• No results found

Genom denna litteraturstudie undersöktes hur “bra” SEAS5 prognoser är för Europa utifrån allmänhetens perspektiv, för temperatur och delvis nederbörd under sommar och vinter. En “bra” prognos definieras här som en prognos som relativt pålitligt och träffsäkert kan besvara vanliga frågeställningar från allmänheten. SEAS5 har överlag bra reliability (pålitlighet) för marknära temperatur i Europa, men det är svårt att veta hur detta skiljer mellan olika platser. Dessutom förutspår SEAS5 sällan händelser med höga procentsatser, vilket gör den höga pålitligheten mindre användbar. I termer av skill (träffsäkerhet) varierar det mycket mellan säsong och plats. Överlag är

skill-nivån på gränsen till synoptiskt användbar, med den högsta skill-nivån i södra och sydöstra Europa under sommaren följt av norra Europa under vintern. Ganska stora områden av Europa har ingen skill (inte bättre än en klimatologisk prognos) under vissa förhållanden och i framförallt delar av Frankrike tycks det vara så året runt. Sammanfattningsvis uppfylls kraven för en “bra” prognos av marknära

temperatur bara fläckvist beroende på säsong och plats. Prognoser för nederbörd är generellt inte tillräckligt “bra”, varken i skill eller i reliability, oavsett årstid och plats. P.g.a. många komplexa aspekter inom fysiken i klimatsystemet på S2S-tidsskalor och skapande av S2S-produkter kommer det ta tid innan S2S-prognoser uppfyller

Referenser

Balmaseda, M. A., Ferranti, L., Molteni, F., & Palmer, T. N. (2010). Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: Implications for

long-range predictions. Quarterly Journal of the Royal Meteorological Society 136(652):1655-1664.

Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567), 47-55.

Bergen, R. E. & Harnack, R. P. (1982). Long-range temperature prediction using a simple analog approach. Monthly Weather Review, 110(8), 1083-1099.

Bitz, C. M., Gent, P. R., Woodgate, R. A., Holland, M. M. & Lindsay, R. (2006). The influence of sea ice on ocean heat uptake in response to increasing CO2. Journal of Climate 19(11):2437-2450.

Charlton-Perez, A. J., Bröcker, J., Stockdale, T. N. & Johnson, S. (2019). When and where do ECMWF seasonal forecast systems exhibit anomalously low

signal-to-noise ratio?. Quarterly Journal of the Royal Meteorological Society, 145(725), 3466-3478.

Chattopadhyay, A., Nabizadeh, E., & Hassanzadeh, P. (2020). Analog forecasting of extreme-causing weather patterns using deep learning. Journal of Advances in Modeling Earth Systems, 12, e2019MS001958.

Eade, R., Smith, D., Scaife, A., Wallace, E., Dunstone, N., Hermanson, L., &

Robinson, N. (2014). Do seasonal-to-decadal climate predictions underestimate the predictability of the real world?. Geophysical Research Letters, 41(15), 5620-5628.

European Centre for Medium-Range Weather Forecasts, ECMWF (2017). SEAS5 user guide. version 1.1.

https://www.ecmwf.int/sites/default/files/medialibrary/2017-10/System5_guide.pdf Gettelman A. & Rood R.B. (2016) Components of the Climate System. I Demystifying

Climate Models. Earth Systems Data and Models, vol 2. Springer, Berlin, Heidelberg

Hoskins, B. (2013). The potential for skill across the range of the seamless

weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society, 139(672), 573-584.

Jolliffe, I. T., & Stephenson, D. B. (Eds.). (2012). Forecast verification: a practitioner’s guide in atmospheric science. John Wiley & Sons.

Johnson, S. J., et al. (2019). SEAS5: the new ECMWF seasonal forecast system. Geoscientific Model Development, 12(3).

Jönsson, A. M. & Lagergren, F. (2017). Potential use of seasonal forecasts for

operational planning of north european forest management. Agricultural and Forest Meteorology, 244, 122-135.

Kalnay, E. (2003). Atmospheric modeling, data assimilation and predictability. Cambridge university press.

Kharin, V. V. & Zwiers, F. W. (2003). On the ROC score of probability forecasts. Journal of Climate, 16(24), 4145-4150.

Kim, H. M., Webster, P. J. & Curry, J. A. (2012). Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere

Winter. Climate Dynamics, 39(12), 2957-2973.

Krishnamurthy, V. & Sharma A. S. (2017). Predictability at intraseasonal time scale, Geophysical Research Letterrs, 44, 8530–8537

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the atmospheric sciences, 20(2), 130-141.

Lorenz, E. N. (1969). Atmospheric predictability as revealed by naturally occurring analogues. Journal of the Atmospheric sciences, 26(4), 636-646.

Lorenz, E. (1972). Predictability: does the flap of a butterfly’s wing in Brazil set off a tornado in Texas? Presenterad vid det årliga mötet av American Association for the Advancement of Science, Washington, DC.

MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D., Scaife, A. A., Gordon, M., Vellinga, M., Williams, A., Comer, R.E., Camp, J., Xavier, P. & Madec, G. (2015), Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q.J.R. Meteorol. Soc., 141, 1072-1084.

Manzanas, R., Gutiérrez, J. M., Bhend, J., Hemri, S., Doblas-Reyes, F. J., Torralba, V., Penabad, E. & Brookshaw, A. (2019). Bias adjustment and ensemble recalibration methods for seasonal forecasting: A comprehensive intercomparison using the C3S dataset. Climate Dynamics, 53(3-4), 1287-1305.

Meißner, D., Klein, B. & Reggiani, P. (2018). To what extend do seasonal hydrological forecasts benefit from improved meteorological forcing-a case study applying ECMWF SEAS5 forecasts to the Rhine basin. I EGU General Assembly Conference Abstracts., Vol 20.

National Academies of Sciences, Engineering, and Medicine, NASEM. (2016). Next generation earth system prediction: strategies for subseasonal to seasonal forecasts. National Academies Press.

National Research Council, NRC. (2010). Assessment of intraseasonal to interannual climate prediction and predictability. National Academies Press.

Parker, T., Woollings, T., Weisheimer, A., O’Reilly, C., Baker, L. & Shaffrey, L. (2019). Seasonal predictability of the winter North Atlantic Oscillation from a jet stream perspective. Geophysical Research Letters, 46(16), 10159-10167.

Photiadou, C., Gyllensvärd, F., Pechlivanidis, I., Crochemore, L., Bosshard, T., Arheimer, B. & Buontempo, C. (2019). Global seasonal hydrological forecasts–a Copernicus Climate Change Service (C3S) experience. I Geophysical Research Abstracts (Vol. 21).

Richardson, L. F. (1922). Weather prediction by numerical process. Cambridge university press.

Saha, S., Moorthi S., Wu X., Wang J., Nadiga S., Tripp P., Behringer D., Hou Y., Chuang H., Iredell M., Ek M., Meng J., Yang R., Mendez M.P., van den Dool H., Zhang Q., Wang W., Chen M. & Becker E. (2014), The NCEP Climate Forecast System Version 2. J. Climate, 27, 2185–2208

Scaife, & Smith (2018). A signal-to-noise paradox in climate science. npj Climate and Atmospheric Science, 1(1), 1-8.

Screen, J. A., Simmonds, I. & Keay, K. (2011). Dramatic interannual changes of perennial Arctic sea ice linked to abnormal summer storm activity. Journal of Geophysical Research-Atmospheres 116.

of numerical weather prediction. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 128(580), 647-677.

Srinivasan, G., Rafisura, K. M. & Subbiah, A. R. (2011). Climate information requirements for community-level risk management and adaptation. Climate Research 47(1-2):5-12.

Stockdale, T., Johnson, S., Ferranti, L., Balmaseda, M. & Briceag, S. (2018). ECMWF’s new long-range forecasting system SEAS5. ECMWF Newsletter, 154(154), 15-20.

Toth, Z. (1989). Long-range weather forecasting using an analog approach. Journal of climate, 2(6), 594-607.

van den Dool, H., Becker, E., Chen, L. C. & Zhang, Q. (2017). The probability anomaly correlation and calibration of probabilistic forecasts. Weather and Forecasting, 32(1), 199-206.

Vitart, F., Balsamo, G., Buizza, R., Ferranti, L., Keeley, S., Magnusson, F. Molteni, L. & Weisheimer, A. (2014). Sub-seasonal predictions. ECMWF technical

memorandum no. 738. Reading, Berkshire, UK: European Centre for Medium-Range Weather Forecasts.

Wang, Q. J., Shao, Y., Song, Y., Schepen, A., Robertson, D. E., Ryu, D. & Pappenberger, F. (2019). An evaluation of ECMWF SEAS5 seasonal climate forecasts for Australia using a new forecast calibration algorithm. Environmental Modelling & Software, 122, 104550.

Warner, T. T. (2010). Numerical weather and climate prediction. Cambridge University Press.

Weisheimer A & Palmer TN. (2014) On the reliability of seasonal climate forecasts. J. R. Soc. Interface 11: 20131162.

Weisheimer, A., Decremer, D., MacLeod, D., O’Reilly, C., Stockdale, T. N., Johnson, S. & Palmer, T. N. (2019). How confident are predictability estimates of the winter North Atlantic Oscillation?. Quarterly Journal of the Royal Meteorological Society, 145, 140-159.

Wilks, D. S. (2019). Statistical methods in the atmospheric sciences, 4th edition. Academic press.

Internetkällor

Deutscher Wetterdienst, DWD. (u. å.). Skill measure: Brier Skill Score. Tillgänglig: https://www.dwd.de/EN/ourservices/seasonals_forecasts/forecast_reliability.html [2020-05-16]

European Centre for Medium-Range Weather Forecasts, ECMWF. (2020) The boreal winter season 19/20 was by far the warmest winter season ever recorded in

Europe. Tillgänglig: https://climate.copernicus.eu/index.php/

boreal-winter-season-1920-was-far-warmest-winter-season-ever-recorded-europe-0 [2020-05-16]

European Centre for Medium-Range Weather Forecasts, ECMWF (u. å.). Modelling and Prediction. Tillgänglig:

Météo-France et al. (2015). WWRP/WGNE Joint Working Group on Forecast Verification Research. Tillgänglig: https://www.cawcr.gov.au/projects/verification/ [2020-05-16]

Mladek, R. (2020). Models. Tillgänglig:

https://confluence.ecmwf.int/display/S2S/Models [2020-05-08]

Sveriges meteorologiska och hydrologiska institut, SMHI. (2020). Vintern 2020 -Ovanligt rekordrik vinter. Tillgänglig: https://www.smhi.se/klimat/

klimatet-da-och-nu/arets-vader/vintern-2020-ovanligt-rekordrik-vinter-1.155690 [2020-04-30]

The National Centers for Environmental Prediction, NCEP (u. å.). Anomaly RMSE and corlelation. Tillgänglig: https://www.cpc.ncep.noaa.gov/products/people/ mchen/CFSv2HCST/metrics/rmseCorl.html, [2020-05-12]

World Meteorological Organisation, WMO (2017). Global Producing Centres for Long-Range Forecasts. Tillgänglig:

Related documents