• No results found

Glaukom är en sjukdom där orsaken till insjuknandet fortfarande inte är klar-lagd. Det finns dock visat ett flertal riskfaktorer för insjuknande t.ex ärftlig-het och förhöjt ögontryck. Störd blodcirkulation är möjligen en riskfaktor som kan påverka utvecklingen av glaukom.

Det är osannolikt att endast synnerven är drabbad av störd cirkulation, av den anledningen är det rimligt att tänka sig att näthinnans cirkulation är på-verkad i ögon där störd cirkulation är en viktig faktor för sjukdomsutveck-lingen.

Olika indirekta tekniker att undersöka näthinnans cirkulation finns redo-visade i den vetenskapliga litteraturen. Med idag finns det ingen teknik som direkt mäter det totala blodflödet i näthinnan eller synnerven i det mänskliga ögat.

I våra studier har vi utvecklat en teknik som mäter hur lång tid ett kontrast ämne tillbringar i näthinnans kärlbädd.

I den första studien undersöktes 18 friska frivilliga för att erhålla ett nor-malvärde och för att undersöka metodens tillförlitlighet.

Därefter har 40 patienter med tidigare diagnostiserade öppenvinkel glau-kom och lågtrycks glauglau-kom samt 20 nyupptäckta, obehandlade patienter med ensidig ökning av ögontrycket undersökts. Glaukom är en ögonsjuk-dom som ger upphov till förlust av nervtrådar I synnerven och därmed föl-jande bortfall av delar av synfältet.

I gruppen med tidigare diagnostiserade öppen-vinkel glaukom fann vi en korrelation mellan längre cirkulationstid i näthinnans kärlbädd och synfälts-skada. Det förelåg ingen skillnad mellan öppen-vinkel glaukom och lågtrycks glaukom i cirkulationstid.

I den nyupptäckta gruppen med ensidigt obehandlat öppen-vinkel glau-kom fann vi en skillnad i cirkulationstid före och efter sänkning av ögon-trycket med latanoprost ögondroppe samt en skillnad mellan ögat med tryck-stegring och det normala ögat.

Cirkulationen i synnervshuvudet har undersökts med angiografi med två olika kontrastämnen, natrium fluorescein och indocyanin grönt i gruppen med nyupptäckta öppenvinkel glaukom. Det fanns en tendens till sämre kon-trastfyllnad I den mest skadade delen av synnervshuvudet. En stark korrela-tion sågs också mellan utbredningen av synnervsskadan, bestämd med laser tomografi, och synfältsbortfallet.

References

1. Cioffi GA, Granstam E, Alm A. “Ocular circulation”. IN Kaufman PL and Alm A (eds) Adler’s Physiology of the Eye. Clinical Application. 10th edition, 2003. Mosby Company.

2. Bill A. “ Blood circulation and fluid dynamics in the eye. Physiological rewievs Vol. 55, No. 3, July 1975.

3. Mäepea O: Pressure in the anterior ciliary artery, choroidal veins and chorio-capillaris. Exp. Eye Res. 54: 731-736, 1992.

4. Bill A: The uveal venous pressure. Arch Ophthalmol 69: 780-782, 1963. 5. Alm A, and Bill A: The oxygen supply to the retina: I. Effects of changes in the

intraocular and arterial blood pressures and in arterial PO2 and PCO2 on the oxygen tension in the vitreous body of the cat. Acta Physiol Scand 84: 261- 274, 1972.

6. Alm A, and Bill A: The oxygen supply to the retina. II. Effects of high in-traocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres in-cluding flow determinations in brain and some other tissues. Acta Physiol Scand 84: 306-319, 1972.

7. Alm A, and Bill A: Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively la-belled microspheres including flow determinations in brain and some other tis-sues. Exp. Eye Res. 15: 15- 29, 1973.

8. Bill A: Effects of acetazolamide and carotid occlusion on the ocular blood flow in uanansthesized rabbits. Invest. Ophthalmol 13: 954-958, 1974.

9. Ffytche TJ, Bullpitt CJ, Kohner EM, Archer D, and Dollery CT: Effects on changes in intraocular pressure on the retinal micro-vasculature. Br J Ophthal-mol 58: 514-522, 1974.

10. Pournaras CJ: Autoregulation of ocular blood flow. In: Kaiser, HJ Flammer, J, Hendrickson, Ph. (Eds.), ocular blood flow. New insights into the pathogenesis of ocular diseases. Karger, Basel, pp40-50, 1996.

11. Riva CE, Grunwald JE, and Petrig BL: Autoregulation of human retinal blood flow. An investigation with laser Doppler velocimetry. Invest Ophthalmol Vis Sci 27: 1706-1712, 1986

12. Riva CE, Sinclair SH, and Grunwald JE: Autoregulation of retinal circulation in response to decrease of perfusion pressure. Invest Ophthalmol Vis Sci 23: 124, 1981 13. Riva CE, Hero M, Titze P, and Petrig BL: Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure. Graefes Arch Clin Exp Ophthalmol: 235 (10): 618-626, 1997.

14. Diaz-Flores L, Gutierrez R, and Varela H: Angiogenesis: an update, Histol Histopathol9: 807, 1994.

15. Riva CE, Grunwald JE, and Sinclair SH: Laser Doppler measurement of relative blood velocity in human optic nerve head. Invest Ophthalmol Vis Sci 22: 241- 248,1982.

16. Olesen S-P, Clapham DE, and Davies PF: Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 3331: 168-170, 1988.

17. Petrig BL, Werner EB, Riva CE, and Grunwald JE: Response of macular capil-lary blood flow to changes in intraocular pressure as measured by the blue field simulation technique. In proc. 6th Int. Visual Field Symposium, Heijl A and Greve EL, editor. Dordrecht, The Netherlands, Dr. W. Junk Publishers, 1985, pp. 447-451

18. Ralevic V, Milner P, Hudlická O, and Burnstock G: Substance P is released from the endothelium of normal and capsaicin-treated rat hind-limb vasculature, in vivo, by increased flow. Circ Res : 66 (5): 1178-1183, 1990.

19. Grunwald JE, Riva CE, Stone RA, Keates EU, and Petrig BL: Retinal autoregu-lation in open-angle glaucoma. Ophthalmology 91: 1690, 1984

20. Riva CE, Titze P, Hero M, and Petrig BL: Effect of acute decreases of perfusion pressure on choroidal blood flow in humans. Invest Ophthalmol Vis Sci: 38, 1752-1760, 1997.

21. Laties AM: Central retinal artery innervation. Absence of adrenergic innerva-tion to the intraocular branches. Arch Ophthalmol 77, 405-409, 1967.

22. Delaey C, and Van de Voorde J: Regulatory mechanisms in the retinal and choroidal circulation. Ophthalmic Res 32: 249-256, 2000.

23. Gaasterland D, Tanishima T, and Kuwabara T: Axoplasmic flow during chronic experimental glaucoma. 1. Light and electronmicroscopic studies of the monkey optic nerve head during development of glaucomatous cupping. Invest Oph-thalmol Vis Sci: 17: 838-846, 1978.

24. Minckler DS: Histology of optic nerve damage in ocular hypertension and early glaucoma. Surv Ophtalmol 33 ( Suppl): 401-402, 1989.

25. Quigley HA & Addicks EM: Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest Ophthalmol Vis Sci: 19, 137-152, 1980.

26. Leske CM, Wu S-Y, Hennis A, Honkanen R, and Nemesure B: Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology: 115, Number 1: 85-93, 2008.

27. Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M, and Early Manifest Glaucoma Trial Group: Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120:1268-1279, 2002.

28. Hayreh SS (1994): Progress in the understanding of the vascular etioly of glaucoma. Curr Opin Ophthalmol 5: 26-35, 1994.

29. Flammer J, Orgül S, Costa VP, Orzalesi N, Kriegelstein GK, Serra LM, Renard J-P, and Stefansson E: The impact of ocular blood flow in glaucoma. Prog Retin Eye Res: 21: 359-393, 2002.

30. Quigley HA, Nickell RW, and Kerrigan LA: Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthal-mol. Vis Sci 36: 774-786, 1995.

31. Nickell RW: Retinal ganglion cell death in glaucoma: the how, the why and the maybe. J Glaucoma 5: 345-356, 1996.

32. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, and Kass MA: The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120:714-720, 2002.

33. Leske MC: Open-angle glaucoma – an epidemiologic overview. Ophthalmic Epidemiology 14: 166-172, 2007.

34. Ekström C: Elevated intraocular pressure and pseudoexfoliation of the lens capsule as risk factors for chronic open-angle glaucoma. A population-based five-year follow-up study. Acta Ophthalmol (Copenh) 71:189-195, 1993. 35. Grødum K, Heijl, and Bengtsson B: Refractive error and glaucoma. Acta

Oph-thalmol Scand 79: 560-566, 2001.

36. Leske MC, Wu SY, Hennis A, Honkanen R, Nemesure B, and BESs Study Group : Risk factors for incident open-angle glaucoma: the Barbados Eye Stud-ies. Ophthalmology. 115: 85-93, 2008.

37. Quigley H and Anderson DR : The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol : 15: 606-616, 1976.

38. Radius RL and Anderson DR: Rapid axonal transport in primate optic nerve. Distri-bution of pressure-induced interruption. Arch Ophthalmol: 99: 650-654, 1981. 39. Flammer J and Orgül, S: Optic nerve blood-flow abnormalities in glaucoma.

Prog Retin. Eye Res: 17:267–289, 1989.

40. Flammer J, Orgül S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, and Stefánsson E: The impact of ocular blood flow in glaucoma. Prog Retin Eye Res: 21:359-393, 2002.

41. Guan K, Hudson C, and Flanagan JG: Variability and repeatability of retinal blood flow measurements using the Canon Laser Blood Flowmeter. Microvasc Res: 65: 145-151, 2003.

42. Yazdanfar S, Rollins AM, and Izatt JA: In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. Arch Ophthalmol 121:235-239, 2003.

43. Grunwald JE, Riva CE, Stone RA, Keates EU, and Petrig BL: Retinal autoregu-lation in open-angle glaucoma. Ophthalmology. 91:1690-1694, 1984.

44. Harris A, Sergott RC, Spaeth GL, Katz JL, Shoemaker JA, and Martin BJ: Colour Doppler analysis of ocular vessel blood velocity in normal-tension glau-coma. Am J Ophthalmol 118: 642-649, 1994.

45. Butt Z, McKillop G, O´Brien C, Allan P, and Aspinall P: Measurement of ocular blood flow velocity using colour Doppler imaging in low-tenison glau-coma. Eye 9: 29-33, 1995.

46. Rankin SJ, Walman BE, Buckley AR, and Drance SM: Colour Doppler imaging and spectral analysis of the optic nerve vasculature in glaucoma. Am J Oph-thalmol 119: 685-693, 1995.

47. Kaiser HJ, Shoetzau A, Stumpfig D, and Flammer J: Blood flow velocities of the extraocular vessels in patients with high tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol 123: 320-327, 1997.

48. Huber K, Plange N, Remky A, and Arend O: Comparison of colour Doppler imag-ing and retinal scannimag-ing laser fluorescein angiographyin healthy volunteers and in normal-pressure glaucoma patients. Acta Ophthalmol Scand 82: 426-431, 2004. 49. James CB, and Smith SE: Pulsatile ocular blood flow in patients with

low-tension glaucoma. Br J Ophthalmol: 75: 466-470, 1991.

50. Fontana L, Poinoosawmy D, Bunce CV, O´Brien, and Hitchings RA: Pulsatile ocular blood flow investigation in asymmetric normal-tension glaucoma and normal subjects.Br J Ophthalmol 82: 731-736, 1998.

51. Kerr J, Nelson P, and O´Brien C: Pulsatile ocular blood flow in primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol 136: 1106-1113, 2003. 52. Wolf S, Arend O, Sponswl WE, Schulte K, Cantor LB, and Reim M: Retinal

haemodynamics using scanning laser ophthalmoscopy and haemorrheology in chronic open-angle glaucoma. Ophthalmolgy 100: 1561-1566, 1993.

53. Arend O, Remky A, Redbrake C, Arend S, Wenzel M, and Harris A: Retinal haemodynamics in patients with normal-pressure glaucoma. Quantification with digital laser scanning fluorescein angiography: Ophthalmologe 96: 24-29, 1999. 54. Michelson G, Langhans MJ, and Groh MJ: Perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open-angle glaucoma. J Glaucoma 5: 91-98, 1996.

55. Michelson G, Langhans MJ, Harazny J, and Dichtl A: Visual field defect and perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 236: 80-85, 1998. 56. Nicolela MT, Hnik P, and Drance SM: Scanning laser Doppler flowmeter study

of retinal and optic disc blood flow in glaucomatous patients. Am J Ophthalmol 122: 775-783, 1996.

57. Chung HS, Harris A, Kagemann L, and Martin B: Peripapillary retinal blood flow in normal-tension glaucoma. Br J Ophthalmol 83: 466-469, 1999.

58. Yamazaki Y, and Hayamizu F: Comparison of flow velocity of ophthalmic artery between primary open-angle glaucoma and normal-tension glaucoma. Br J Ophthalmol.: 732-734, 1995.

59. Cellini M, Possati GL, Sbrocca M, and Caramazza N: Correlation between-visual field and colour Doppler parameters in chronic open-angle glaucoma. Int Ophthalmol: 20: 215-219, 1996.

60. Rankin SJ, Drance SM, Buckley AR, and Walman BE: Visual field correlations with colour Doppler studies in open-angle glaucoma. J Glaucoma 5: 15-21, 1996.

61. Duijm HF, van den Berg TJ, and Greve EL: A comparison of retinal and chor-oidal haemodynamics in patients with primary open-angle glaucoma and nor-mal-pressure glaucoma. Am J Ophthalmol, 123: 644-656, 1997.

62. Rojanapongpun P, Drance SM, and Morrison BJ: Ophthalmic artery flow velocity in glaucomatous and normal subjects. Br J Ophthalmol 77: 25-29, 1993.

63. Butt Z, O´brien C, McKillop G, Aspinall P, and Allan P: Colour Doppler imag-ing in untreated high- and normal-pressure open-angle glaucoma. Invest Oph-thalmol Vis Sci 38: 690-696, 1997.

64. Logan JF, Rankin SJ, and Jackson AJ: Retinal blood flow measurements and neuroretinal rim damage in glaucoma. Br J Ophthlamol, 88: 1049-1054, 2004. 65. Spaeth GL: The pathogenesis of nerve damage in glaucoma: contributions of

fluoresceina angiography. Grune and Stratton, Inc, New York, 1977.

66. Bengtsson BO: Incidence of manifest glaucoma. Br J Ophthalmol 73: 483-487, 1989.

67. Mukesh BN, McCarty CA, Rait JL, and Taylor HR. Five –year incidence of open angle glaucoma: the Visual Impairment Project. Ophthalmology109: 1047-1051, 2002.

68. De Voogd S, Ikram MK, Wolfs RC. Incidence of open-angle glaucoma in a general elderly population. The Rotterdam Study. Ophthalmology. 112: 1487-1493, 2005.

69. Meier K and Zierler KL: On the theory of indicator-dilution method for meas-urement of blood flow and volume. J Appl Physiol 6: 731-744, 1954.

70. Lassen NA and Perl W: Volume/flow or mass/flux ratio (mean transit time). II. Bolus injection. In: Tracer Kinetics In Medical Physiology. New York. Raven Press. 76-101, 1979.

71. Hickam JB and Frayser R: A photographic method for measuring the mean retinal circulation time using fluorescein. Invest Ophthalmol 4: 876-884, 1965.

72. Riva CE, Feke GT & Ben-Sira I: Fluorescein dye-dilution technique and retinal circulation. Am J Physiol.234: H315-322, 1978.

73. Wolf S, Arend O, and Reim M: Measurements of retinal haemodynamics with scanning laser ophthalmoscopy. Reference values and variation. Survey Oph-thalmol 38 (May Supplement): 95-100, 1994.

74. Webb RH, Hughes GW and Pomerantzeff O: Flying spot TV ophthalmoscope Applied optics Vol.19, No.17: 2991-2997, 1980.

75. Webb RH, Hughes GW and Delori FC: Confocal scanning laser ophthalmo-scope Applied optics Vol.26, No.8: 1492-1499, 1987.

76. Stow RW and Hetzel PS: An empirical formula for indicator curves obtained in human beings. J Appl Physiol 7: 161-167, 1954.

77. Riva CE, Robert WP, McMeel JW and Ben-Sira I: Arterio-venous mean circula-tion time in the human retina. In: De Laey JJ (ed). Documenta Ophthalmologica Proceedings Series. International Symposium on Fluorescein Angiography. Ghent 28 March-1 April 1976. The Hague: Dr W Junk. 9: 113-116, 1976.

78. Sperber GO and Alm A: Retinal mean transit time determined with an Impulse-Response analysis from videofluorescein angiograms. Acta Ophthalmol Scand 75: 532-536, 1997.

79. van Heuven WAJ, Malik AB, Schaffer CA, Cohen D and Mehu M: Retinal blood flow derived from dye dilution curves. Arch Ophthalmol 95: 297-301, 1977. 80. Flower RW : Injection technique for indocyanine green and sodium fluorescein

dye angiography of the eye. Invest Ophthalmol Vis Sci 12: 881-895, 1979. 81. Riva CE and Ben-Sira I: Injection method for ocular heamodynamic studies in

man. Invest Ophthalmol 13: 77-79, 1974.

82. Jonas JB, Nguyen XN and Naumann GOH: Parapaillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci 30: 1599-1603, 1989.

83. Wolf S, Arend O, Sponsel WE, Schulte K, Cantor LB & Reim M.: Retinal hemodynamics using scanning laser ophthalmoscopy and hemorheology in chronic open-angle glaucoma. Ophthalmology 100: 1561-1566, 1993.

84. Chung HS, Harris A, Kagemann L and Evans DW : Choroidal hemodynamics in normal tension glaucoma as assessed by new analysis system. Second Inter-national Glaucoma Symposium, Jerusalem, Israel, pp. 41. March 17, 1998. 85. Chung HS, Harris A, Kagemann L & Martin B: Peripapillary retinal blood flow

in normal tension glaucoma. Br J Ophthalmol 83: 466-469, 1999.

86. Fontana L, Poinoosawmy D, Bunce CV, O'Brien C & Hitchings RA: Pulsatile ocular blood flow investigation in asymmetric normal tension glaucoma and normal subjects. Br J Ophthalmol 82: 731-736, 1998.

87. Galassi F, Nuzzaci G, Sodi A, Casi P and Vielmo A: Color Doppler imaging in evaluation of optic nerve blood supply in normal and glaucomatous subjects. Int Ophthalmol 16: 273-276, 1992.

88. Sergott RC, Aburn NS, Trible JR, Costa VP, Lieb WE jr and Flaharty PM: Color Doppler imaging: methodology and preliminary results in glaucoma. Surv Ophthalmol. 1994 May;38 Suppl: S65-70; discussion S70-1. Review. Erratum in: Surv Ophthalmol 1994 Sep-Oct;39(2):165.

89. Harris A, Sergott RC, Spaeth GL, Katz JL, Shoemaker JA & Martin BJ: Color Doppler analysis of ocular vessel blood velocity in normal-tension glaucoma. Am J Ophthalmol 118: 642-649, 1994.

90. Königsreuther KA and Michelson G: Retinal hemodynamics in glaucoma. ARVO Abstract. Invest Ophthalmol Vis Sci 35: (suppl) 1842, 1994.

91. Fankhauser F, Koch P, Roulier A: On automation of perimetry. Graefes Arch Clin Exp Ophthalmol 184 (2): 126-150, 1972.

92. Bengtsson B, Heijl A: Evaluation of a new perimetric treshhold strategy, SITA, in patients with manifest and suspect glaucoma. Acta Ophthalmol Scand 76 (3): 268-272, 1998.

93. Åsman P and Heijl A: Glaucoma Hemifield Test. Automated visual field evaluation. Arch Ophthalmol 110 (6): 812-819, 1992.

94. Johnson CA, Sample PA, Cioffi GA, Liebmann JR, and Weinreb RN Structure and function evaluation (SAFE): I. Criteria for glaucomatous visual field loss using standard automated perimetry (SAP) and short wavelength automated pe-rimetry (SWAP). Am J Ophthalmol vol 134 (2): 177-185), 2002

95. Hayreh SS and Walker: Fluorescent fundus photography in glaucoma. Am J Ophthalmol 63: 98-989, 1967

96. Raitta C and Sarmela T: Fluorescein angiography of the optic disc and the peripapillary area in chronic glaucoma. Acta Ophthalmol (Copenh.) 48, 303-308, 1970.

97. Oosterhuis JA and Gortzak-Moorstein N: Fluorescein angiography of the optic disc in glaucoma. Ophthalmologica 160, 331-353, 1970.

98. François J and De Laey JJ: Fluorescein angiography of the glaucomatous disc. Ophthalmologica 168, 288-298, 1974.

99. Spaeth GL: Fluorescein angiography defects of the optic disc in glaucoma. Arch Ophthalmol 95: 1961-1974, 1975.

100. Schwartz B, Rieser JC and Fischbein SL: Fluorescein angiographic defects of the optic disc in glaucoma. Arch Ophthalmol 95; 1961-1974, 1977.

101. Loebel M & Schwartz B: Fluorescein angiographic defects of the optic disc in ocular hypertension. Arch Ophthalmol 95; 1980-1984, 1977.

102. Plange N, Kaup M, Weber A, Remky A and Arend O: Fluoresscein filling defects and quantitative morphologic analysis of the optic nerve head in glau-coma. Arch Ophthalmol 122: 195-210, 2004.

103. Plange N, Kaup M, Weber A, Remky A and Arend O: Fluorescein filling defects of the optic nerve head in normal-tension glaucoma, primary open-angle glaucoma, ocular hypertension and healthy fellows. Ophthalmol Physiol Opt 26: 26-32, 2006.

104. O´Brart DP, de Souza Lima M, Bartsch DU, Freeman W and Weinreb RN: Indocyanine green angiography of the peripapillary region in glaucomatous eyes by confocal scanning laser ophthalmoscopy. Am J Ophthalmol 123; 657-666, 1997.

105. Wu LL, Chen ZO, Yin JF, Zhou H, Liu J, and Su ZA: Indocyanine green and fluorescein angiography study glaucomatous peripapillary atrophy. Zhonghua Yan Ke Za Zhi 42: 967-971, 2006.

106. Jonas JB, Martus P, Horn FK, Jüneman A, Korth M and Budde WM: Small neuroretinal rim and large parapapillary atrophy as predictive risk factors for progression of glaucomatous optic neuropathy. Ophthalmology Volume 109: Number 8: 1561-1567, 2002.

107. Reus NJ and Lemij HG: Relationshipsbetween Standard Automated Perimetry, HRT Confocal Scanning Laser Ophthlamoscopy, and GSx VCC Scanning Laser polarimetry. Invest Ophthalmol Vis Sci 46; 4182-4188, 2005.

108. Van den Biesen PR, Jongsma FH, Tangelder GJ and Slaaf DW: Yield of fluo-rescence from indocyanine green in plasma flowing blood. Ann Biomed Eng 23; 475-481, 1995.

109. Sines DT, Kagemann L, Siesky B, Rechtman E, Garzozi and Harris A: Dye dependent differences in arteriovenous passage times: a comparison of indocya-nine green and fluorescein sodium dye analysis. Ophthalmic surgery, lasers and imaging May/June Vol 39: No 3; 203-208, 2008.

110. Wang Y, Xu L, Zhang L, Yang H, Ma Y, and Jonas JB: Peripapillary atrophy in elderly Chinese in rural and urban Beijing. Eye 22:, 261-266, 2008.

Related documents