• No results found

Arvsmassan hos alla levande organismer består av DNA. Arvsmassan nedärvs från en generation till nästa, via en process vi kallar för DNA replikation. Men arvsmassan är i sig själv tyst och de nedärvda generna måste uttryckas innan de egenskaper som finns nedärvda i arvsmassan kan komma till nytta. Detta sker genom att informationen i arvsmassan översätts till en RNA molekyl, via en process vi kallar för RNA transkription, dvs. en RNA kopia av DNA mo-lekylens information skapas. Den RNA molekylen kallas för budbärar RNA (mRNA) och den fungerar precis som namnet antyder som en budbärare med information som används vid tillverkningen av de för cellen viktiga protei-nerna. Processen som syntetiserar protein kallas för translation. Det behövs ett stort antal komplexa maskinerier för att hela den här processen skall fungera.

Det behövs åtminstone ett DNA syntesmaskineri, ett RNA syntesmaskineri och ett protein syntesmaskineri. I mitt avhandlingsarbete har jag studerat en komponent som påverkar RNA syntesmaskineriet. Komponenten heter poly(A)-specifikt ribonukleas och kallas för PARN. PARN är ett enzym som bryter ned s.k. poly(A) svansar som finns på RNA molekyler. PARN upptäck-tes för drygt 25 år sedan. Sedan dess har den gängse uppfattningen varit att PARN bryter ner RNA molekyler så att de försvinner. För knappt 10 år sedan upptäcktes det att nedbrytning medierad av PARN även ledde till att RNA molekyler mognade till. Det var överraskande! Mitt avhandlingsarbete har lett till ytterligare en överraskning, då vi har kunnat visa att PARN även har en annan viktig roll att fylla – PARN ser till att våra kromosomer som består av DNA inte bryts ned! Hur kunde vi komma fram till en sådan överraskande upptäckt?

Vi studerade i samarbete med en forskargrupp i Kanada en patient som led av en allvarlig utvecklingsstörning som orsakades av att genen som kodade för enzymet PARN var muterad. En konsekvens av den genetiska skadan i genen för PARN var att patientens kromosomer blev instabila, de trasades sönder i sina ändar. Ändarna på kromosomerna kallas för telomerer. Det finns ett en-zym som kallas för telomeras som behövs vid syntesen av kromosomernas telomerändar. Det enzymet är mycket speciellt då det behöver en liten RNA molekyl till sin hjälp för att fungera. Det visade sig att just den RNA moleky-len var beroende av enzymet PARN för att bildas. Detta innebar att patienten som saknande enzymet PARN även saknade ett aktivt telomeras, vilket i sin tur ledde till att kromosomernas ändar trasades sönder och blev kortare och

kortare med tiden. När kromosomerna blir alltför korta leder det till att just den cellen med för korta telomerer dör. Detta visade sig vara en av huvudor-sakerna till att den patient vi studerade blev allvarligt sjuk.

Efter det att vi gjort den upptäckten genomförde vi två följdstudier. I den ena tittade vi i detalj på vilka gener som fungerade som förväntat eller inte i celler från den första patienten vi identifierat. Vi inkluderade i den studien även material från andra patienter med allvarliga fel i genen för PARN. På så sätt har vi nu skaffat oss en översiktsbild på konsekvenser som fel i enzymet för PARN har för en cell. Den här typen av kunskap är viktig för att i detalj kunna förstå PARNs fysiologiska roll i en cell. Vi har nu fått många nya ingångs-vinklar som behövs för att förstå vilken roll PARN har i en cell. Inte helt ovän-tat har det visat sig att det inte enbart är syntesen av kromosomernas ändar som är beroende av PARN. Många andra livsviktiga processer är beroende av att PARN fungerar som det ska.

I den andra följdstudien bestämde vi oss för att etablera en experimentell djur-modell där vi med hjälp av gensaxen CRISPR/Cas9 förstört genen för PARN.

Vi valde zebrafiskar som vår djurmodell. Orsaken till det var att zebrafiskar är som människan ett ryggradsdjur, att de är lätta att föröka och att det finns en stor kunskap om hur zebrafiskar utvecklas, hela vägen från ett befruktat ägg till en vuxen fisk. Det har varit ett tidsödande projekt att genomföra men vi har nu lyckats med föresatsen att etablera ett zebrafisk modellsystem i vilket vi kan studera PARNs fysiologiska roll under en hel livscykel hos zebrafisken.

Till vår stora belåtenhet utvecklar zebrafiskarna, som vi erhållit, många sjuk-domssymptom som överlappar med de sjuksjuk-domssymptom som patienter med en skadad PARN gen får, inklusive en ökad förekomst av trasiga kromosom-ändar. Vi är därför övertygade att våra fortsatta studier av vårt zebrafisk mo-dellsystem kommer att få stor betydelse för vår förståelse av PARNs funkt-ionella roll och hur allvarliga sjukdomsbilder kan uppstå på grund av fel i ge-nen för PARN.

50

Acknowledgements

I would like to express my deep gratitude to many people who inspired, en-couraged, motivated and helped me all through this PhD journey.

First of many, my supervisor Anders Virtanen, thanks for believing in me to handle such complicated projects during the time in your lab. I have learnt so many things from you both professional and personal. I would cherish the fun moments that we spent especially the discussions on the day offs during the conferences. Many thanks for being a great mentor and helped me in many ways through this journey.

My co-supervisor Staffan Svärd for the support in the department.

I would like to thank the funding sources, UU Bioimics for funding my PhD studies, AML/Smålands nation and Sederholms/Uppsala university for conference travel grants and MEDGENET travel grant for EMBL workshop.

I thank NGI/Uppsala and UPPMAX for providing the computational re-sources.

I would like to thank

Micke for your support, discussions and inputs in the thesis.

Andrew for your support and help on linguistic revision of the thesis.

Kristine for your logical inputs and linguistic revision of the thesis.

Former and current members of poly(A) lab group Per, Niklas, Lei, Mattias, Caroline and project students Andreas, Sangeetha, Varshni, Jens, Ger-gana, Spandana, Afsaneh and Malick for your support

Phani for your help and support in RNA seq analysis, and other colleagues in the lab corridor Malavika, Fredrik, Abishek, Ram and Mao for the support.

All Micros especially to Gerhart, Fredrik and Erik for your suggestions and inputs.

Administration staff and other people who aided me at the department.

Special thanks to the collaborators especially Johan, Beata and Tiffany at EBC zebrafish facility, Axen and Hampus at SVA, Uppsala, Santosh and Yigal in Toronto, Lois and Alison in Texas.

I would like to extend my gratitude to

Many friends in India who have been supportive to me and my family, espe-cially, Venkat, Anil, Ramana, Ramesh, Tammi, BT and Swapna.

Friends in Uppsala who have made this journey memorable with lots of fun especially Charan, Chandu anna-Geeta vadina, Sudarsan-Kristine, Hari-Sharanya, Srinu-Sony, Varun-Prathyusha, Manoj-Kanaka, Sasi anna-Archana, Gopi-Sandhya, Venu, Ravi anna-Sushma vadina, Suneel, Lax-mikanth, Ramam, Vivek anna-Lakshmi garu, Prakash anna-Ammulu, Raghuveer-Madhuri, Kiran anna-Bhavya, Phani-Sirisha, Naresh-Sound-arya, Mahesh and Sarita and other friends in Indian/Telugu community.

I would like to thank my extended family Uma-Chandrakanth and my in-law parents Venkat Ramulu-Prameela for their constant support and love through all these years. My sister & brother-in-law Bhulaksmi-Narayana, without you, I could not even come to Sweden to pursue higher studies, thanks a ton for your encouragement, moral support and guidance. Thanks to Pooji and Gokul for all the fun and support.

Finally, I would like to mention my family members, without their support and encouragement I wouldn’t have come this far to fulfill my dreams. My loving parents Venkateswarlu-Mahalakshmi, thanks for all sacrifices you have made to comfort my life, the least I can do in return is to dedicate this thesis. My kid Keshvin, thanks for being such a nice and understanding kid.

You became my little boss at home pushing me to work. My wife Manu, you have been a best friend and shared every fun and frustration that I have gone through this journey. As a soul mate, I really feel that thanking you is like thanking myself, but still a big thanks! for the love, support and being my strength.

52

References

A.A. Balatsos, N., P. Maragozidis, D. Anastasakis, and C. Stathopoulos. 2012.

“Modulation of Poly(A)-Specific Ribonuclease (PARN): Current Knowledge and Perspectives.” Current Medicinal Chemistry 19 (28): 4838–49.

https://doi.org/10.2174/092986712803341539.

Abraham, A. K., and S. T. Jacob. 1978. “Hydrolysis of Poly(A) to Adenine Nucleotides by Purified Poly(A) Polymerase.” Proceedings of the National Academy of Sciences of the United States of America 75 (5): 2085–87.

https://doi.org/10.1073/pnas.75.5.2085.

Allsopp, R. C., H. Vaziri, C. Patterson, S. Goldstein, E. V. Younglai, A. B. Futcher, C. W. Greider, and C. B. Harley. 1992. “Telomere Length Predicts Replicative Capacity of Human Fibroblasts.” Proceedings of the National Academy of Sciences of the United States of America 89 (21): 10114–18.

https://doi.org/10.1073/pnas.89.21.10114.

Amiard, Simon, Michel Doudeau, Sébastien Pinte, Anaïs Poulet, Christelle Lenain, Cendrine Faivre-Moskalenko, Dimitar Angelov, et al. 2007. “A Topological Mechanism for TRF2-Enhanced Strand Invasion.” Nature Structural and Molecular Biology 14 (2): 147–54. https://doi.org/10.1038/nsmb1192.

Anastasakis, Dimitrios, Ilias Skeparnias, Athanasios Nasir Shaukat, Katerina Grafanaki, Alexandra Kanellou, Stavros Taraviras, Dionysios J. Papachristou, Athanasios Papakyriakou, and Constantinos Stathopoulos. 2016. “Mammalian PNLDC1 Is a Novel Poly(A) Specific Exonuclease with Discrete Expression during Early Development.” Nucleic Acids Research 44 (18): 8908–20.

https://doi.org/10.1093/nar/gkw709.

Anchelin, Monique, Laura Murcia, Francisca Alcaraz-Pérez, Esther M. García-Navarro, and María L. Cayuela. 2011. “Behaviour of Telomere and Telomerase during Aging and Regeneration in Zebrafish.” PLoS ONE 6 (2).

https://doi.org/10.1371/journal.pone.0016955.

Archambault, J., and J. D. Friesen. 1993. “Genetics of Eukaryotic RNA Polymerases I, II, and III.” Microbiological Reviews. American Society for Microbiology (ASM). https://doi.org/10.1128/mmbr.57.3.703-724.1993.

Armanios, Mary, and Elizabeth H. Blackburn. 2012. “The Telomere Syndromes.”

Nature Reviews. Genetics. Nat Rev Genet. https://doi.org/10.1038/nrg3246.

Astrom, J., A. Astrom, and A. Virtanen. 1991. “In Vitro Deadenylation of Mammalian MRNA by a HeLa Cell 3’ Exonuclease.” EMBO Journal 10 (10): 3067–72.

https://doi.org/10.1002/j.1460-2075.1991.tb07858.x.

———. 1992. “Properties of a HeLa Cell 3’ Exonuclease Specific for Degrading Poly(A) Tails of Mammalian MRNA.” Journal of Biological Chemistry 267 (25):

18154–59. https://doi.org/10.1016/s0021-9258(19)37166-2.

Azzouz, Nowel, Olesya O. Panasenko, Geoffroy Colau, and Martine A. Collart. 2009.

“The CCR4-NOT Complex Physically and Functionally Interacts with TRAMP

and the Nuclear Exosome.” PLoS ONE 4 (8).

https://doi.org/10.1371/journal.pone.0006760.

Bartlam, Mark, and Tadashi Yamamoto. 2010. “The Structural Basis for Deadenylation by the CCR4-NOT Complex.” Protein and Cell. Higher Education Press. https://doi.org/10.1007/s13238-010-0060-8.

Batenburg, Aernoud A. van, Karin M. Kazemier, Matthijs F. M. van Oosterhout, Joanne J. van der Vis, Hendrik W. van Es, Jan C. Grutters, Roel Goldschmeding, and Coline H. M. van Moorsel. 2020. “From Organ to Cell: Multi-Level Telomere Length Assessment in Patients with Idiopathic Pulmonary Fibrosis.” Edited by Gabriele Saretzki. PLOS ONE 15 (1): e0226785.

https://doi.org/10.1371/journal.pone.0226785.

Batenburg, Aernoud A. van, Karin M. Kazemier, Ton Peeters, Matthijs F.M. van Oosterhout, Joanne J. van der Vis, Jan C. Grutters, Roel Goldschmeding, and Coline H.M. van Moorsel. 2018. “Cell Type–Specific Quantification of Telomere Length and DNA Double-Strand Breaks in Individual Lung Cells by Fluorescence In Situ Hybridization and Fluorescent Immunohistochemistry.” Journal of Histochemistry and Cytochemistry 66 (7): 485–95.

https://doi.org/10.1369/0022155418761351.

Bazzini, Ariel A, Florencia Viso, Miguel A Moreno-Mateos, Timothy G Johnstone, Charles E Vejnar, Yidan Qin, Jun Yao, Mustafa K Khokha, and Antonio J Giraldez. 2016. “ Codon Identity Regulates MRNA Stability and Translation Efficiency during the Maternal-to-zygotic Transition .” The EMBO Journal 35 (19): 2087–2103. https://doi.org/10.15252/embj.201694699.

Behm-Ansmant, Isabelle, Jan Rehwinkel, Tobias Doerks, Alexander Stark, Peer Bork, and Elisa Izaurralde. 2006. “MRNA Degradation by MiRNAs and GW182 Requires Both CCR4:NOT Deadenylase and DCP1:DCP2 Decapping Complexes.” Genes and Development 20 (14): 1885–98.

https://doi.org/10.1101/gad.1424106.

Belaya, Z., O. Golounina, A. Nikitin, N. Tarbaeva, E. Pigarova, E. Mamedova, M.

Vorontsova, I. Shafieva, I. Demina, and W. Van Hul. 2020. “Multiple Bilateral Hip Fractures in a Patient with Dyskeratosis Congenita Caused by a Novel Mutation in the PARN Gene.” Osteoporosis International.

https://doi.org/10.1007/s00198-020-05758-6.

Bellodi, Cristian, Mary McMahon, Adrian Contreras, Dayle Juliano, Noam Kopmar, Tomoka Nakamura, David Maltby, et al. 2013. “H/ACA Small RNA Dysfunctions in Disease Reveal Key Roles for Noncoding RNA Modifications in Hematopoietic Stem Cell Differentiation.” Cell Reports 3 (5): 1493–1502.

https://doi.org/10.1016/j.celrep.2013.04.030.

Benyelles, Maname, Harikleia Episkopou, Marie-Françoise O’Donohue, Laëtitia Kermasson, Pierre Frange, Florian Poulain, Fatma Burcu Belen, et al. 2019.

“Impaired Telomere Integrity and RRNA Biogenesis in PARN-deficient Patients and Knock-out Models.” EMBO Molecular Medicine 11 (7).

https://doi.org/10.15252/emmm.201810201.

Berndt, Heike, Christiane Harnisch, Christiane Rammelt, Nadine Stöhr, Anne Zirkel, Juliane C. Dohm, Heinz Himmelbauer, Joao Paulo Tavanez, Stefan Hüttelmaier, and Elmar Wahle. 2012. “Maturation of Mammalian H/ACA Box SnoRNAs:

PAPD5-Dependent Adenylation and PARN-Dependent Trimming.” RNA 18 (5):

958–72. https://doi.org/10.1261/rna.032292.112.

Bertuch, Alison A. 2016. “The Molecular Genetics of the Telomere Biology Disorders.” RNA Biology. Taylor and Francis Inc.

https://doi.org/10.1080/15476286.2015.1094596.

54

Blackburn, Elizabeth H., Elissa S. Epel, and Jue Lin. 2015. “Human Telomere Biology: A Contributory and Interactive Factor in Aging, Disease Risks, and Protection.” Science. American Association for the Advancement of Science.

https://doi.org/10.1126/science.aab3389.

Boele, Joost, Helena Persson, Jay W. Shin, Yuri Ishizu, Inga S. Newie, Rolf Søkilde, Shannon M. Hawkins, et al. 2014. “PAPD5-Mediated 3′ Adenylation and Subsequent Degradation of MiR-21 Is Disrupted in Proliferative Disease.”

Proceedings of the National Academy of Sciences of the United States of America 111 (31): 11467–72. https://doi.org/10.1073/pnas.1317751111.

Boyraz, Baris, Diane H. Moon, Matthew Segal, Maud Z. Muosieyiri, Asli Aykanat, Albert K. Tai, Patrick Cahan, and Suneet Agarwal. 2016. “Posttranscriptional Manipulation of TERC Reverses Molecular Hallmarks of Telomere Disease.”

Journal of Clinical Investigation 126 (9): 3377–82.

https://doi.org/10.1172/JCI87547.

Bradford, Yvonne M., Sabrina Toro, Sridhar Ramachandran, Leyla Ruzicka, Douglas G. Howe, Anne Eagle, Patrick Kalita, et al. 2017. “Zebrafish Models of Human Disease: Gaining Insight into Human Disease at ZFIN.” ILAR Journal 58 (1): 4–

16. https://doi.org/10.1093/ilar/ilw040.

Buiting, Karin, C. Körner, B. Ulrich, E. Wahle, and B. Horsthemke. 1999. “The Human Gene for the Poly(A)-Specific Ribonuclease (PARN) Maps to 16p13 and Has a Truncated Copy in the Prader-Willi/Angelman Syndrome Region on 15q11→q13.” Cytogenetics and Cell Genetics 87 (1–2): 125–31.

https://doi.org/10.1159/000015378.

Burris, Ashley M., Bari J. Ballew, Joshua B. Kentosh, Clesson E. Turner, Scott A.

Norton, Neelam Giri, Blanche P. Alter, et al. 2016. “Hoyeraal-Hreidarsson Syndrome Due to PARN Mutations: Fourteen Years of Follow-Up.” Pediatric

Neurology 56 (March): 62-68.e1.

https://doi.org/10.1016/j.pediatrneurol.2015.12.005.

Cevher, Murat A., Xiaokan Zhang, Sully Fernandez, Sergey Kim, Jorge Baquero, Per Nilsson, Sean Lee, Anders Virtanen, and Frida E. Kleiman. 2010. “Nuclear Deadenylation/Polyadenylation Factors Regulate 3′ Processing in Response to

DNA Damage.” EMBO Journal 29 (10): 1674–87.

https://doi.org/10.1038/emboj.2010.59.

Chekulaeva, Marina, Hansruedi Mathys, Jakob T. Zipprich, Jan Attig, Marija Colic, Roy Parker, and Witold Filipowicz. 2011. “MiRNA Repression Involves GW182-Mediated Recruitment of CCR4-NOT through Conserved W-Containing Motifs.” Nature Structural and Molecular Biology 18 (11): 1218–26.

https://doi.org/10.1038/nsmb.2166.

Choi, Youkyung Hwang, and Curt H. Hagedorn. 2003. “Purifying MRNAs with a High-Affinity ElF4E Mutant Identifies the Short 3′ Poly(A) End Phenotype.”

Proceedings of the National Academy of Sciences of the United States of America 100 (12): 7033–38. https://doi.org/10.1073/pnas.1232347100.

Chou, Chu-Fang, Alok Mulky, Sushmit Maitra, Wei-Jye Lin, Roberto Gherzi, John Kappes, and Ching-Yi Chen. 2006. “Tethering KSRP, a Decay-Promoting AU-Rich Element-Binding Protein, to MRNAs Elicits MRNA Decay.” Molecular and Cellular Biology 26 (10): 3695–3706. https://doi.org/10.1128/mcb.26.10.3695-3706.2006.

Collart, Martine A., and Olesya O. Panasenko. 2012. “The Ccr4-Not Complex.” Gene.

Gene. https://doi.org/10.1016/j.gene.2011.09.033.

COPELAND, PAUL R., and MICHAEL WORMINGTON. 2001. “The Mechanism and Regulation of Deadenylation: Identification and Characterization of Xenopus PARN.” RNA 7 (6): 875–86. https://doi.org/10.1017/S1355838201010020.

Darnell, J. E., L. Philipson, R. Wall, and M. Adesnik. 1971. “Polyadenylic Acid Sequences: Role in Conversion of Nuclear RNA into Messenger RNA.” Science 174 (4008): 507–10. https://doi.org/10.1126/science.174.4008.507.

Decker, C. J., and R. Parker. 1993. “A Turnover Pathway for Both Stable and Unstable MRNAs in Yeast: Evidence for a Requirement for Deadenylation.” Genes and Development 7 (8): 1632–43. https://doi.org/10.1101/gad.7.8.1632.

Dehlin, Eva, Michael Wormington, Christof G. Körner, and Elmar Wahle. 2000.

“Cap-Dependent Deadenylation of MRNA.” EMBO Journal 19 (5): 1079–86.

https://doi.org/10.1093/emboj/19.5.1079.

Deng, Tingting, Yan Huang, Kai Weng, Song Lin, Yujing Li, Guang Shi, Yali Chen, et al. 2019. “TOE1 Acts as a 3′ Exonuclease for Telomerase RNA and Regulates Telomere Maintenance.” Nucleic Acids Research 47 (1): 391–405.

https://doi.org/10.1093/nar/gky1019.

Despic, Vladimir, and Karla M. Neugebauer. 2018. “RNA Tales - How Embryos Read and Discard Messages from Mom.” Journal of Cell Science. Company of Biologists Ltd. https://doi.org/10.1242/jcs.201996.

Dhanraj, Santhosh, Sethu Madhava Rao Gunja, Adam P Deveau, Mikael Nissbeck, Boonchai Boonyawat, Andrew J Coombs, Alessandra Renieri, et al. 2015. “Bone Marrow Failure and Developmental Delay Caused by Mutations in Poly(A)-Specific Ribonuclease ( PARN ).” Journal of Medical Genetics 52: 738–48.

https://doi.org/10.1136/jmedgenet-2015-103292.

Dieci, Giorgio, Gloria Fiorino, Manuele Castelnuovo, Martin Teichmann, and Aldo Pagano. 2007. “The Expanding RNA Polymerase III Transcriptome.” Trends in Genetics. Elsevier Ltd. https://doi.org/10.1016/j.tig.2007.09.001.

Ding, Deqiang, Jiali Liu, Kunzhe Dong, Uros Midic, Rex A. Hess, Huirong Xie, Elena Y. Demireva, and Chen Chen. 2017. “PNLDC1 Is Essential for PiRNA 3′ End Trimming and Transposon Silencing during Spermatogenesis in Mice.” Nature Communications 8 (1). https://doi.org/10.1038/s41467-017-00854-4.

Dodson, Lois M., Alessandro Baldan, Mikael Nissbeck, Sethu M.R. Gunja, Penelope E. Bonnen, Geraldine Aubert, Sherri Birchansky, Anders Virtanen, and Alison A.

Bertuch. 2019. “From Incomplete Penetrance with Normal Telomere Length to Severe Disease and Telomere Shortening in a Family with Monoallelic and Biallelic PARN Pathogenic Variants.” Human Mutation 40 (12): 2414–29.

https://doi.org/10.1002/humu.23898.

Dokal, Inderjeet. 2011. “Dyskeratosis Congenita.” Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program. https://doi.org/10.1182/asheducation-2011.1.480.

Dominski, Zbigniew, Xiao Cui Yang, and William F. Marzluff. 2005. “The Polyadenylation Factor CPSF-73 Is Involved in Histone-Pre-MRNA Processing.”

Cell 123 (1): 37–48. https://doi.org/10.1016/j.cell.2005.08.002.

Eckmann, Christian R., Christiane Rammelt, and Elmar Wahle. 2011. “Control of Poly(A) Tail Length.” Wiley Interdisciplinary Reviews: RNA. Wiley Interdiscip Rev RNA. https://doi.org/10.1002/wrna.56.

EDMONDS, M., and R. ABRAMS. 1960. “Polynucleotide Biosynthesis: Formation of a Sequence of Adenylate Units from Adenosine Triphosphate by an Enzyme from Thymus Nuclei.” The Journal of Biological Chemistry. 1960.

https://doi.org/10.1016/s0021-9258(18)69494-3.

Edmonds, Mary. 1990. “Polyadenylate Polymerases.” Methods in Enzymology 181 (C): 161–70. https://doi.org/10.1016/0076-6879(90)81118-E.

56

Edmonds, Mary, Maurice H Vaughan, and Hiroshi Nakazato. 1971. “Polyadenylic Acid Sequences in the Heterogeneous Nuclear RNA and Rapidly-Labeled Polyribosomal RNA of HeLa Cells: Possible Evidence for a Precursor

Eulalio, Ana, Eric Huntzinger, Tadashi Nishihara, Jan Rehwinkel, Maria Fauser, and Elisa Izaurralde. 2009. “Deadenylation Is a Widespread Effect of MiRNA Regulation.” RNA 15 (1): 21–32. https://doi.org/10.1261/rna.1399509.

Fabian, Marc R., Maja K. Cieplak, Filipp Frank, Masahiro Morita, Jonathan Green, Tharan Srikumar, Bhushan Nagar, et al. 2011. “MiRNA-Mediated Deadenylation Is Orchestrated by GW182 through Two Conserved Motifs That Interact with CCR4-NOT.” Nature Structural and Molecular Biology 18 (11): 1211–17.

https://doi.org/10.1038/nsmb.2149.

Fabian, Marc R., Filipp Frank, Christopher Rouya, Nadeem Siddiqui, Wi S. Lai, Alexey Karetnikov, Perry J. Blackshear, Bhushan Nagar, and Nahum Sonenberg.

2013. “Structural Basis for the Recruitment of the Human CCR4-NOT Deadenylase Complex by Tristetraprolin.” Nature Structural and Molecular Biology 20 (6): 735–39. https://doi.org/10.1038/nsmb.2572.

Fabian, Marc R., Géraldine Mathonnet, Thomas Sundermeier, Hansruedi Mathys, Jakob T. Zipprich, Yuri V. Svitkin, Fabiola Rivas, et al. 2009. “Mammalian MiRNA RISC Recruits CAF1 and PABP to Affect PABP-Dependent Deadenylation.” Molecular Cell 35 (6): 868–80.

https://doi.org/10.1016/j.molcel.2009.08.004.

Feng, Junli, Walter D. Funk, Sy Shi Wang, Scott L. Weinrich, Ariel A. Avilion, Choy Pik Chiu, Robert R. Adams, et al. 1995. “The RNA Component of Human

Telomerase.” Science 269 (5228): 1236–41.

https://doi.org/10.1126/science.7544491.

Feurstein, Simone, Ayodeji Adegunsoye, Danijela Mojsilovic, Rekha Vij, Allison H.

West DePersia, Padma Sheila Rajagopal, Afaf Osman, et al. 2020. “Telomere Biology Disorder Prevalence and Phenotypes in Adults with Familial Hematologic and/or Pulmonary Presentations.” Blood Advances 4 (19): 4883–86.

https://doi.org/10.1182/BLOODADVANCES.2020001721.

Gable, Dustin L., Valeriya Gaysinskaya, Christine C. Atik, C. Conover Talbot, Byunghak Kang, Susan E. Stanley, Elizabeth W. Pugh, et al. 2019. “ZCCHC8,

Gable, Dustin L., Valeriya Gaysinskaya, Christine C. Atik, C. Conover Talbot, Byunghak Kang, Susan E. Stanley, Elizabeth W. Pugh, et al. 2019. “ZCCHC8,

Related documents