient Stat1 inhibits retinoic acid-induced differentiation and cell cycle arrest in U-937 monoblasts, Blood 96, 2870- 2878.

Ericsson, T., Oldmixon, B., Blomberg, J., Rosa, M., Patience, C., and Andersson, G. (2001). Identification of novel porcine endogenous betaretrovirus sequences in miniature swine, J Virol 75, 2765-2770.

Feuchter-Murthy, A. E., Freeman, J. D., and Mager, D. L. (1993). Splicing of a human endogenous retrovirus to a novel phospholipase A2 related gene, Nucleic Acids Res 21, 135-143.

French, N. S., and Norton, J. D. (1997). Structure and functional properties of mouse VL30 retrotransposons, Biochim Biophys Acta 1352, 33-47.

Gallo, R. C., and Montagnier, L. (1987). The chronology of AIDS research, Nature 326, 435- 436.

Gardner, M. B., Kozak, C. A., and O' Brien, S. J. (1991). The Lake Casitas wild mouse: evolving genetic resistance to retroviral disease, Trends Genet 7, 22-27.

Goedert, J. J., Sauter, M. E., Jacobson, L. P., Vessella, R. L., Hilgartner, M. W., Leitman, S. F., Fraser, M. C., and Mueller-Lantzsch, N. G. (1999). High prevalence of antibodies against HERV-K10 in patients with testicular cancer but not with AIDS, Cancer Epidemiol Biomarkers Prev 8, 293-.

Griffiths, D. J., Cooke, S. P., Herve´, C., Rigby, S. P., Mallon, E., Hajeer, A., Lock, M., Emery, V., Taylor, P., Pantelidis, P., et al. (1999). Detection of human retrovirus 5 in patients with arthritis and systemic lupus erythematosus, Arthritis Rheum 42, 448-454.

Griffiths, D. J., Venables, P. J., Weiss, R. A., and Boyd, M. T. (1997). A novel exogenous retrovirus sequence identified in humans, J Virol 71, 2866-2872.

Hanahan, D., and Weinberg, R. A. (2000). The hallmarks of cancer, Cell 100, 57-70.

Haraguchi, S., Good, R. A., James-Yarish, M., Cianciolo, G. J., and Day, N. K. (1995). Induction of intracellular cAMP by a synthetic retroviral envelope peptide: a possible mechanism of immunopathogenesis in retroviral infections, Proc Natl Acad Sci U S A 92, 5568-5571. Harris, J. M., McIntosh, E. M., and Muscat, G. E. (2000). Expression and cytoplasmic

localisation of deoxyuridine triphosphate pyrophosphatase encoded by a human endogenous retrovirus, Arch Virol 145, 353-363.

Harrison, P. M., Kumar, A., Lang, N., Snyder, M., and Gerstein, M. (2002). A question of size: the eukaryotic proteome and the problems in defining it, Nucleic Acids Res 30, 1083-1090. Hart, D. J., Heath, R. G., Sautter, F. J., Jr., Schwartz, B. D., Garry, R. F., Choi, B., Beilke, M. A.,

and Hart, L. K. (1999). Antiretroviral antibodies: implications for schizophrenia, schizophrenia spectrum disorders, and bipolar disorder, Biol Psychiatry 45, 704-714. Herniou, E., Martin, J., Miller, K., Cook, J., Wilkinson, M., and Tristem, M. (1998). Retroviral

diversity and distribution in vertebrates, J Virol 72, 5955-5966.

Hinuma, Y., Nagata, K., Hanaoka, M., Nakai, M., Matsumoto, T., Kinoshita, K. I., Shirakawa, S., and Miyoshi, I. (1981). Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera, Proc Natl Acad Sci U S A 78, 6476-6480. Horsfall, A. C., Neu, E., Forrest, G., Venables, P. J., and Field, M. (1998). Maternal

which there was congenital complete heart block and one in which the fetus was healthy, Arthritis Rheum 41, 2079-2080.

Huang, S. S., and Huang, J. S. (1998). A pentacosapeptide (CKS-25) homologous to retroviral envelope proteins possesses a transforming growth factor-beta activity, J Biol Chem 273, 4815-4818.

Jensen, S., Gassama, M. P., and Heidmann, T. (1999). Taming of transposable elements by homology-dependent gene silencing, Nat Genet 21, 209-212.

Johnston, J. B., Silva, C., Holden, J., Warren, K. G., Clark, A. W., and Power, C. (2001). Monocyte activation and differentiation augment human endogenous retrovirus expression: implications for inflammatory brain diseases, Ann Neurol 50, 434-442.

Jurka, J. (2000). Repbase update: a database and an electronic journal of repetitive elements, Trends Genet 16, 418-420.

Kapitonov, V. V., and Jurka, J. (1999). The long terminal repeat of an endogenous retrovirus induces alternative splicing and encodes an additional carboxy-terminal sequence in the human leptin receptor, J Mol Evol 48, 248-251.

Karlsson, H., Bachmann, S., Schröder, J., McArthur, J., Torrey, E. F., and Yolken, R. H. (2001). Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia, Proc Natl Acad Sci U S A 98, 4634-4639.

Kato, N., Larsson, E., and Cohen, M. (1988). Absence of expression of a human endogenous retrovirus is correlated with choriocarcinoma, Int J Cancer 41, 380-385.

Kato, N., Pfeifer-Ohlsson, S., Kato, M., Larsson, E., Rydnert, J., Ohlsson, R., and Cohen, M. (1987). Tissue-specific expression of human provirus ERV3 mRNA in human placenta: two of the three ERV3 mRNAs contain human cellular sequences, J Virol 61, 2182-2191. Kato, N., Shimotohno, K., VanLeeuwen, D., and Cohen, M. (1990). Human proviral mRNAs

down regulated in choriocarcinoma encode a zinc finger protein related to Kruppel, Mol Cell Biol 10, 4401-4405.

Katsumata, K., Ikeda, H., Sato, M., Harada, H., Wakisaka, A., Shibata, M., and Yoshiki, T. (1998). Tissue-specific high-level expression of human endogenous retrovirus-R in the human adrenal cortex, Pathobiology 66, 209-215.

Katsumata, K., Ikeda, H., Sato, M., Ishizu, A., Kawarada, Y., Kato, H., Wakisaka, A., Koike, T., and Yoshiki, T. (1999). Cytokine regulation of env gene expression of human endogenous retrovirus-R in human vascular endothelial cells, Clin Immunol 93, 75-80.

Kim, H., Crow, T. J., and Hyun, B. H. (2000). Assignment of the endogenous retrovirus HERV- R (ERV3) to human chromosome 7q11.2 by radiation hybrid mapping, Cytogenet Cell Genet 89, 10.

Kjellman, C., Sjögren, H. O., and Widegren, B. (1995). The Y chromosome: a graveyard for endogenous retroviruses, Gene 161, 163-170.

Kobayashi, K., Nakahori, Y., Miyake, M., Matsumura, K., Kondo-Iida, E., Nomura, Y., Segawa, M., Yoshioka, M., Saito, K., Osawa, M., et al. (1998). An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy, Nature 394, 388-392.

Kowalski, P. E., Freeman, J. D., and Mager, D. L. (1999). Intergenic splicing between a HERV- H endogenous retrovirus and two adjacent human genes, Genomics 57, 371-379.

Kättstrom, P. O., Bjerneroth, G., Nilsson, B. O., Holmdahl, R., and Larsson, E. (1989). A retroviral gp70-related protein is expressed at specific stages during mouse oocyte maturation and in preimplantation embryos, Cell Differ Dev 28, 47-54.

La Mantia, G., Maglione, D., Pengue, G., Di Cristofano, A., Simeone, A., Lanfrancone, L., and Lania, L. (1991). Identification and characterization of novel human endogenous retroviral sequences prefentially expressed in undifferentiated embryonal carcinoma cells, Nucleic Acids Res 19, 1513-1520.

Lan, M. S., Mason, A., Coutant, R., Chen, Q. Y., Vargas, A., Rao, J., Gomez, R., Chalew, S., Garry, R., and Maclaren, N. K. (1998). HERV-K10s and immune-mediated (type 1) diabetes, Cell 95, 14-6; discussion 16.

Landry, J. R., Medstrand, P., and Mager, D. L. (2001). Repetitive elements in the 5' untranslated region of a human zinc- finger gene modulate transcription and translation efficiency, Genomics 76, 110-116.

Lapatschek, M., Durr, S., Lower, R., Magin, C., Wagner, H., and Miethke, T. (2000). Functional analysis of the env open reading frame in human endogenous retrovirus IDDMK(1,2)22 encoding superantigen activity, J Virol 74, 6386-6393.

Larsson, E., Andersson, A.-C., and Nilsson, B. O. (1994). Expression of an endogenous retrovirus (ERV3 HERV-R) in human reproductive and embryonic tissues--evidence for a function for envelope gene products, Ups J Med Sci 99, 113-120.

Larsson, E., Kato, N., and Cohen, M. (1989). Human endogenous proviruses, Curr Top Microbiol Immunol 148, 115-132.

Larsson, E., Nilsson, B. O., Sundström, P., and Widehn, S. (1981). Morphological and microbiological signs of endogenous C-virus in human oocytes, Int J Cancer 28, 551-557. Larsson, E., Venables, P. J., Andersson, A.-C., Fan, W., Rigby, S., Botling, J., Öberg, F., Cohen,

M., and Nilsson, K. (1996). Expression of the endogenous retrovirus ERV3 (HERV-R) during induced monocytic differentiation in the U-937 cell line, Int J Cancer 67, 451-456. Lawoko, A., Johansson, B., Rabinayaran, D., Pipkorn, R., and Blomberg, J. (2000). Increased

immunoglobulin G, but not M, binding to endogenous retroviral antigens in HIV-1 infected persons, J Med Virol 62, 435-444.

Le Tissier, P., Stoye, J. P., Takeuchi, Y., Patience, C., and Weiss, R. A. (1997). Two sets of human-tropic pig retrovirus [letter], Nature 389, 681-682.

Lee, X., Keith, J. C., Jr., Stumm, N., Moutsatsos, I., McCoy, J. M., Crum, C. P., Genest, D., Chin, D., Ehrenfels, C., Pijnenborg, R., et al. (2001). Downregulation of placental syncytin expression and abnormal protein localization in pre-eclampsia, Placenta 22, 808-812.

Related documents