• No results found

Livet hos varje organism, må det vara en bakterie eller en multicellulär organism såsom människan, kontrolleras uteslutande av aktiviteten hos celler. Cellkärnan innehåller nästan all information i form av DNA, genomet, som beskriver denna aktivitet. DNA-molekyler är strukturellt organiserade i två komplementära strängar av nukleotider i enheter av baspar. Alla dubbelsträngar av DNA i en cell, normalt sett 46 stycken hos människor, organiseras och packas i 22 par av kromosomer samt två könskromosomer. Genom kombinationer av nukleotider definieras funktionella enheter, gener, som beskriver sammansättningen av RNA vilket i sin tur kan beskriva hur proteiner konstrueras. Gener i sig innehåller funktionella element, exoner, som beskriver dess slutprodukt och kan kombineras på olika sätt genom så kallad splitsning. En gen har i sig ingen funktionell egenskap förutom som informationsbärare. Aktiviteten i celler styrs emellertid av dess produkter; RNA eller protein.

En människa består av flera miljarder celler vilka kan grupperas i över 200 olika celltyper. Vissa celltyper existerar och har samma roll i flera organ medan andra har specifika egenskaper och är begränsade till enstaka organ. På samma sätt avläses informationen hos vissa gener i alla celltyper medan andra gener endast används i ett fåtal celltyper. Ändå, med vissa undantag av celltyp och variation i DNA, så är genomet detsamma i alla celler hos en individ. Även om kontrollen av genaktivitet är kodat i DNA så skiljer sig dess reglering åt mellan celltyper och under olika faser av en cells livscykel.

Genaktivitet styrs i två separerbara nivåer. Den strukturella och kemiska signaturen hos regioner i DNA påverkas av dess kombination av nukleotider och eventuella kemiska modifieringar, den första nivån av genreglering. Följaktligen kan dessa egenskaper påverka möjligheten för proteiner med genreglerande egenskaper att binda till DNA. Transkriptionsfaktorer innefattas i denna typ av DNA-bindande proteiner, vilka kan styra rekryteringen av det maskineri av proteiner som behövs för avläsning, transkription, av gener.

I den andra nivån, den strukturella nivån av genreglering, styrs geners aktivitet av högre organisation och packning av DNA i kromosomer. För att få plats i cellkärnan måste DNA packas extremt väl. Nukleosomer, komplex av histonproteiner med DNA virat kring sig, utgör grunden för sådan packning. Packningen påverkas även av kemiska modifieringar, så kallade histonmodifieringar, och internukleosomala interaktioner vilket resulterar i

olika tillstånd av kromatin. Nivån av packning varierar mellan olika regioner i DNA vilket påverkar dess möjlighet att binda regulatoriska proteiner eller åtkomsten av gener för transkriptionsmaskineriet. Den strukturella organisationen påverkar även avståndet mellan regulatoriska element och gener vilket kan påverka deras regulatoriska kapacitet. Celler med onormal kromosomorganisation, t.ex. via kromosomala dupliceringar eller deletioner, eller onormal packning av kromatin kan följaktligen få onormal regulatorisk aktivitet. Detta kan slutligen resultera i onormal transkriptionell aktivitet. Cancerceller är exempel på celler med onormal aktivitet.

För att förstå hur genreglering påverkas av kromatiska eller onormala kromosomala tillstånd krävs storskaliga biologiska experiment sammanlänkade med sofistikerade bioinformatiska metoder vilket möjliggör mätningen av sådana egenskaper i hela genomet. Analys av genreglering genom kromatin innefattar kartläggning av nukleosomers positioner, dess modifieringar samt hur position eller status påverkar geners uttryck eller hur dessa egenskaper i sig påverkas av faktorer, t.ex. externa stimuli, vilka ändrar cellers tillstånd och aktivitet. Kromosomala avvikelser kan vara gemensamma eller skilja sig väsentligt mellan olika cancertyper. För att förstå vilka gener vars uttryck särskiljer en cancercell från en frisk sådan krävs kartläggning av deras omslutande kromosomala avvikelser.

I denna avhandling presenteras bioinformatiska verktyg och resultaten av deras användande på storskaliga biologiska data för att förstå genreglering genom kromatin och kromosomala avvikelser. Genom användandet av ett flertal datakällor från mätningar av olika egenskaper hos celler har frågeställningar angripits på ett kombinerat sätt (Paper I, Paper II & Paper IV). Detta angreppssätt har gjort det möjligt att testa existerande hypoteser, såsom nukleosomers positioneringspotential över exoner och hur en sådan positionering kan påverka geners uttryck (Paper I & Paper II). Vi har även genererat nya hypoteser inom grundläggande molekylärbiologi (Paper I, Paper II & Paper IV) vilka kräver uppföljande studier. Statistiska metoder i vilka man kan inkorporera bakgrundskunskap och vars modeller kan anpassas till data har lämpat sig väldigt bra i våra studier. Användandet av dessa metoder har lett till precisa prediktioner av kromosomala brytpunkter i cancergenom (Paper III & Paper IV) samt pålitliga positioneringar av nukleosomer och dess förflyttningar under transkriptionell reglering (Paper II).

Våra resultat har visat att kromatin spelar en viktig roll i regleringen av geners transkription. Vi har visat att nukleosomer har en stark preferens för exoner och att deras position i sådana regioner ej påverkas nämnvärt av geners aktivitet (Paper I & Paper II). Detta antyder att positioneringen av nukleosomer över exoner, dock med marginella skillnader mellan enskilda celler (Paper II), har en viktig roll eftersom denna preferens bevarats genom evolutionen (Paper I). Faktum är att vissa histonmodifieringar visade sig starkt kopplade till exoniska nukleosomer och indikerade användandet av

enskilda exoner i transkription av en gen (Paper I) vilket tyder på en roll i splitsning. Dessutom verkade nukleosomers positionering vara viktig och deras förflyttning vara frekvent förekommande i regleringen av transkriptionsfaktorers åtkomst till DNA (Paper II).

Histonmodifieringar kan också spela en avgörande roll vid förändrad transkriptionell aktivitet. Våra resultat visar att antingen histonmodifieringar eller kromosomala avvikelser, eller bådadera, utgör den bakomliggande orsaken till förändrat uttryck hos flertalet gener i cancerceller (Paper IV). Genom en kombinerad analys av flera datakällor kunde vi härleda möjliga, både kända och okända, gener associerade med cancer.

Acknowledgements

To state that others have influenced the work presented in this thesis would be a great underestimation. I am in great dept to numerous people for invaluable knowledge, expertise, opinions, support, guidance and friendship making this thesis a reality.

Many thanks are due to

Professor Jan Komorowski, my main advisor. Thank you for scientific guidance and for encouraging me to (almost unrestrictedly) explore the world of biology and medicine and mine their wealth in data. I am very grateful for you trusting my capabilities.

Professor Jan Dumanski, my co-advisor. Our collaborative projects have been challenging but fun. I really appreciate your scientific visions and eagerness to conduct rigorous research.

Professor Claes Wadelius, my co-advisor. Thank you for introducing me to the field of chromatin, for numerous research ideas, support, guidance and for putting me on the right track when I think I understand something but obviously do not.

Professor emeritus Jan Maluszynski, former master thesis supervisor at Linköping University, for being the initiating factor for me starting my PhD studies. I will always remember your encouragements and care.

Former (Torgeir, Alice, Claes, Helena, Jakub, Eva, Adam, Marcin,

Aleksejs, Alvaro, Alvaro (yes there were two of them) and Olle) and present (Stefan, Marcin (not the former one), Susanne and Henric) colleagues at the Linnaeus Centre for Bioinformatics. I am especially grateful for scientific and non-scientific discussions as well as explorations in (sometimes rather obscure) music history held within the Aquarium (Stefan, Jakub and Adam).

Former and present members of the Jan Dumanski/Teresita Diaz de Ståhl group. Thank you (especially Johanna, Helena, Tere, Calle, Arek and

Uwe) for good collaborations and for providing me with a lot of challenging work during my first years as a PhD student.

Former and present members (Madhu, Mehdi, Ola and Alvaro (again)) of the Claes Wadelius group as well as the participants of the Chromatin Journal club (especially Chandrasekhar Kanduri and his gang in addition to the ones mentioned above) for vivid (and rather detailed) discussions regarding chromatin biology.

The administrative staff (Gunilla, Sigrid and Christin) for invaluable support.

The folks at the BMC Computer Department (Nils-Einar, Emil, Gustavo,

Anders and Jerker) for maintenance of servers and supporting our needs.

Inge, Elna, Jim, Maria and Povel. Thank you for everlasting support and encouragements during these years and for letting me try over and over again to explain what I really do in plain Swedish.

Bosse, Lotta, Sanna, Kjetil and Jenna for great support during this process. I really appreciate you helping me and my family out when the schedules were too heavy.

Emma, my love. Without your support and encouragements not a word in this thesis would have been written. A simple thank you is not enough. I am very grateful for you being at my side during all those years. A special “tack så mycket” (or “takto” in his own words) to my wonderful son Lowe for constantly reminding me of what is important in life.

Robin Andersson Uppsala, September 2010

References

Albertson, D.G., Collins, C., McCormick, F., and Gray, J.W. 2003. Chromosome aberrations in solid tumors. Nat Genet 34: 369-376.

Allemand, E., Batsche, E., and Muchardt, C. 2008. Splicing, transcription, and chromatin: a menage a trois. Curr Opin Genet Dev 18: 145-151. Aurrecoechea, C., Brestelli, J., Brunk, B.P., Carlton, J.M., Dommer, J.,

Fischer, S., Gajria, B., Gao, X., Gingle, A., Grant, G. et al. 2009. GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis. Nucleic Acids Res 37: D526-530.

Bagos, P.G., Liakopoulos, T.D., and Hamodrakas, S.J. 2004. Faster gradient descent training of hidden Markov models, using individual learning rate adaptation. Grammatical Inference: Algorithms and Applications,

Proceedings 3264: 40-52.

Baldi, P., Brunak, S., Chauvin, Y., and Krogh, A. 1996. Naturally occurring nucleosome positioning signals in human exons and introns. J Mol Biol

263: 503-510.

Bannister, A.J., Schneider, R., Myers, F.A., Thorne, A.W., Crane-Robinson, C., and Kouzarides, T. 2005. Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem 280: 17732-17736. Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei,

G., Chepelev, I., and Zhao, K. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129: 823-837.

Bartova, E., Krejci, J., Harnicarova, A., Galiova, G., and Kozubek, S. 2008. Histone modifications and nuclear architecture: a review. J Histochem

Cytochem 56: 711-721.

Beckmann, J.S. and Trifonov, E.N. 1991. Splice junctions follow a 205-base ladder. Proc Natl Acad Sci U S A 88: 2380-2383.

Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K. et al. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125: 315-326.

Beroukhim, R., Mermel, C.H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., Barretina, J., Boehm, J.S., Dobson, J., Urashima, M. et al. 2010. The landscape of somatic copy-number alteration across human cancers. Nature 463: 899-905.

Bestor, T.H. 2005. Transposons reanimated in mice. Cell 122: 322-325. Boyle, A.P., Guinney, J., Crawford, G.E., and Furey, T.S. 2008. F-Seq: a

feature density estimator for high-throughput sequence tags.

Brinkman, A.B., Roelofsen, T., Pennings, S.W., Martens, J.H., Jenuwein, T., and Stunnenberg, H.G. 2006. Histone modification patterns associated with the human X chromosome. EMBO Rep 7: 628-634.

Bruder, C.E.G., Piotrowski, A., Gijsbers, A.A.C.J., Andersson, R., Erickson, S., de Stahl, T.D., Menzel, U., Sandgren, J., von Tell, D., Poplawski, A. et al. 2008. Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am J Hum

Genet 82: 763-771.

Buck, M.J. and Lieb, J.D. 2004. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83: 349-360.

Burgess-Beusse, B., Farrell, C., Gaszner, M., Litt, M., Mutskov, V., Recillas-Targa, F., Simpson, M., West, A., and Felsenfeld, G. 2002. The insulation of genes from external enhancers and silencing chromatin.

Proc Natl Acad Sci U S A 99 Suppl 4: 16433-16437.

Cairns, B.R. 2009. The logic of chromatin architecture and remodelling at promoters. Nature 461: 193-198.

Campos, E.I. and Reinberg, D. 2009. Histones: annotating chromatin. Annu

Rev Genet 43: 559-599.

Cappé, O., Moulines, E., and Ryden, T. 2005. Inference in Hidden Markov

Models (Springer Series in Statistics). Springer-Verlag New York, Inc.

Cedar, H. and Bergman, Y. 2009. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10: 295-304. Chambeyron, S. and Bickmore, W.A. 2004. Chromatin decondensation and

nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18: 1119-1130.

Chen, W., Ullmann, R., Langnick, C., Menzel, C., Wotschofsky, Z., Hu, H., Doring, A., Hu, Y., Kang, H., Tzschach, A. et al. 2010. Breakpoint analysis of balanced chromosome rearrangements by next-generation paired-end sequencing. Eur J Hum Genet 18: 539-543.

Chien, F.T. and van Noort, J. 2009. 10 years of tension on chromatin: results from single molecule force spectroscopy. Curr Pharm Biotechnol 10: 474-485.

Chubb, J.R., Trcek, T., Shenoy, S.M., and Singer, R.H. 2006. Transcriptional pulsing of a developmental gene. Curr Biol 16: 1018-1025.

Cirillo, L.A., Lin, F.R., Cuesta, I., Friedman, D., Jarnik, M., and Zaret, K.S. 2002. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 9: 279-289. Cloonan, N., Forrest, A.R., Kolle, G., Gardiner, B.B., Faulkner, G.J., Brown,

M.K., Taylor, D.F., Steptoe, A.L., Wani, S., Bethel, G. et al. 2008. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat

Methods 5: 613-619.

Cohn, M.A. and D'Andrea, A.D. 2008. Chromatin recruitment of DNA repair proteins: lessons from the fanconi anemia and double-strand break repair pathways. Mol Cell 32: 306-312.

Colella, S., Yau, C., Taylor, J.M., Mirza, G., Butler, H., Clouston, P., Bassett, A.S., Seller, A., Holmes, C.C., and Ragoussis, J. 2007.

QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data.

Nucleic Acids Res 35: 2013-2025.

Costello, J.F., Fruhwald, M.C., Smiraglia, D.J., Rush, L.J., Robertson, G.P., Gao, X., Wright, F.A., Feramisco, J.D., Peltomaki, P., Lang, J.C. et al. 2000. Aberrant CpG-island methylation has non-random and tumour- type-specific patterns. Nat Genet 24: 132-138.

Cowin, P.A., Anglesio, M., Etemadmoghadam, D., and Bowtell, D.D. 2010. Profiling the Cancer Genome. Annu Rev Genomics Hum Genet.

Crans, H.N. and Sakamoto, K.M. 2001. Transcription factors and translocations in lymphoid and myeloid leukemia. Leukemia 15: 313- 331.

Croft, J.A., Bridger, J.M., Boyle, S., Perry, P., Teague, P., and Bickmore, W.A. 1999. Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145: 1119-1131.

de Stahl, T.D., Sandgren, J., Piotrowski, A., Nord, H., Andersson, R., Menzel, U., Bogdan, A., Thuresson, A.-C., Poplawski, A., von Tell, D. et al. 2008. Profiling of copy number variations (CNVs) in healthy individuals from three ethnic groups using a human genome 32 K BAC- clone-based array. Hum Mutat 29: 398-408.

Diaz de Stahl, T., Sandgren, J., Piotrowski, A., Nord, H., Andersson, R., Menzel, U., Bogdan, A., Thuresson, A.C., Poplawski, A., von Tell, D. et al. 2008. Profiling of copy number variations (CNVs) in healthy individuals from three ethnic groups using a human genome 32 K BAC- clone-based array. Hum Mutat 29: 398-408.

Dostie, J., Richmond, T.A., Arnaout, R.A., Selzer, R.R., Lee, W.L., Honan, T.A., Rubio, E.D., Krumm, A., Lamb, J., Nusbaum, C. et al. 2006. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements.

Genome Res 16: 1299-1309.

Eilers, P.H. and de Menezes, R.X. 2005. Quantile smoothing of array CGH data. Bioinformatics 21: 1146-1153.

Engler, D.A., Mohapatra, G., Louis, D.N., and Betensky, R.A. 2006. A pseudolikelihood approach for simultaneous analysis of array comparative genomic hybridizations. Biostatistics 7: 399-421.

Enroth, S., Andersson, C., Andersson, R., Gustavsson, M.G., Wadelius, C., and Komorowski, J. A high resolution normalization strategy of ChIP- sequencing data using (multiple) experimental control measurements. Enroth, S., Andersson, R., Wadelius, C., and Komorowski, J. 2010. SICTIN:

Rapid footprinting of massively parallel sequencing data. BioData Min

3: 4.

Esteller, M. 2008. Epigenetics in cancer. N Engl J Med 358: 1148-1159. Farnham, P.J. 2009. Insights from genomic profiling of transcription factors.

Nat Rev Genet 10: 605-616.

Feinberg, A.P. 1999. Imprinting of a genomic domain of 11p15 and loss of imprinting in cancer: an introduction. Cancer Res 59: 1743s-1746s.

Fejes, A.P., Robertson, G., Bilenky, M., Varhol, R., Bainbridge, M., and Jones, S.J. 2008. FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology.

Bioinformatics 24: 1729-1730.

Feuk, L., Carson, A.R., and Scherer, S.W. 2006. Structural variation in the human genome. Nat Rev Genet 7: 85-97.

Fraga, M.F., Herranz, M., Espada, J., Ballestar, E., Paz, M.F., Ropero, S., Erkek, E., Bozdogan, O., Peinado, H., Niveleau, A. et al. 2004. A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res 64: 5527-5534. Fridlyand, J., Snijders, A.M., Pinkel, D., Albertson, D.G., and Jain, A.N.

2004. Hidden Markov models approach to the analysis of array CGH data. Journal of Multivariate Analysis 90: 132-153.

Frith, M.C., Fu, Y., Yu, L., Chen, J.F., Hansen, U., and Weng, Z. 2004. Detection of functional DNA motifs via statistical over-representation.

Nucleic Acids Res 32: 1372-1381.

Frohling, S. and Dohner, H. 2008. Chromosomal abnormalities in cancer. N

Engl J Med 359: 722-734.

Frühwirth-Schnatter, S. 2006. Finite Mixture and Markov Switching Models. In Springer Series in Statistics,. Springer Science + Business Media, LLC, New York, NY.

Futreal, P.A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., Rahman, N., and Stratton, M.R. 2004. A census of human cancer genes.

Nat Rev Cancer 4: 177-183.

Futscher, B.W., Oshiro, M.M., Wozniak, R.J., Holtan, N., Hanigan, C.L., Duan, H., and Domann, F.E. 2002. Role for DNA methylation in the control of cell type specific maspin expression. Nat Genet 31: 175-179. Garvie, C.W. and Wolberger, C. 2001. Recognition of specific DNA

sequences. Mol Cell 8: 937-946.

Gauvain, J.L. and Lee, C.H. 1992. Map Estimation of Continuous Density Hmm - Theory and Applications. Speech and Natural Language: 185- 190.

Gelato, K.A. and Fischle, W. 2008. Role of histone modifications in defining chromatin structure and function. Biol Chem 389: 353-363.

Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J. et al. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.

Goldman, J.M. and Melo, J.V. 2003. Chronic myeloid leukemia--advances in biology and new approaches to treatment. N Engl J Med 349: 1451- 1464.

Greger, V., Passarge, E., Hopping, W., Messmer, E., and Horsthemke, B. 1989. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83: 155-158. Gregory, T.R. 2005. Synergy between sequence and size in large-scale

Greive, S.J. and von Hippel, P.H. 2005. Thinking quantitatively about transcriptional regulation. Nat Rev Mol Cell Biol 6: 221-232.

Gupta, A., Guerin-Peyrou, T.G., Sharma, G.G., Park, C., Agarwal, M., Ganju, R.K., Pandita, S., Choi, K., Sukumar, S., Pandita, R.K. et al. 2008. The mammalian ortholog of Drosophila MOF that acetylates histone H4 lysine 16 is essential for embryogenesis and oncogenesis.

Mol Cell Biol 28: 397-409.

Guttman, M., Amit, I., Garber, M., French, C., Lin, M.F., Feldser, D., Huarte, M., Zuk, O., Carey, B.W., Cassady, J.P. et al. 2009. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458: 223-227.

Hamamoto, R., Furukawa, Y., Morita, M., Iimura, Y., Silva, F.P., Li, M., Yagyu, R., and Nakamura, Y. 2004. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell

Biol 6: 731-740.

Hastings, P.J., Lupski, J.R., Rosenberg, S.M., and Ira, G. 2009. Mechanisms of change in gene copy number. Nat Rev Genet 10: 551-564.

He, L. and Hannon, G.J. 2004. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5: 522-531.

Heintzman, N.D., Hon, G.C., Hawkins, R.D., Kheradpour, P., Stark, A., Harp, L.F., Ye, Z., Lee, L.K., Stuart, R.K., Ching, C.W. et al. 2009. Histone modifications at human enhancers reflect global cell-type- specific gene expression. Nature 459: 108-112.

Heller, M.J. 2002. DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4: 129-153.

Hoffman, B.G. and Jones, S.J. 2009. Genome-wide identification of DNA- protein interactions using chromatin immunoprecipitation coupled with flow cell sequencing. J Endocrinol 201: 1-13.

Hollander, M. and Wolfe, D. 1999. Nonparametric Statistical Methods, 2nd

ed. Wiley, New York.

Hon, G., Wang, W., and Ren, B. 2009. Discovery and annotation of functional chromatin signatures in the human genome. PLoS Comput

Biol 5: e1000566.

Horner, D.S., Pavesi, G., Castrignano, T., De Meo, P.D., Liuni, S., Sammeth, M., Picardi, E., and Pesole, G. 2010. Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing. Brief Bioinform 11: 181-197.

Hsu, L., Self, S.G., Grove, D., Randolph, T., Wang, K., Delrow, J.J., Loo, L., and Porter, P. 2005. Denoising array-based comparative genomic hybridization data using wavelets. Biostatistics 6: 211-226.

Hubbard, T.J., Aken, B.L., Ayling, S., Ballester, B., Beal, K., Bragin, E., Brent, S., Chen, Y., Clapham, P., Clarke, L. et al. 2009. Ensembl 2009.

Nucleic Acids Res 37: D690-697.

Hupe, P., Stransky, N., Thiery, J.P., Radvanyi, F., and Barillot, E. 2004. Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics 20: 3413-3422.

Iborra, F.J., Pombo, A., Jackson, D.A., and Cook, P.R. 1996. Active RNA polymerases are localized within discrete transcription "factories' in human nuclei. J Cell Sci 109 ( Pt 6): 1427-1436.

Jaynes, E.T. 2003. Probability Theory: The Logic of Science. Cambridge University Press.

Ji, H. and Wong, W.H. 2005. TileMap: create chromosomal map of tiling array hybridizations. Bioinformatics 21: 3629-3636.

Jiang, C. and Pugh, B.F. 2009. Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10: 161-172.

Jin, C. and Felsenfeld, G. 2007. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 21: 1519-1529.

Johnson, D.S., Li, W., Gordon, D.B., Bhattacharjee, A., Curry, B., Ghosh, J., Brizuela, L., Carroll, J.S., Brown, M., Flicek, P. et al. 2008. Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets. Genome Res 18: 393-403.

Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B. 2007. Genome- wide mapping of in vivo protein-DNA interactions. Science 316: 1497- 1502.

Johnson, W.E., Li, W., Meyer, C.A., Gottardo, R., Carroll, J.S., Brown, M., and Liu, X.S. 2006. Model-based analysis of tiling-arrays for ChIP- chip. Proc Natl Acad Sci U S A 103: 12457-12462.

Jones, P.A. and Takai, D. 2001. The role of DNA methylation in mammalian epigenetics. Science 293: 1068-1070.

Joshi, A.A. and Struhl, K. 2005. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol

Cell 20: 971-978.

Jothi, R., Cuddapah, S., Barski, A., Cui, K., and Zhao, K. 2008. Genome- wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res 36: 5221-5231.

Jurica, M.S. and Moore, M.J. 2003. Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12: 5-14.

Kallioniemi, A., Kallioniemi, O.P., Sudar, D., Rutovitz, D., Gray, J.W., Waldman, F., and Pinkel, D. 1992. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818- 821.

Ke, X.S., Qu, Y., Rostad, K., Li, W.C., Lin, B., Halvorsen, O.J., Haukaas, S.A., Jonassen, I., Petersen, K., Goldfinger, N. et al. 2009. Genome- wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis. PLoS One 4: e4687.

Keren, H., Lev-Maor, G., and Ast, G. 2010. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet

11: 345-355.

Kharchenko, P.V., Tolstorukov, M.Y., and Park, P.J. 2008. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat

Khraiwesh, B., Arif, M.A., Seumel, G.I., Ossowski, S., Weigel, D., Reski, R., and Frank, W. 2010. Transcriptional control of gene expression by microRNAs. Cell 140: 111-122.

Kim, T.H. and Ren, B. 2006. Genome-wide analysis of protein-DNA interactions. Annu Rev Genomics Hum Genet 7: 81-102.

Kim, V.N., Han, J., and Siomi, M.C. 2009. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10: 126-139.

Kimura, K., Wakamatsu, A., Suzuki, Y., Ota, T., Nishikawa, T., Yamashita, R., Yamamoto, J., Sekine, M., Tsuritani, K., Wakaguri, H. et al. 2006.

Related documents