• No results found

När influensavirus infekterar människor kan det orsaka mild till akut luftvägs-infektion. Förutom individens existerande immunitet och hälsostatus, är vari-ation i viruset också en viktig faktor för utfallets allvarlighet. Hos viruset är det ofta relaterat till dess evolutionsförmåga att undvika individens existe-rande immunitet. Mekanismen för detta är att variera proteinerna på virusets yta, hemagglutinin (HA) och neuraminidas (NA). Detta sker på två sätt, med hjälp av antigeniskt drift (ackumulering av mutationer i dessa proteiner), eller antigeniskt skift (utbyte av HA eller NA mellan två olika influensavirus som infekterar samma cell).

I mitt arbete har jag använt NA för att förstå evolutionen hos influensaviruset under påtryckning av immunförsvaret, hur den samtidigt kan bevara nödvän-diga proteinfunktioner, samt hur den samtidigt kan anpassa sig för att utnyttja den infekterade cellen för att göra fler viruskopior.

NA är ett svampformat membranprotein, vars ”huvud” (kallad huvuddomän) är lokaliserad utanför cellen, och vars ”fot” (kallad transmembran domän) är inuti cellmembranet. Vanligtvis sker antigeniskt drift på ytan av proteiner, ef-tersom det är där antikroppar har möjlighet att binda. Överraskande har vi i mitt arbete hittat två gömda proteinregioner som också genomgår antigeniskt drift. Den ena är i membranbundna transmembrana domänen, och den andra är i centrala fickan på huvuddomänen som calciumjoner vanligtvis binder till.

Denna upptäckt indikerar att NA, som en helhet istället för som separata do-mäner, evolverar för att förhindra antikroppsigenkänning.

För att studera antigeniskt skift har jag utvecklat en väldigt känslig och speci-fik metod för RNA-detektion för att visualisera influensagenomet under in-fektionsprocessen, som gör det möjligt att i detalj studera vart genomet befin-ner sig i varje stadie. Och eftersom metoden är så specifik går det att studera utbyte av gensegment mellan olika virus utan att behöva titta på proteiner.

31

Acknowledgments

First, I would like to thank my supervisor, Rob Daniels, for giving me oppor-tunity to work in your lab. During these years, you have shown me the fun working in research. Thank you for being so helpful and always providing so many ideas for the projects. I have learned a lot and I am very grateful for the experience.

A special thanks to Jan-Willem de Gier for being my co-supervisor and to Stefan Nordlund, Pia Ädelroth and Martin Ott for organizing the phD pro-gram and for doing the check points during my phD time.

Thanks to Professor Schwemmle, Professor Masucci, Patrik Ellström and Professor Högbom for being my opponent and committee.

Thanks to the former and current lab members: Diogo, you were my ‘guide man’ in the lab and I am so grateful to have you as my teacher. You are always so supportive and taking care of me. Johan, discussing with you always in-spires me, and it has been a quite year without you. Also, thanks for fixing all my Mac problems. Hao, 感谢你在工作中和生活中给我的一切支持 ❤. An-nika, thank you for go through my thesis and give me advice on the thesis manuscript. Henrik, thank you for sharing your opinions about Swedish soci-ety and Swedish education. Rebecca, it has been nice working with you.

Thanks to my collaborators: Thanks to Mats Nilsson for your valuable input in the project and give me opportunity to be in your lab. Ivan, you are such a nice guy and always support me when I need help with experiment. Thanks for the hard work and expertise contributed in the padlock project. Xiaoyan, thanks for helping me with microscope and imaging analysis.

Thanks to the everyone in DBB for creating a convenient working environ-ment. And a big hug to my previous and current lab neighbors at DBB: Cata, Beta, Pedro, Bill, Patrick, Thomas, Zhe, Grant, Nir, Candan, Chenge,

32

Weihua, Biao, Xin, Fan, Huabin, thank you for the accompany and for mak-ing these years so enjoyable.

At last, thanks to my parents, my parents-in-law, and my uncle and aunt (我的 姨和舅舅) for supporting me during these years. And also to my little family:

你们是我前行的动力和方向.

33

References

1. Paules, C. and K. Subbarao, Influenza. Lancet, 2017. 390(10095): p.

697-708.

2. Dou, D., et al., Influenza A Virus Cell Entry, Replication, Virion Assembly and Movement. Front Immunol, 2018. 9: p. 1581.

3. McGeoch, D., P. Fellner, and C. Newton, Influenza virus genome consists of eight distinct RNA species. Proc Natl Acad Sci U S A, 1976. 73(9): p. 3045-9.

4. Harris, A., et al., Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc Natl Acad Sci U S A, 2006. 103(50):

p. 19123-7.

5. Gamblin, S.J. and J.J. Skehel, Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem, 2010. 285(37):

p. 28403-9.

6. Getie-Kebtie, M., et al., Label-free mass spectrometry-based quantification of hemagglutinin and neuraminidase in influenza virus preparations and vaccines. Influenza Other Respir Viruses, 2013.

7(4): p. 521-30.

7. Arranz, R., et al., The structure of native influenza virion ribonucleoproteins. Science, 2012. 338(6114): p. 1634-7.

8. Moeller, A., et al., Organization of the influenza virus replication machinery. Science, 2012. 338(6114): p. 1631-4.

9. Pflug, A., et al., Structure of influenza A polymerase bound to the viral RNA promoter. Nature, 2014. 516(7531): p. 355-60.

10. Fodor, E., B.L. Seong, and G.G. Brownlee, Photochemical cross-linking of influenza A polymerase to its virion RNA promoter defines a polymerase binding site at residues 9 to 12 of the promoter. J Gen Virol, 1993. 74 ( Pt 7): p. 1327-33.

11. Yoon, S.W., R.J. Webby, and R.G. Webster, Evolution and ecology of influenza A viruses. Curr Top Microbiol Immunol, 2014. 385: p.

359-75.

12. Morens, D.M., J.K. Taubenberger, and A.S. Fauci, The persistent legacy of the 1918 influenza virus. N Engl J Med, 2009. 361(3): p.

225-9.

34

13. Parvin, J.D., et al., Measurement of the mutation rates of animal viruses: influenza A virus and poliovirus type 1. J Virol, 1986. 59(2):

p. 377-83.

14. Suarez, P., J. Valcarcel, and J. Ortin, Heterogeneity of the mutation rates of influenza A viruses: isolation of mutator mutants. J Virol, 1992. 66(4): p. 2491-4.

15. Suarez-Lopez, P. and J. Ortin, An estimation of the nucleotide substitution rate at defined positions in the influenza virus haemagglutinin gene. J Gen Virol, 1994. 75 ( Pt 2): p. 389-93.

16. Bloom, J.D., An experimentally determined evolutionary model dramatically improves phylogenetic fit. Mol Biol Evol, 2014. 31(8):

p. 1956-78.

17. Pauly, M.D., M.C. Procario, and A.S. Lauring, A novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A viruses. Elife, 2017. 6.

18. Rambaut, A., et al., The genomic and epidemiological dynamics of human influenza A virus. Nature, 2008. 453(7195): p. 615-9.

19. Sobel Leonard, A., et al., The effective rate of influenza reassortment is limited during human infection. PLoS Pathog, 2017. 13(2): p.

e1006203.

20. Lowen, A.C., Constraints, Drivers, and Implications of Influenza A Virus Reassortment. Annu Rev Virol, 2017. 4(1): p. 105-121.

21. Bottcher-Friebertshauser, E., et al., The hemagglutinin: a determinant of pathogenicity. Curr Top Microbiol Immunol, 2014. 385: p. 3-34.

22. Weis, W., et al., Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature, 1988. 333(6172): p.

426-31.

23. Rust, M.J., et al., Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol, 2004. 11(6):

p. 567-73.

24. Chen, C. and X. Zhuang, Epsin 1 is a cargo-specific adaptor for the clathrin-mediated endocytosis of the influenza virus. Proc Natl Acad Sci U S A, 2008. 105(33): p. 11790-5.

25. de Vries, E., et al., Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog, 2011. 7(3): p. e1001329.

26. Guinea, R. and L. Carrasco, Requirement for vacuolar proton-ATPase activity during entry of influenza virus into cells. J Virol, 1995. 69(4):

p. 2306-12.

27. Pinto, L.H. and R.A. Lamb, The M2 proton channels of influenza A and B viruses. J Biol Chem, 2006. 281(14): p. 8997-9000.

28. Yoshimura, A. and S. Ohnishi, Uncoating of influenza virus in endosomes. J Virol, 1984. 51(2): p. 497-504.

29. Bullough, P.A., et al., Structure of influenza haemagglutinin at the pH of membrane fusion. Nature, 1994. 371(6492): p. 37-43.

35

30. White, J.M. and G.R. Whittaker, Fusion of Enveloped Viruses in Endosomes. Traffic, 2016. 17(6): p. 593-614.

31. Beck, M. and E. Hurt, The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol, 2017.

18(2): p. 73-89.

32. Stewart, M., Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol, 2007. 8(3): p. 195-208.

33. Eisfeld, A.J., G. Neumann, and Y. Kawaoka, At the centre: influenza A virus ribonucleoproteins. Nat Rev Microbiol, 2015. 13(1): p. 28-41.

34. Martin, K. and A. Helenius, Transport of incoming influenza virus nucleocapsids into the nucleus. J Virol, 1991. 65(1): p. 232-44.

35. Kalderon, D., et al., A short amino acid sequence able to specify nuclear location. Cell, 1984. 39(3 Pt 2): p. 499-509.

36. Wang, P., P. Palese, and R.E. O'Neill, The NPI-1/NPI-3 (karyopherin alpha) binding site on the influenza a virus nucleoprotein NP is a nonconventional nuclear localization signal. J Virol, 1997. 71(3): p.

1850-6.

37. Cros, J.F., A. Garcia-Sastre, and P. Palese, An unconventional NLS is critical for the nuclear import of the influenza A virus nucleoprotein and ribonucleoprotein. Traffic, 2005. 6(3): p. 205-13.

38. Wu, W.W., L.L. Weaver, and N. Pante, Ultrastructural analysis of the nuclear localization sequences on influenza A ribonucleoprotein complexes. J Mol Biol, 2007. 374(4): p. 910-6.

39. Plotch, S.J., et al., A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell, 1981. 23(3): p. 847-58.

40. Guilligay, D., et al., The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol, 2008. 15(5): p.

500-6.

41. Dias, A., et al., The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature, 2009. 458(7240): p.

914-8.

42. Reich, S., et al., Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature, 2014. 516(7531): p. 361-6.

43. Bier, K., A. York, and E. Fodor, Cellular cap-binding proteins associate with influenza virus mRNAs. J Gen Virol, 2011. 92(Pt 7): p.

1627-34.

44. York, A. and E. Fodor, Biogenesis, assembly, and export of viral messenger ribonucleoproteins in the influenza A virus infected cell.

RNA Biol, 2013. 10(8): p. 1274-82.

45. Poon, L.L., et al., Direct evidence that the poly(A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template. J Virol, 1999. 73(4): p. 3473-6.

36

46. Huet, S., et al., Nuclear import and assembly of influenza A virus RNA polymerase studied in live cells by fluorescence cross-correlation spectroscopy. J Virol, 2010. 84(3): p. 1254-64.

47. York, A., et al., Isolation and characterization of the positive-sense replicative intermediate of a negative-strand RNA virus. Proc Natl Acad Sci U S A, 2013. 110(45): p. E4238-45.

48. Turrell, L., et al., The role and assembly mechanism of nucleoprotein in influenza A virus ribonucleoprotein complexes. Nat Commun, 2013. 4: p. 1591.

49. Ye, Q., R.M. Krug, and Y.J. Tao, The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature, 2006.

444(7122): p. 1078-82.

50. Lee, N., et al., Genome-wide analysis of influenza viral RNA and nucleoprotein association. Nucleic Acids Res, 2017. 45(15): p. 8968-8977.

51. Williams, G.D., et al., Nucleotide resolution mapping of influenza A virus nucleoprotein-RNA interactions reveals RNA features required for replication. Nat Commun, 2018. 9(1): p. 465.

52. Fodor, E., The RNA polymerase of influenza a virus: mechanisms of viral transcription and replication. Acta Virol, 2013. 57(2): p. 113-22.

53. Elton, D., et al., Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J Virol, 2001.

75(1): p. 408-19.

54. Watanabe, K., et al., Inhibition of nuclear export of ribonucleoprotein complexes of influenza virus by leptomycin B. Virus Res, 2001. 77(1):

p. 31-42.

55. Zerial, M. and H. McBride, Rab proteins as membrane organizers.

Nat Rev Mol Cell Biol, 2001. 2(2): p. 107-17.

56. Amorim, M.J., et al., A Rab11- and microtubule-dependent mechanism for cytoplasmic transport of influenza A virus viral RNA.

J Virol, 2011. 85(9): p. 4143-56.

57. Eisfeld, A.J., et al., RAB11A is essential for transport of the influenza virus genome to the plasma membrane. J Virol, 2011. 85(13): p. 6117-26.

58. Momose, F., et al., Apical transport of influenza A virus ribonucleoprotein requires Rab11-positive recycling endosome.

PLoS One, 2011. 6(6): p. e21123.

59. de Castro Martin, I.F., et al., Influenza virus genome reaches the plasma membrane via a modified endoplasmic reticulum and Rab11-dependent vesicles. Nat Commun, 2017. 8(1): p. 1396.

60. Lehninger, A.L., D.L. Nelson, and M.M. Cox, Lehninger principles of biochemistry. 6th ed. 2013, New York: W.H. Freeman.

37

61. Shan, S.O., S.L. Schmid, and X. Zhang, Signal recognition particle (SRP) and SRP receptor: a new paradigm for multistate regulatory GTPases. Biochemistry, 2009. 48(29): p. 6696-704.

62. Walter, P. and G. Blobel, Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol, 1981. 91(2 Pt 1): p. 557-61.

63. Gilmore, R., P. Walter, and G. Blobel, Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J Cell Biol, 1982. 95(2 Pt 1): p.

470-7.

64. Gorlich, D., et al., A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell, 1992. 71(3): p. 489-503.

65. Walter, P. and A.E. Johnson, Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol, 1994. 10: p. 87-119.

66. Van den Berg, B., et al., X-ray structure of a protein-conducting channel. Nature, 2004. 427(6969): p. 36-44.

67. Gogala, M., et al., Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature, 2014.

506(7486): p. 107-10.

68. Hessa, T., et al., Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature, 2007. 450(7172): p. 1026-30.

69. White, S.H. and G. von Heijne, How translocons select transmembrane helices. Annu Rev Biophys, 2008. 37: p. 23-42.

70. Ojemalm, K., et al., Orientational preferences of neighboring helices can drive ER insertion of a marginally hydrophobic transmembrane helix. Mol Cell, 2012. 45(4): p. 529-40.

71. De Marothy, M.T. and A. Elofsson, Marginally hydrophobic transmembrane alpha-helices shaping membrane protein folding.

Protein Sci, 2015. 24(7): p. 1057-74.

72. Dou, D., et al., Type II transmembrane domain hydrophobicity dictates the cotranslational dependence for inversion. Mol Biol Cell, 2014. 25(21): p. 3363-74.

73. Junne, T. and M. Spiess, Integration of transmembrane domains is regulated by their downstream sequences. J Cell Sci, 2017. 130(2): p.

372-381.

74. Kida, Y., et al., Stability and flexibility of marginally hydrophobic-segment stalling at the endoplasmic reticulum translocon. Mol Biol Cell, 2016. 27(6): p. 930-40.

75. von Heijne, G., Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature, 1989. 341(6241): p. 456-8.

38

76. Braakman, I. and D.N. Hebert, Protein folding in the endoplasmic reticulum. Cold Spring Harb Perspect Biol, 2013. 5(5): p. a013201.

77. Lamriben, L., et al., N-Glycan-based ER Molecular Chaperone and Protein Quality Control System: The Calnexin Binding Cycle. Traffic, 2016. 17(4): p. 308-26.

78. Nilsson, I.M. and G. von Heijne, Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. J Biol Chem, 1993. 268(8): p.

5798-801.

79. Kaplan, H.A., J.K. Welply, and W.J. Lennarz, Oligosaccharyl transferase: the central enzyme in the pathway of glycoprotein assembly. Biochim Biophys Acta, 1987. 906(2): p. 161-73.

80. Wallis, A.K. and R.B. Freedman, Assisting oxidative protein folding:

how do protein disulphide-isomerases couple conformational and chemical processes in protein folding? Top Curr Chem, 2013. 328: p.

1-34.

81. Chen, W., et al., Cotranslational folding and calnexin binding during glycoprotein synthesis. Proc Natl Acad Sci U S A, 1995. 92(14): p.

6229-33.

82. Wang, N., et al., The cotranslational maturation program for the type II membrane glycoprotein influenza neuraminidase. J Biol Chem, 2008. 283(49): p. 33826-37.

83. Daniels, R., et al., N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol Cell, 2003. 11(1): p. 79-90.

84. Hogue, B.G. and D.P. Nayak, Synthesis and processing of the influenza virus neuraminidase, a type II transmembrane glycoprotein.

Virology, 1992. 188(2): p. 510-7.

85. Hebert, D.N., B. Foellmer, and A. Helenius, Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J, 1996. 15(12): p.

2961-8.

86. Tatu, U., C. Hammond, and A. Helenius, Folding and oligomerization of influenza hemagglutinin in the ER and the intermediate compartment. EMBO J, 1995. 14(7): p. 1340-8.

87. Saito, T., G. Taylor, and R.G. Webster, Steps in maturation of influenza A virus neuraminidase. J Virol, 1995. 69(8): p. 5011-7.

88. da Silva, D.V., et al., Assembly of subtype 1 influenza neuraminidase is driven by both the transmembrane and head domains. J Biol Chem, 2013. 288(1): p. 644-53.

89. Nordholm, J., et al., Polar residues and their positional context dictate the transmembrane domain interactions of influenza A neuraminidases. J Biol Chem, 2013. 288(15): p. 10652-60.

90. Air, G.M., Influenza neuraminidase. Influenza Other Respir Viruses, 2012. 6(4): p. 245-56.

39

91. Chong, A.K., M.S. Pegg, and M. von Itzstein, Influenza virus sialidase: effect of calcium on steady-state kinetic parameters.

Biochim Biophys Acta, 1991. 1077(1): p. 65-71.

92. Colacino, J.M., et al., A single sequence change destabilizes the influenza virus neuraminidase tetramer. Virology, 1997. 236(1): p.

66-75.

93. Vavricka, C.J., et al., Structural and functional analysis of laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA inhibition. PLoS Pathog, 2011. 7(10):

p. e1002249.

94. Shtyrya, Y.A., L.V. Mochalova, and N.V. Bovin, Influenza virus neuraminidase: structure and function. Acta Naturae, 2009. 1(2): p.

26-32.

95. Cohen, M., et al., Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase. Virol J, 2013. 10: p. 321.

96. Matrosovich, M.N., et al., Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol, 2004. 78(22): p. 12665-7.

97. Matrosovich, M.N., et al., Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A, 2004. 101(13): p. 4620-4.

98. Webster, R.G. and W.G. Laver, Preparation and properties of antibody directed specifically against the neuraminidase of influenza virus. J Immunol, 1967. 99(1): p. 49-55.

99. Palese, P. and J. Schulman, Isolation and characterization of influenza virus recombinants with high and low neuraminidase activity. Use of 2-(3'-methoxyphenyl)-n-acetylneuraminic acid to identify cloned populations. Virology, 1974. 57(1): p. 227-37.

100. Palese, P., et al., Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology, 1974. 61(2): p.

397-410.

101. Lakdawala, S.S., et al., Eurasian-origin gene segments contribute to the transmissibility, aerosol release, and morphology of the 2009 pandemic H1N1 influenza virus. PLoS Pathog, 2011. 7(12): p.

e1002443.

102. Zanin, M., et al., Pandemic Swine H1N1 Influenza Viruses with Almost Undetectable Neuraminidase Activity Are Not Transmitted via Aerosols in Ferrets and Are Inhibited by Human Mucus but Not Swine Mucus. J Virol, 2015. 89(11): p. 5935-48.

103. von Itzstein, M., et al., Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature, 1993. 363(6428): p.

418-23.

104. Hanessian, S., et al., Design, synthesis, and neuraminidase inhibitory activity of GS-4071 analogues that utilize a novel hydrophobic paradigm. Bioorg Med Chem Lett, 2002. 12(23): p. 3425-9.

40

105. Chen, Y.Q., et al., Influenza Infection in Humans Induces Broadly Cross-Reactive and Protective Neuraminidase-Reactive Antibodies.

Cell, 2018. 173(2): p. 417-429 e10.

106. Dowdle, W.R., et al., Inactivated influenza vaccines. 2. Laboratory indices of protection. Postgrad Med J, 1973. 49(569): p. 159-63.

107. Ogra, P.L., et al., Clinical and immunologic evaluation of neuraminidase-specific influenza A virus vaccine in humans. J Infect Dis, 1977. 135(4): p. 499-506.

108. Monto, A.S., et al., Antibody to Influenza Virus Neuraminidase: An Independent Correlate of Protection. J Infect Dis, 2015. 212(8): p.

1191-9.

109. Couch, R.B., et al., Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase. J Infect Dis, 2013. 207(6): p. 974-81.

110. Schulman, J.L., M. Khakpour, and E.D. Kilbourne, Protective effects of specific immunity to viral neuraminidase on influenza virus infection of mice. J Virol, 1968. 2(8): p. 778-86.

111. Wohlbold, T.J., et al., Broadly protective murine monoclonal antibodies against influenza B virus target highly conserved neuraminidase epitopes. Nat Microbiol, 2017. 2(10): p. 1415-1424.

112. Wan, H., et al., Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers.

Nat Commun, 2015. 6: p. 6114.

113. Wan, H., et al., Molecular basis for broad neuraminidase immunity:

conserved epitopes in seasonal and pandemic H1N1 as well as H5N1 influenza viruses. J Virol, 2013. 87(16): p. 9290-300.

114. Marcelin, G., et al., A contributing role for anti-neuraminidase antibodies on immunity to pandemic H1N1 2009 influenza A virus.

PLoS One, 2011. 6(10): p. e26335.

115. Walz, L., et al., Neuraminidase-Inhibiting Antibody Titers Correlate with Protection from Heterologous Influenza Virus Strains of the Same Neuraminidase Subtype. J Virol, 2018. 92(17).

116. Rockman, S., et al., Neuraminidase-inhibiting antibody is a correlate of cross-protection against lethal H5N1 influenza virus in ferrets immunized with seasonal influenza vaccine. J Virol, 2013. 87(6): p.

3053-61.

Related documents